
AQA Education (AQA) is a registered charity (number 1073334) and a company limited by guarantee registered in

England and Wales (number 3644723). Our registered address is AQA, Devas Street, Manchester M15 6EX.

Teacher Standardisation
Spring 2018
A-level Computer Science (7517)

Booklet 2

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 1/133

Contents

Contents ... 1

Analysis... 5

Project Background .. 5

Project Outline ... 6

Client .. 6

Research ... 7

Radio Communications ... 7

GPS .. 10

Server and Slave Network... 11

Potential Radio Solutions ... 12

Parallel .. 12

Cycled.. 12

Further Client Discussions .. 13

Radio Solutions ... 13

Two Way Protocol ... 14

Character Set .. 15

Dl-Fldigi Interface.. 15

Backup Tracker ... 16

Maximizing Link Budget .. 16

Authentication .. 16

Conclusion... 17

Specification ... 17

Ground Station Controller .. 17

Server .. 19

Payload Software .. 19

Potential Programming Solutions: ... 21

Java ... 21

Python ... 21

C .. 21

VB.NET .. 21

Chosen Solution .. 21

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 2/133

Design... 22

Overall System Summary ... 22

Notes .. 22

Authentication .. 22

Defensive Design .. 22

Default Telemetry ... 23

Hierarchy Charts of Each Component .. 23

Ground Station.. 24

Payload Software .. 25

Server Software .. 26

2-Way Packet Protocol ... 27

SPI/DIO API Structure ... 30

Required Operations... 30

Structure of API... 32

List of Required Registers ... 32

User Interface ... 33

Configuration Design .. 37

GPS Serial Interface .. 38

Server ... 39

Database Design ... 40

Database Table: Payload... 40

Database Table: Packet... 41

Entity Relationship Diagram ... 41

Interrupt Driven Cycle .. 41

Image Taking .. 42

Algorithms .. 42

Receiving ... 42

Transmission ... 43

Modification of Specific Registers Using SPI Interface ... 44

CRC-16-CCITT .. 45

Reading From the GPS .. 46

Generating Telemetry Strings ... 46

Image Loop ... 47

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 3/133

Whole System Data Flow Diagram ... 48

Validation Required.. 48

Test Strategy... 49

Technical Solution .. 51

‘Util’ Module... 51

com.sam.hab.util.csum.CRC16CCITT.java .. 51

com.sam.hab.util.lora.Config.java .. 51

com.sam.hab.util.lora.Constants.java .. 54

com.sam.hab.util.lora.LoRa.java .. 57

com.sam.hab.util.txrx.CycleManager.java ... 62

com.sam.hab.util.txrx.PacketHandler.java ... 66

com.sam.hab.util.txrx.PacketParser.java ... 67

com.sam.hab.util.txrx.ReceivedPacket.java ... 69

com.sam.hab.util.txrx.ReceivedTelemetry.java ... 69

com.sam.hab.util.txrx.TwoWayPacketGenerator.java... 70

‘Ground’ Module .. 71

com.sam.hab.ground.gui.GUI.java ... 71

com.sam.hab.ground.main.GroundMain.java ... 77

com.sam.hab.ground.web.RequestHandler.java ... 78

‘Payload’ Module ... 80

com.sam.hab.payload.main.PayloadMain.java.. 80

com.sam.hab.payload.main.ImageManager.java .. 83

com.sam.hab.payload.serial.GPSLoop.java .. 84

Web Module... 86

index.html ... 86

conf.html... 87

export.html ... 89

logtail.html .. 90

style.css ... 91

conf.php .. 92

export.php .. 94

logtail.php ... 94

WebServer.py ... 95

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 4/133

Testing .. 98

LoRa Radio Module Testing.. 98

Payload Testing .. 99

Telemetry and SSDV ... 99

GPS Data Integrity... 99

Image Taking ... 100

Summary ... 100

2-Way Communications Testing .. 101

Ground Station and Server Testing .. 103

Telemetry Display ... 103

SSDV Display ... 104

Control Results.. 105

Automatic Configuration System.. 106

Console Validation .. 108

Summary ... 110

Web Testing and Validation ... 111

Configuration Page ... 111

Export Page ... 112

Logtail Page ... 113

Habhub Upload ... 113

Flight Test ... 114

Testing Evidence... 117

Changes .. 122

Code Changes ... 122

Correction Evidence.. 124

Evaluation... 126

Achievement of Objectives .. 126

Ground Station.. 126

Server .. 128

Payload Software .. 128

Client Feedback .. 129

Potential Extensions and Improvements ... 132

Final Conclusions .. 133

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 5/133

Analysis

Project Background

In the last few months, I have been getting into an advanced computing and electronic
engineering hobby: high altitude ballooning. This involves sending a balloon with a payload
attached containing a microcontroller (in my case, a Raspberry Pi Zero), a low power UHF
radio, a GPS module and a camera. The Pi is programmed to take pictures at regular
intervals and transmit both the images and the GPS data (telemetry) down in order to aid
tracking and recovery of the payload. The software I developed and used for my first 3
flights can be seen here: https://github.com/Abrasam/SKIPI-Launch-1 and here:
https://github.com/Abrasam/SKIPI2. Below is a data-flow diagram for the current system.

Radio
Transmitter

GPS

Camera

Transmit
Pi

Generate
telemetry string

Receive
Computer

Radio
Receiver

Decode

Habhub
servers

Location

Location
Time

Telemetry
string

Te
le

m
et

ry
 s

tr
in

g

RTTY
Telemetry
string

Te
le

m
et

ry

st
ri

ng

Airborne Payload

Ground Station
Figure 1 - DFD diagram for the current system, note the lone one-way RTTY link between the airborne

payload and the ground-based station; there is no capacity for uplink.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 6/133

Project Outline

As described previously, there is only one-way communication occurring between the
payload and the receiver and if something goes wrong, then there is very little that can be
done about it, furthermore, it means that the information which comes down from the
payload is very specific and limited and all diagnostic data must be predefined when
creating the payload’s telemetry format. For my project, I want to create a prototype piece
of software which allows two-way communication with and control of an airborne high
altitude balloon payload for use by UKHAS (UK High Altitude Society) members, myself
included. I have used two methods of communicating with the receiver on the ground, they
are described in the research section. My clients for this project are members of the UKHAS
who fly High Altitude Balloons (HABs) as a hobby. We have several pieces of software which
are used by members, and this software is intended to be an addition to our suite of HAB
utilities. I intend to use a Raspberry Pi as the microcontroller for my payload, I could use an
Arduino, however, the Raspberry Pi camera module makes the Pi an attractive piece of
hardware for HAB, as well, it gives me more freedom of programming language.

Client

As noted above, my intended clients are members of the UKHAS who will be the principle
users of this software. One member of the UKHAS, David Akerman, has agreed to answer
questions via email and provide technical advice with regards to the hardware
implementation.

Figure 2 - Email from David Akerman, member of the UKHAS, amateur radio operator and embedded systems programmer.

IR2030 is the document published by Ofcom noting what radio frequency bands are available for license -free use.

Dave comments on the fact that the payload will have a large listening footprint and as such
will be receiving lots of other transmissions, meaning that our transmissions may require
higher power in order to be received over the noise. I will discuss potential frequencies to
use which are license-exempt in the next section. Dave also suggests that I use a LoRa
transceiver (see research for more information) and that I choose my parameters wisely to
maximise range. Dave points out that 434MHz and 868MHz are harmonically related (these

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 7/133

are the two frequencies frequently used by HAB enthusiasts and are the two frequencies
which LoRa modules operate on). I will discuss Dave points more in research.

Research

Radio Communications

The first method of communication I have used is RTTY or Radio Teletype which is an old
protocol initially developed for the teleprinter, which works by simply shifting frequency up
and down to correspond to binary 1 and binary 0, this is done by applying a small voltage to
one of the pins on the radio. These voltage changes must be timed accurately, but as the Pi
doesn’t have a real time OS, the best way to achieve this was using the Pi’s RS-232 (a
standard for asynchronous serial communications) serial interface (and thus connecting the
Pi’s Tx (see fig. 3) pin to the radio’s pin). This runs at 75-100 baud robustly and could be
pushed to 300 but is then significantly susceptible to interference, so this means a maximum
usable downlink bitrate of 300bps, as I have only one bit encoded per state change. This
rate is unfeasible for two way communications and additionally, automatic detection and
decoding of RTTY is difficult to achieve reliably, even when receiving transmissions during a
normal flight I typically receive errors on at least 20% of packets, this is significantly too high
to be useful for 2-way communications, particularly of telnet style communication is
desired.

Figure 3 - Image showing the pin layout of a Raspberry Pi Zero, the TXD0 pin is used to communicate with the NTX2B (RTTY)

radio as well as the GPS, the RXD0 is also used to communicate with the GPS. The SPI_MOSI, SPI_MISO, SPI_CLK and
SPI_CEO_N pins are used for the LoRa radios, described in the paragraph below.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 8/133

The second method of communication is LoRa which is a long range, low power, high data
rate radio solution also running at a license exempt frequency. The LoRa modules are low
cost and are controlled with an SPI (Serial Peripheral Interface, a synchronous serial
communication protocol) interface and provide state change notifications via DIO (Digital
Inout/Output, a simple protocol whereby a line can have either a HIGH or a LOW signal to
denote binary flags). Their modulation and demodulation is handled internally as the
modulation scheme is patented. The modules are capable of achieving an equivalent of
17,000 baud RTTY (see figure 4), making them ideal for long range 2-way communications.
Their range is somewhere in the region of 60-100km, which is perfectly adequate for high
altitude ballooning, this is somewhat lower than the RTTY which can reach 600km and more
with perfect conditions, however, we do not need that extra range.

Figure 4 - Shows nominal bitrate vs bandwidth. Bitrate can be further optimised with modification to spreading factor and

error coding rate. Taken from the LoRa module datasheet.

Thus far I have flown three flights, all of which have used the RTTY and two of which have
used the LoRa radios, in order to use the RTTY I used a cheap Radiometrix NTX2B radio (see:
http://www.radiometrix.com/files/additional/NTX2B.pdf) which shifts frequency as a result
of a voltage applied to one of its pins, however, the Pi outputs 3.3v which would result in a
frequency shift of about 7kHz, this is far too large as it is outside the range of typical SDR
(software defined radio, a USB radio receiver) receivers, so a potential divider was needed
to lower the voltage to about 0.2v-0.3v to acquire a shift of around 400-500Hz, a graph of
frequency shift against voltage applied to TXD pin is shown in fig. 4. Furthermore, the LoRa
modules were very successful, I used a Python library designed for a similar module which
worked well, however, in this project, I will want to develop my own wrapper and API for
the LoRa radios which will be more robust than the library I used before, and will handle the
SPI and DIO interfaces itself, while providing me with a self-documenting API for use
throughout the rest of the programming and possibly publication as a stand-alone LoRa API.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 9/133

Figure 5 - The above graph shows the frequency shift (kHz, y-axis) vs the voltage applied to the radio’s Tx pin (V, x-axis).

Sourced from the UKHAS website.

Due to Ofcom regulations, I am restricted to specific power outputs and frequency bands as
I do not hold an amateur or commercial radio license. Therefore, I must use license-exempt
bands and adhere by any specific rules in those bands. There is a 434.04-434.79MHz band
which I have used for RTTY, this has a power output limit of 10mW E.R.P. (effective radiated
power – this takes into account the antenna gain (amplification by the antenna)); a band at
869.70-870.00MHz which has a power output limit of 5mW E.R.P. which I will use for the
868MHz LoRa downlink from the payload. These bands are useful due to their 100% duty
cycle, meaning I can transmit continuously, and their lack of requirement for techniques to
mitigate interference such as “Listen Before Talk” which could inhibit some of my
communications. However, there is another band, 869.40-869.65MHz which allows 500mW
transmissions with a duty cycle limit of 10%, this could be used for the uplink as I am only
likely to be transmitting to the payload for a small amount of time compared to the time
during which the payload will be transmitting to me and thus I could easily manage with
10% duty cycle, this would provide a much greater signal strength for transmissions to the
airborne payload, it would be much less susceptible to interference. The table in figure 5
shows the available bands that are suitable for this project.

Frequency (MHz) Power Limits (mW) Other Requirements
869.40-869.65 500 Duty cycle limit of 10%.
869.70-870.00 5 None.
434.04-434.79 10 Channel spacing ≤ 25kHz
Figure 6 - Summary of frequency bands which could be useful for my project. Sourced from the Ofcom IR2030 table of
license-exempt frequency bands in the radio spectrum, available at:
https://www.ofcom.org.uk/__data/assets/pdf_file/0028/84970/ir_2030-june2014.pdf

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 10/133

The LoRa module requires a detailed understanding of its interface. The datasheet
(http://www.hoperf.com/upload/rf/RFM95_96_97_98W.pdf) describes the SPI and DIO
(Digital Input/Output) interface it uses. SPI is a synchronous serial communication interface
used primarily in embedded systems; it has a master-slave architecture with a single master
and can operate in full-duplex mode; it supports multiple slaves when separate slave-
selection lines are used. The SPI is used to modify the registers on the radio, in order to
configure the radio (e.g. frequency, spreading factor, operation mode etc.) or, indeed, to
write the packet that is to be transmitted to the appropriate register or to read a received
packet from the appropriate register. Modulation, demodulation, receiving and
transmission of packets is handled internally as the methods used are patented. The DIO is
used to notify the interfacing device, in my case a Raspberry Pi, when specific events occur
(see fig. 6 for functionality of each pin), in my case I will be using the DIO0 and DIO5 pin,
they function as follows: the DIO0 pin can be configured to change state to HIGH (1) when a
transmission has finished sending or receiving (TxDone or RxDone), while the DIO5 pin can
be configured to change state to HIGH (1) when the radio has changed operation mode
(ModeReady, i.e. changing from transmit to standby mode). My software will need to use
both SPI and DIO so I propose that I use a library such as WiringPi or Pi4J to do this. WiringPi
has implementations in many languages and Pi4J is a Java based library, as the name ‘Pi 4
Java’ suggests; however, there are many other options such as spidev in Python which is an
excellent library which I have experience developing with.

Figure 7 - Table showing the functions of the individual DIO pins. Taken from the datasheet.

The LoRa SPI interface works in the following way: each register on the LoRa module is
assigned a unique address of up to 7 bits, to write to or read from a register you must send
a sequence of bytes via SPI to the radio, the least significant bits of the first byte will be the
register’s address, the most significant bit is 1 when writing and 0 when reading. Then, if
writing, you send the bytes you wish to write in the order you wish then to be written (if you
send more bytes than the register can hold it will ignore the excess); if reading you must
send the n 0x00 bytes where n is the number of bytes you wish to read from the specified
register, again, if you specify more bytes than the register contains it’ll just stop once it’s
read the whole register. This gives a sufficient knowledge of the SPI interface for this
project, for more information see the aforementioned datasheet.

GPS

I will need a GPS module on my payload, however, due to the COCOM limits (see
https://en.wikipedia.org/wiki/CoCom), which prevent a GPS from functioning if it is above
18,000m altitude or travelling faster than 1,000 knots in order to prevent GPS technology
being used to guide inter-continental ballistic missiles (this limitation is an artefact of the
Cold War), I have to purchase a specialist GPS module which instead requires both high

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 11/133

altitude and high speed to shut down rather than just one of the two. There are several
options and all have a serial interface running at 96,000 baud by default, this will require
usage of the Pi’s RS232 serial connection to read continuously from the GPS. Alternatively, I
could use an I2C interface which many of the GPS modules provide; however, the Ublox GPS
modules (which is the most popular type with HAB enthusiasts) perform clock stretching at
arbitrary times and the Pi I2C driver simply cannot handle this. I should note that the GPS
also outputs several different types of location strings in a looping sequence, all the output
types can be seen on http://www.gpsinformation.org/dale/nmea.htm but we are only
interested in GGA strings, which give a 3D position (i.e. including altitude) and the number
of satellites the GPS is currently in contact with. These give latitude and longitude in the
form ddmm.mmmm where dd is the number of degrees and mm.mmmm is the number of
arc minutes as a decimal. So, to convert to degrees correctly, which most mapping systems
use you must use the following equation:

coordinate degrees = 𝑑𝑑 +
𝑚𝑚. 𝑚𝑚𝑚𝑚

60

Additionally, the GPS doesn’t give the correct negative values, it instead gives another field
saying whether the position given is North/South of the equator for latitude or West/East of
the Greenwich Meridian for longitude so these fields will need to be checked and the
correct negative sign will need to be applied to the latitude and longitude values .

I should also note that the GPS doesn’t by default work at high altitudes, by default it
adheres to the standard CoCom limits, a sequence of bytes must be sent to it in order to
switch to ‘Airborne Mode’, the required bytes are as follows:

[0xB5, 0x62, 0x06, 0x24, 0x24, 0x00, 0xFF, 0xFF, 0x06, 0x03,

0x00, 0x00, 0x00, 0x00, 0x10, 0x27, 0x00, 0x00, 0x05, 0x00,

0xFA, 0x00, 0xFA, 0x00, 0x64, 0x00, 0x2C, 0x01, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x16, 0xDC]

Server and Slave Network

As I have stated, I have flown flights using both LoRa and RTTY transmission methods and
have gained an understanding of their function and implementation through building and
programming the payloads for these flights. I’ve also seen that when chasing a payload, it is
quite easy to lose contact with it temporarily due to, for example, an inconvenient road
route or a building breaking line of sight, and at these times I’ve previously relied on other
enthusiasts (members of the UK High Altitude Society) to receive the transmissions using
their high gain stationary antennas based around the country. In order for my 2-way
communication system to function consistently, through signal dropouts with the payload, I
suggest that I need to harness the many willing enthusiasts across the country who would
be happy to assist in tracking. So, I propose the development of a slave tracking software
that acts to rebroadcast transmissions that do not successfully reach the payload when
transmitted by the main controller and to forward any transmissions received by the
payload to a central server (the function of this server is described below). Figure 7 below
shows a map of UKHAS listening stations recently active, as you can see there are many

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 12/133

receivers across the country, massively increasing listening and transmitting capacity if they
can be harnessed! I will suggest this to members of the UKHAS.

Figure 8 - Map of UKHAS receiving nodes active recently. Screenshot from the UKHAS tracker (https://tracker.habhub.org/).

Potential Radio Solutions

Parallel

My software could work my transmitting packets to the payload on one LoRa radio, and
from the payload on another LoRa radio running at a different frequency. Having two radios
operating simultaneously at different frequencies would allow us to maintain 100% duty
cycle on both transmit and receive operations in order to maximize efficiency, rather than
having to wait for a cycle to complete. Note that although in my implementation I would
most likely be using 434MHz for uplink and 868MHz for downlink, the frequencies should be
configurable by the end user in a configuration file, so if they wanted to use two 868MHz
radios with lower bandwidths or one 868MHz and one 434MHz then they should be able to
by modifying a configuration file. However, there are problems with having two radios
operating simultaneously, particularly as the two frequencies available to the LoRa radios
are harmonically related which would result in significant interference, potentially
preventing any communication from functioning correctly.

Cycled

Alternatively, I could use only one transceiver and switch between receive and transmit
regularly, this would reduce responsiveness for the 2-way communications, but make it

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 13/133

more robust and less likely to be affected by interference. Note that my implementation
should be fully configurable allowing users to use different frequencies and different cycles
of uplink and downlink. This would mean that I would need to configure a cycle where the
airborne payload spends some time transmitting, then transmits a packet informing the
ground-based device that it is now accepting packets, waits to receive packets, and then if
no packets are received for some defined period of time, begin transmitting for a while
again. The ground based receiver would need to be configured to receive packets and then
upon receiving a packet that states that the transmitter is going into receive mode, transmit
any packets that are queued for transmission.

Further Client Discussions

Radio Solutions

As mentioned the UK High Altitude Society (UKHAS) is a group of enthusiasts who fly high
altitude balloons, of which I am a member. We have a suite of software called habitat which
allows data received by numerous receivers to be forwarded to a central server and
displayed on a map. I would like for location data received from my payload to be relayed to
habhub. My project will be targeted at myself and other members of the UKHAS. Further, in
order for the slave transceiver network to function correctly, I would need to develop my
own central server software which coordinates the slave node network and logs flight data
for my own records, this would be developed with the overall aim in mind for it to be
eventually integrated into the habhub habitat software suite. The central server could also
function to ensure that the main controller is forwarded any packets from the payload
which it does not receive itself which are, however, received by the army of slaves.

I have been discussing this project with members of the UKHAS and have made many of the
decisions noted in this section and below in the specification with their interests in mind, as
they are my principle clients. I had some discussions with members of the UKHAS on the
#highaltitude IRC channel on Freenode, I discussed the advantages and disadvantages of
having two LoRa radios in parallel and of using just one with a cycle of transmit and receive.
I have reached the conclusion that it would be more suitable to use just one radio with a
cycle of transmit and receive, with both queuing packets for transmission while unable to
transmit (as they’re in receive mode). Several members of the UKHAS were concerned
about the interference due to having the two radios simultaneously transmitting and
receiving while adjacent to each other and most were unconcerned about the slight delay
that would be caused by having to queue packets for transmitting while in receive mode.
See fig. 9 for transcript of IRC.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 14/133

Figure 9 - Transcript of IRC chat with members of the UKHAS.

Two Way Protocol

I discussed my concept for my protocol specification with the UKHAS on IRC, the log is in
figure 10, we discussed the network of slave receivers and it was suggested that the system
be coordinated so that only one node is transmitting at any given time, this is what I had
suggested above in my research. When discussing the protocol, I suggested a system where
the payload transmits to say it is entering into receive mode and then begins to listen, then
the ground station begins transmitting and when the ground station has not transmitted
anything for a given time the payload returns to transmit mode and then processes the
received packets; members of the UKHAS suggested that I expand upon this with something
similar to the sliding window protocol used in TCP, this is where each packet has a
consecutive number and the receiver uses the numbers to put the packets in the correct
order, detect duplicates and detect missing packets; the sliding window protocol puts a limit
on the number of packets that can be transmitted in a given time by limiting the number of
packets that are sent before waiting for an acknowledgement (source:
https://en.wikipedia.org/wiki/Sliding_window_protocol). Although this will not exactly be
used in my implementation, it would be suitable to limit to a set number of transmissions
per transmit cycle to prevent any cycle continuing for too long. I do not think that sending
NACK (negative-acknowledgement) packets or ACK (acknowledgement) packets will be
appropriate for my implementation, ACK packets would be inappropriate because I am
running on an unreliable and slow medium and this would result in having to send an extra
packet for each packet, NACKs would still be inappropriate because the number of packets
transmitted in a cycle will not necessarily be fixed.

Members of the UKHAS expressed concern that others could attempt to enact remote
control operations on the payload, a proposed solution to this is described later (see
‘Authentication’).

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 15/133

Figure 10 - IRC log of discussions about the network of slave receivers and the 2-way protocol. Note that ‘ACK’ means

acknowledgement packet and ‘NACK’ means negative-acknowledgement packet.

Character Set

When transmitting data via the LoRa radios, it needs to be encoded into bytes, so I will have
to use a specific chosen character set. The chosen character set needs to be 8 bit because
the SSDV program encodes data into packets of 256 bytes and I wish to transmit one packet
per transmission. Additionally, the character set needs to be compatible with existing HAB
software which use extended-ASCII. The character set I shall use will be ISO-8859-1 for it
fulfils all the requirements and is included on most systems with most languages having
built-in functions that can encode strings in it. This is effectively extended ASCII so is
compatible with most existing HAB software.

Dl-Fldigi Interface

Further discussions with members of the UKHAS led me to the conclusion that it would be a
suitable extension to interface with the already commonly used (by UKHAS members) dl-
fldigi software which is used to decode RTTY. This results in my software effectively being an
all-round HAB toolkit, making it very useful to an enthusiast. I did, however, decide that this
should only be an extension as most enthusiasts are happy to have both programs open
simultaneously without an overall wrapper and this project is at its current stage a
prototype.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 16/133

Backup Tracker

Additionally, members of the UKHAS who I asked all wanted to have RTTY transmitted by
the payload as well as an emergency backup tracking method due to it being so robust and
reliable. Because of this, as the RTTY typically runs at 434MHz, I would thus need to use
868MHz for the LoRa. The IRC log for this is shown in figure 11. It might be sensible to
disable the RTTY for the duration of the payload’s receive cycle as although the RTTY is
running at a different frequency than the LoRa the two frequencies are indeed harmonically
related, resulting in possible interference. Having done some research and testing with an
RTTY tracker running from the same payload, I have decided to instead run a separate
payload separated by several metres from the 2-way payload in order to limit interference.
For this I will use my well-tested tracker from my previous flights which I know to work well.
Hence, the two-way payload software will not need to transmit RTTY as well as LoRa.

Figure 11 - IRC log showing discussion of backup RTTY tracker. Note that the final comment by mfa298 is regarding a

payload that was lost due to the failure of its single tracker.

Maximizing Link Budget

In the past, members of the UKHAS have managed only limited 2-way communications, they
have successfully transmitted a packet to the payload in the event that image packets are
missed requesting that they are retransmitted. These used high gain transmitting antennas
and the software was written in Python. I spoke to David Akerman, who wrote this software
and he has confirmed that he has had reasonable success with it in the past using a
relatively simple antenna as well as with a high gain directional antenna.

A screenshot of an email from David Akerman is shown in figure 2, following this and
discussion on the IRC I have concluded that I shall use the 500mW license-exempt band (see
fig. 6) to transmit up to my payload as this will provide a greater link budget and this will
make the 2-way communications much stronger, however, the LoRa module is only 100mW
at its maximum so this will be my maximum output, however, the 500mW band is still the
only band in which I can use this power output on the transmitter (using the 500mW band
was suggested by a user on the IRC, see fig. 9). Furthermore, Dave suggests in his email to
optimise the LoRa parameters for best link budget, typically a spreading factor of 7 has been
used with a 250kHz bandwidth for high data-rate long-range communications from HAB to
payload, however, for payload to HAB I intend to use a lower bandwidth to maximize
resistance to interference and increase link budget, a lower bandwidth means that the total
power output is spread over a smaller section of the radio spectrum. This should help
alleviate the issues created due to the large listening footprint of the airborne payload that
Dave mentions in his email.

Authentication

I will be sending transmissions from the ground station that could, if used incorrectly,
sabotage my flight, for example, sending the console command sudo halt would achieve

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 17/133

that. Because of this, I feel that my packets should be some way secured, encrypting would
be one method of doing this, however, I am not sending sensitive data so it seems
unnecessary. An alternative would be using a sort of ‘salt’ like those used in salted hashes
when storing passwords in databases, by this I mean that when configuring the payload the
user would need to set a ‘salt’ or key which will be included in the calculation of the
checksum but not actually transmitted, that way, on the receiving end the software could
append the same key to the received packet and calculate the checksum, if the checksums
match then we know both that the data is correct and has come from an authorised source.

Conclusion

In conclusion, as discussed, my target users are members of the UKHAS who would find it
useful to see basic diagnostic information about an airborne payload such as battery voltage
and internal temperature in order to detect issues, without having to include that in their
standard telemetry format; members also expressed the desire to have the ability to reboot
the entire Pi, making the point that the software should be configurable to start when the Pi
boots, this is all in order to fix potential runtime issues; it was also pointed out that the
payload software should not continue to wait if no packets are received from the ground as
this could result in the payload going silent, it should time out, this is to prevent lost flights;
several members also expressed the need to have multiple receivers and transmitters to
maximize the range of the 2-way communications as discussed above, however, as this
project is a prototype I think this should be considered as a future extension to the main
project, simply achieving two way communications with the payload from a single ground
station will be sufficient proof of concept. It was also noted that if there were no 2-way
communications packets to send then the payload should just transmit standard telemetry
strings following the standard UKHAS format (see figure 13 or for more information see:
https://ukhas.org.uk/communication:protocol), 2-way packets should be in some way
distinct from standard telemetry strings, perhaps a specific prefix should be used, rather
than the standard $$ used by the UKHAS strings.

Figure 12 - Showing a small snippet of my discussion with members of the UKHAS about potential features for the system.

Figure 13 - Image showing UKHAS protocol standards.

Specification

Ground Station Controller

1. The transceiver controller should:
a. Provide the user with a clear front-end.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 18/133

i. This need not be usable by a naïve user, as this software is aimed at
experienced radio operators and high altitude balloon enthusiasts;
this hobby requires a certain amount of technical knowledge on the
subject matter.

ii. The UI should function on a touchscreen, as the Pi used will be using a
touchscreen for the interface.

iii. The UI should provide the following features: current telemetry
display; current image display; transmission log; remote console;
control interface; configuration tab.

b. Provide a configuration file which allows the user to set the callsign,
transmission frequency and bandwidth, the receiving frequency and
bandwidth, the error coding rate, the spreading factor, the transmission
power and whether the payload is using explicit packet headers. The user
should also be able to set the key for 2-way packet authentication.

c. Allow normal LoRa receiving using an 868MHz module or a 434MHz module.
i. This is done by awaiting the DIO0 pin to go high, then reading the

contents of the LoRa FIFO.
ii. LoRa modules are interfaced with SPI so this will require an SPI

wrapper to be developed which handles all LoRa functions needed for
the project.

d. Decode SSDV image packets and display on the graphical interface, also
forward SSDV image packets to the habhub servers.

i. SSDV can be decoded using a freely available library developed by a
member of the high altitude ballooning community called fsphil.

ii. SSDV is encoded by the library into 256 byte packets, these can be
decoded individually so if a packet is lost most of the image can still
be seen.

e. Parse telemetry, ignoring those with failed checksums or incomplete data
and showing the relevant data on the telemetry display.

f. Log all received packets to a file with a timestamp.
g. Switch to transmit mode after receiving a packet from the payload stating

that it is entering listening mode and send any 2-way communication packets
that are queued.

i. Packets will be queued by the user when they request that an action
be completed by the payload.

h. Allow the user to queue packets for transmission by either clicking one of the
command buttons in the control menu or by sending a remote console
command.

i. Allow two-way communication with the airborne payload as described
below.

i. Two-way communication should be initialised by the sending of a
packet by the payload stating that it has begun waiting for
transmissions from the ground.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 19/133

ii. The ground station should then switch to transmit mode and move to
the transmit frequency and bandwidth.

iii. The ground station should then send a fixed number of its queued
packets.

iv. The payload should return to transmit mode after not receiving any
packets for a set duration of time, or after receiving the correct
number of packets.

v. Each packet should have a consecutive ID; the ID will reset to zero at
the start of each transmit cycle.

vi. All packets involved in two-way communications should be prefixed
with an identifier so that they are not mistaken for standard
telemetry or SSDV.

vii. The user should be able to control basic airborne operation such as
toggling image transmission.

viii. The user should have remote shell/telnet style access and be able to
reboot the payload in an emergency debugging attempt.

ix. The user should be able to request diagnostics of the payload e.g.
number of pictures stored or output from sensors, there should also
be a telemetry log, as telemetry data will be transmitted regularly as
part of 2-way communications to maintain accurate location.

x. The ground station should return to the receiving frequency and
bandwidth once the transmit cycle is over.

j. If the user has configured their payload on the web portal, the ground station
should be able to, given the payload callsign, download the payload
configuration and write the configuration file for the user. The user will, of
course, have to enter the key themselves.

k. Allow the user to toggle uploading data to the server (effectively allow
‘offline mode’ for testing).

Server

2. The server should:
a. Wait for telemetry and SSDV data to be received and then forward this data

to habhub.
b. Provide a means to export 2-way communications data in CSV format from

the web portal.
c. Allow users to view a live log of telemetry packets and 2-way packets

received by the server, also indicating when an image packet is received.
d. Provide a web portal to allow users to configure their payload and add it to

the database.
i. The web portal should have a similar graphical design to the habhub

website.

Payload Software

3. The payload software should:

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 20/133

a. Transmit standard telemetry and SSDV on LoRa.
i. In that the LoRa should transmit standard telemetry and SSDV for the

duration of its transmit cycle which is not taken up by 2-way packets.
ii. This is again going to require an SPI interface with the LoRa radio.

b. Have a configuration file functioning in the same way as that of the ground
station.

c. Allow the 2-way communications to function as described in section 1,
allowing the user to view diagnostics, access shell remotely, reboot, control
transmission mode, etc.

i. Remote mode is, as described, using LoRa in a cycle of transmit and
receive.

ii. A standardised packet format will be designed in the design section of
the project.

iii. The LoRa radio should be used to transmit for a given number of 2-
way packets, followed by the telemetry and SSDV packets and ending
with a packet stating that the payload is about to begin receiving
instructing the ground station to transmit queued packets.

iv. It should then wait to receive the fixed number of packets that will be
send by the ground station. It should time out after a short while if it
receives nothing.

v. It should then return to transmission.
vi. The payload should be able to handle any 2-way packets sent to it

from the ground station, and it should queue appropriate responses
to its transmit queue. For example, it should execute the command
given in a shell command packet and transmit the resulting output.

d. Add all packets which are required to be transmitted to a queue so that they
can be sent in required order.

e. Read from the GPS regularly, updating the current telemetry data so that the
most up-to-date telemetry is transmitted each cycle. Additionally, it should
clear the serial cache after reading a location fix from the radio as otherwise
the buffer will fill up with old location fixes.

f. Take images at fixed intervals using the Raspberry Pi camera module.
g. Should be designed to continue functioning without failure under unforeseen

circumstances.

So, to summarise, the project should encompass three modules: the controller module,
responsible for both receiving standard telemetry from the payload and transmitting and
receiving 2-way communication packets, as well as communicating with the central server
to handle logging and packet forwarding (to habhub); the server which is responsible for
logging all data and storing in a database configuration data for payloads; and the payload
software responsible for operating the payload and also transmitting to and receiving from
the ground station(s) as well as taking pictures and maintaining an accurate location fix for
the telemetry.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 21/133

Potential Programming Solutions :

Java

I could use Java with the Pi4J library which provides SPI, DIO and RS232 APIs. This would
mean I only have to use a single library. Additionally, an Oracle Java Runtime Environment is
in available in the Pi repositories by default (see: https://www.raspberrypi.org/blog/oracle-
java-on-raspberry-pi/) and is installed by default on the latest version of Raspbian.
Additionally, this allows me to use Java Swing or JavaFX for the development of the GUI
which would provide excellent ease of development, though I am aware that there can be
some issues with JavaFX on Raspbian. Additionally, an object-oriented approach will be
sensible as I’m writing an interactive program with mutable states. Additionally, as habitat
uses an HTTP interface, I could use any of the myriad of HTTP libraries available for Java, for
example the Apache HTTP Client library or the built-in HTTPConnection library.

Python

I could use Java with spidev for the SPI interface, the integrated GPIO library for DIO and
pyserial for the serial interface. These are both very easy to use, however, pyserial has a few
known bugs which can result in a read operation hanging indefinitely. The ‘Requests’ (see:
http://docs.python-requests.org/en/master/) library is an extremely easy to use HTTP
library. Python is also a very easy programming language to use and is often far more
flexible than other languages. Additionally I could use Tkinter to develop my GUI. Python is
also the most used language on Raspberry Pis.

C

I could use C and use the WiringPi library to access the serial, DIO and SPI interfaces. Then I
could use a library like cURL to for networking. Furthermore, I could use ncurses to develop
a command-line GUI. C is a more complex programming language but would provide a
significant performance gain. However, as this performance gain will be unnecessary using C
would be unnecessary.

VB.NET

VB.NET would probably not be suitable for this project because although it is possible to
access the I/O devices of the Pi, VB.NET is certainly not designed with these in mind.

Chosen Solution

I will use Java and Pi4J to develop my project because Java’s in-built Java Swing graphics
libraries will make the development of my GUI simpler; the Pi4J library provides all the I/O
capabilities that I need for my project. I will not use Python due to the potential issues with
pyserial; I will not use C as the only reason to do so would be for performance which is not
necessary here and adds unnecessary complexity; VB.NET is, as I have mentioned,
unsuitable for this project. Additionally, I should note that Java has easy built-in functions
for converting strings to and from ISO-8859-1 byte arrays.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 22/133

Design

Overall System Summary

My project is, as described in analysis, aiming to create a software suite to allow 2-way radio
communications with an airborne payload attached to a high altitude balloon. The project
will take the form of 3 main pieces of software, there are as follows:

x The ground station software, this will be a standard LoRa receiver with the added
capacity to transmit to the payload, providing a remote shell interface and remote
request options. This software forwards all received packets to the payload. It will
also display received telemetry, 2-way communication results and SSDV to the user.

x The server software responsible for logging all data or forwarding it to habhub,
allowing a user to configure a payload and export 2-way packets logged in a
database. This should provide a simple web portal allowing users to configure their
payload and export telemetry as a CSV file post flight.

x The payload software which will run on the airborne Raspberry Pi and will transmit
data to and receive data from the ground, while also operating the camera(s) and
GPS module. It should manage the LoRa 2-way system as well as transmitting regular
telemetry and image packets.

Notes

Authentication

The system comprises of several ground stations connected to the internet, each equipped
with a LoRa transceivers; the airborne payload, also equipped with a LoRa transceiver; and
the central server, which is also connected to the internet.

Transmissions are authorised using a key which is used along with the packet when
calculating the checksum. This key will be set in the configuration file. This is required in
order to ensure that 2-way communication packets are signed with a hash so only one
authorised ground station can control the payload. The packets will already have a
checksum appended to the end (UKHAS standard is CRC16-CCITT), if I add the key to the
string before I calculate the checksum then I can verify if the packet has come from an
authorised source when decoding it, as I will calculate the checksum again at the receiving
end and add the key there and if they are the same then it means that the packet is intact
and from an authorised source. This will be done both on packets sent by the payload and
those sent by the ground station, this ensures that nobody can impersonate me or my
payload.

There is still one security risk, which is impossible to mitigate, somebody could jam the
frequency that I am using by transmitting noise on it at a high power, this is illegal, however.

Defensive Design

The payload software needs to be designed to work continuously without any possibility of
software failure over a long period of time. In order to achieve this I shall be using a

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 23/133

technique called defensive programming whereby I shall be using zealous error handling to
ensure the program runs correctly even in unforeseen circumstances and does not crash
under any preventable circumstance. Of course, if hardware fails the program will be unable
to continue functioning but should continue to attempt to so that if the hardware begins to
work correctly again the software can continue operating. The payload should be able to
run continuously, with no input from me, without a risk of it crashing for an indefinite
period of time.

Default Telemetry

Unlike with the UKHAS system where users can define their own telemetry format, my
system will have a standard default for simplicity, this will be:

$$CALLSIGN,ID,TIME,LAT,LON,ALT,SATS*CSUM\n

This is the standard for normal UKHAS flights as noted in research. The checksum will always
be CRC-16-CCITT as it is much more reliable than standard XOR checksums sometimes used
in the past.

Hierarchy Charts of Each Component

Hierarchy charts for each component of the software are shown below along with a table
explaining the function of each level 1 and 2 module.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 24/133

Ground Station

Module Function
LoRa Radio Link Manages the LoRa radio interface and transmission and receiving of

packets.
LoRa Radio SPI API The SPI and DIO wrapper that allows access to the radio module’s

registers and DIO pin flag states. This will be implemented as an
encapsulated class, abstracting away most of the complexity of the
radio interface from me throughout the rest of the program.

Transmit Queue A queue of data that is to be transmitted in the next transmit cycle.
Receive Queue A queue of received packet data that has been read from the radio.

Queued here for processing.
Transcoder Image decoding and checksum encoding.
Checksum Checksum calculation, this will be a CRC16-CCITT checksum, there will

be an authentication key added before the checksum is calculated as
described in notes. This will require me to implement a hashing
algorithm for CRC-16-CCITT, many pseudocode examples are available
online.

Image Decoder Uses the UKHAS image decoding library to decode image packets as
they arrive.

User Interface Provide the user with an easy to use interface.
Image Display Display the packets of the current image that have been received from

Ground Station

LoRa Radio Link

LoRa Radio SPI
API

Transmit Queue

Received Queue

Transcoder

Checksum

Image Decoder

User Interface

Image DIsplay

Transmission
Log

Remote Console

Current
Telemetry

Display

Control
Operations

Interface

Server
Connection (Via

Internet)

Image and
Telemetry

Upload

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 25/133

the payload. Fills in any missed packets with suitable colour.
Transmission Log Log of any packets received from the payload and any transmitted, this

should be a simple CLI-style scrolling display of text.
Remote Console
(Popup)

A console opens if the user actives the remote telnet-style console
connection. This will act like a telnet console in that the user can send
commands and outputs will be relayed back. Not available if acting as
a slave.

Current Data Display Current display of telemetry, this will be anything that the radio is by
default set to transmit regularly and any data that has been requested
specifically by the user.

Graphs of Data Graphs of past data, this should all be on one graph, will show a
history of altitude and any other statistics regularly received from the
payload.

Control Operations
Interface

Allows triggering of sending of packets to the payload, the user should
be provided with a set of options to trigger any particular 2-way
communications function. Not available if acting as a slave.

Server Connection Connection via the internet to the central server.
Image and Telemetry
Upload

Module which uploads all image packets and telemetry data received
to my server for logging and forwarding to the habitat servers. Also
upload any 2-way communications packets received from the payload.

Payload Software

Module Function
LoRa Radio Link Manages the LoRa radio interface and transmission and receiving of

Payload
Software

LoRa Radio
Link

LoRa Radio
SPI API

Transmit
Queue

Received
Queue

Transcoder

Checksum

Image
Decoder

GPS Serial
Interface

Camera
Interface

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 26/133

packets.
LoRa Radio SPI API The SPI and DIO wrapper that allows access to the radio module’s

registers and DIO pin flag states.
Transmit Queue A queue of data that is to be transmitted in the next transmit cycle.
Receive Queue A queue of received packet data that has been read from the radio.

Queued here for processing.
Transcoder Image decoding and checksum encoding.
Checksum Checksum calculation, this will be a CRC-16-CCITT checksum, there will

be an authentication key added before the checksum is calculated as
described in notes. This will require me to implement a hashing
algorithm for CRC-16-CCITT, many pseudocode examples are available
online.

Image Decoder Uses the UKHAS image decoding library to decode image packets for
transmission in 256 byte packets.

GPS Serial Interface Interfaces with the GPS via a serial connection, reads GGA strings and
parses them for latitude, longitude, altitude and number of satellites
being tracked.

Camera Interface Interfaces with the Pi Camera, taking images at a configured interval
and storing them on the Pi’s micro SD card.

Server Software

Module Function
HTTP API Manages the networking between the server and ground station, this

Server

Web Portal

Telemetry CSV
Export

Payload
Configuration

Telemetry and
Image Logging

Database

Image packet
and telemetry

forwarding

HTTP API

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 27/133

will just need to be a simple HTTP API allowing the ground station to
upload data to the server for logging or forwarding. HTTP PUT will be
used here, HTTP GET will be used to allow the ground station to query
payload configuration information for the autoconfiguration.

Web Portal Allows the user to configure their payload pre-flight and export
telemetry post-flight as a CSV file.

Telemetry CSV
Export

Allows the user to select their payload from a list of payloads
registered and download the telemetry from their flight as a CSV file.

Payload
Configuration

Allows the user to setup their payload, giving the frequency they will
be running on and other LoRa parameters required (i.e. spreading
factor, error coding rate and bandwidth) as well as a callsign.

Telemetry Logging Any telemetry packet received by the ground stations should be
logged in a database.

Database Telemetry packet logs stored here.
Image packet and
telemetry forwarding

Forward any image packets and telemetry packets received to the
habhub servers.

2-Way Packet Protocol

As noted in analysis, the UKHAS already have a format for telemetry strings; this is
demonstrated with an XOR checksum in figure 13. My strings will have to be formatted
differently in order to be easily distinguished from UKHAS telemetry strings (which the
payload will also transmit regularly). As can be seen in the example all UKHAS strings begin
with “$$” (this was initially implemented to make it easier to locate a new packet amongst
noise), in order to continue a similar theme, my packets will begin with “>>”. The UKHAS
strings then send the payload callsign and the packet ID, in the UKHAS protocol, the ID must
always increment on successive packets. For my protocol, the callsign will follow, then as
with the UKHAS the ID, however, my packet ID will be slightly different, this is discussed
below. The next item will be the function or category of the packet; the possibilities are
shown in the table below.

Packet Category Function
0 Command or Status
1 Remote Shell
2 Diagnostic Data
5 Other (This could include status messages.)
NB: there is a gap between 2 and 5 because I may want to add other types of packet in the future.

Following the packet function, will be the actual data which could be the command to
execute, the results of a command, the diagnostic data sent in response to a request, etc.
and then the checksum is appended on the end, preceded by an asterisk (*). Note that as
described in the notes section above, the checksum will be calculated by taking the entire
string (from and including the “>>” to the character before the “*”), then appending the
unique key generated by the server, then applying a CRC16-CCITT algorithm to this string,
this will give a 4 digit hexadecimal number to be appended to the end of the message,
followed finally by a newline character, as with the UKHAS protocol. Note that the entire

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 28/133

message must be of length 255 or less, as this is the maximum capacity of the register on
the radio which takes the message that is to be sent.

So, overall, this is what my telemetry packet protocol looks like:

>>CALLSIGN,ID,TYPE,DATA*CHECKSUM\n

AS noted above, the ID will work differently to how it does in the UKHAS format, where it
doesn’t matter what the starting value is, just that the value increments for each successive
packet, in my Python implementation I simply used the number of seconds since epoch
(Unix uses 00:00 on 1st January 1970), however, as I noted in analysis, I will be sending the
packets in fixed length windows so the ID will be the number of the packet in the window,
starting at 0 up to the length of the window - 1. The length of the windows will be as
follows: the payload will transmit 90 packets and the ground station will transmit 10
packets. This is because the ground station’s frequency band has a 10% duty cycle limit.

The packet must be of length 255 or less as noted and this means that the data must have
length of 255-(14 + callsign length).

The protocol needs to be extremely robust, prioritising the downlink from the radio over the
uplink, so in order to do this the default mode will be for the payload to be transmitting,
then every 90th packet will be a command packet telling the ground station to begin
transmitting. The payload then listens for the packets from the ground station, after it has
received 10 packets, or after it has not received a packet for 5 seconds, the payload should
return to transmit mode and begin the cycle again. The ground station will only transmit
immediately after it has received a command packet telling it that it can begin transmission,
at all other times it should remain in receive mode.

In the below table is a description of each kind of packet that can be sent, the first column
shows what category they are in (see table on page 22); note that the final column shows
what would be the contents of the ‘DATA’ parameter in the packet description on page 22.

Packet Category Packet Name Description Data Content
0 Transmit Sent by the payload to

the ground station as
the final packet of its
transmit cycle stating
that it is ready to
receive 10 packets
from the ground.

The mnemonic ‘TRA’.

0 Request Data Sent by the ground
station requesting a
statistic to be
transmitted down.

The name of the
statistic requested,
this could be IMGNO
(number of images)
or any other statistic.

0 Image Toggle Sent by the ground
station requesting the
toggling of image
transmission.

The mnemonic ‘IMG’.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 29/133

0 Reboot Tells the payload to
reboot.

The mnemonic ‘RBT’.

1 Command Sent by the ground
station, it is a shell
command which is to
be executed by the
payload. If the
command is longer
than the allocated
length noted above, it
should be rejected by
the ground station.

The command. Note
that if the command
contains a comma or
an asterisk it should
be rejected as this
will cause the packet
to be parsed
incorrectly when
received.

1 Response Sent by the payload
after a shell command
has been executed,
this is the response of
the shell command. If
the response is longer
than the allocated
length noted above,
then it should be sent
in parts.

The command
response, or part of
the response (if it is
being sent in multiple
parts). Note that any
newline characters in
the response should
be substituted for
another character for
transmission and
replaced on receive
(a control character
could be used here).

2 Statistic Sent by the payload in
response to a
command (category 0)
packet requesting that
statistic.

N/S where n is the
name of the statistic
(see “Request Data”
packet) and S is the
value of the statistic.

Note that normal telemetry will also be transmitted as will image packets, these will follow
the standard UKHAS formats. These will be transmitted by the payload under the following
conditions, up to 10 2-way packets are transmitted first during a cycle, if there are fewer
than 10 packets to transmit (as there will be most of the time), the payload should transmit
telemetry in place of these packets, the next 10 packets will be guaranteed telemetry
packets, then the final 70 packets of the 90 packet window will be SSDV image packets,
unless image sending has been toggled by a remote command.

Note that SSDV packets are 256 bytes, however, the first byte is always constant (0x55), so
in order to meet the 255-byte maximum the payload removes this first byte and the ground
station re-adds it before decoding.

Encoding and decoding of SSDV images will be done using the UKHAS SSDV utility as
mentioned in analysis (see: https://ukhas.org.uk/guides:ssdv) this is a command line

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 30/133

application so I will use Java’s Runtime library to run it, as I will do for taking pictures using
the Pi camera.

SPI/DIO API Structure

As previously noted in the analysis section, it will be necessary to develop an API for
handling communications with the LoRa radio modules. As noted, these function using SPI
and DIO (for information on these protocols see the research section), the SPI is used to
modify registers on the radio which control the radio’s operation, the DIO is used for
flagging particular state changes. My API will be required to be able to write a packet to the
appropriate register for sending; read a received packet from the appropriate register;
change mode in order to set transmit, receive, standby and sleep modes; and change the
radio’s settings by editing the appropriate registers .

As described in the linked datasheet for the HopeRF LoRa module, the SPI interface is
described as follows: a transfer begins with one byte sent by the master (Raspberry Pi)
down the MOSI line (MOSI is SPI Master Out Slave In; MISO is SPI Master In Slave Out) which
determines the register address and whether it is to read or write data, the first bit
determines whether to write or read, it is 1 for write and 0 for read, then there are 7 bites
of address with the most significant bit first. This is followed by the bytes which are to be
written if this is a write operation or, if reading, by n * zero byte, where n is the number of
bytes that are to be read.

I shall use the Pi4J SPI module in order to interface with the radio. I will be using a Printed
Circuit Board to ensure that my connections are uninterrupted.

Figure 14 – PCB which will be used to ensure reliable wiring.

Required Operations

My API will need to complete the following operations:

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 31/133

x Change operation mode (available LoRa modes are standby, sleep, transmit, receive
continuously, receive single transmission and channel activity detection). In reality,
we will only be using standby, sleep, transmit and receive continuously.

x Get current operation mode.
x Modify and get frequency and other modem settings (bandwidth, error coding rate,

header mode and spreading factor).
x Set and get power amplifier (PA) settings, this is output power, see analysis where I

discuss power limitations.
x Write packet for transmission.
x Read received packet.
x Read and clear interrupt request flags (these are the flags which are set when a

particular interrupt occurs, interrupts could be transmit done, receive done, bad CRC
on received packet to name a few).

x Set DIO mapping (this determines which DIO pins will go to high logic level when
particular IRQ flags become true).

x Poll state of DIO pins, in order to check whether the assigned flag has been set to
true.

I suggest that a standalone, encapsulated LoRa class should be developed to handle most of
this functionality. A class which takes in its constructor the frequency and all other modem
settings, power settings and DIO mapping, these should have default values if not supplied
when calling the constructor. The class should handle all DIO and SPI interactions internally,
abstracting away the complexities of the SPI interface away from me throughout most of
the programming, and provide methods to complete the above tasks. The below hierarchy
chart describes fully the API’s requirements.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 32/133

Structure of API

List of Required Registers

A list of registers that I will be using, their addresses on the LoRa module and their functions
is below:

Register Name Memory
Address

Usage

RegFifo 0x00 Read and write access to the LoRa FIFO memory
unit. This is where packets will be read from and
written to.

RegOpMode 0x01 Change operation mode.
RegFrMsb 0x06 Setting the frequency, this stores the most

significant bits of the frequency.
RegFrMid 0x07 Setting the frequency, this stores the middle bits

of the frequency.
RegFrLsb 0x08 Setting the frequency, this stores the least

significant bits of the frequency.
RegPaConfig 0x09 Configuring the power amplifier and thus output

power.
RegFifoAddrPointer 0x0D Stores the current address of the pointer in the

FIFO.
RegFifoTxBaseAddr 0x0E Stores the base address of where the packet is to

be written to in the FIFO for transmission.

SPI/DIO API

Mode

Set/Get Mode

Modem Config

Set/Get
Frequency

Set/Get
Bandwidth

Set/Get Coding
Rate

Set/Get
Spreading Factor

Set/Get Header
Mode

PA Config

Set/Get PA Config

Packet

Read Packet

Write Packet

DIO

Set/Get DIO
Mapping

Pol l Pin State

IRQ Flags

Set/Get/Clear IRQ
Flags

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 33/133

RegFifoRxBaseAddr 0x0F Stores the base address of where a received
packet is stored in the FIFO.

RegFifoRxCurrentAddr 0x10 Start address of last received packet.
RegIrqFlagsMask 0x11 Stores the IRQ flag mask settings, determining

which flags can cause an interrupt.
RegIrqFlags 0x12 Stores the current state of the IRQ flags, will

need to be polled and cleared.
RegRxNbBytes 0x13 Stores number of bytes received in latest packet.
RegModemConfig1 0x1D Stores bandwidth, coding rate and header mode.
RegModemConfig2 0x1E Stores spreading factor.
RegPayloadLength 0x22 Self-explanatory, stores the length of the current

packet.
RegDioMapping1 0x40 DIO mapping of pins DIO0 to DIO3.
RegDioMapping2 0x41 DIO mapping of pins DIO4 and DIO5.
These can all be accessed, as described, through the SPI interface.

User Interface

My user interface is fairly simple to construct, abstraction of complexity is needed less in
this software because of my clients. Some mock-ups of my interface are below with
commentary.

The first image below shows the telemetry screen, which screen you are currently viewing
can be identified by looking at the toolbar, this toolbar will have a set of buttons, many of
which take you to a specific display. The “Telemetry”, “SSDV”, “Control”, “Console” and
“Setup” buttons all take you to a relevant display screen while the “Online” button toggles
whether to upload information to the server (green when uploading, red when not), it will
also go red when the internet is unreachable. The remote consoles should display only
successfully transmitted/received packets; packets with invalid checksums should not be
displayed.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 34/133

The telemetry screen above shows us the current latitude, longitude, altitude, horizontal
and vertical velocities, time since last receive and the list of receivers which picked up the
last packet. The white boxes will be text boxes containing non-static information.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 35/133

The SSDV screen shows the current image which is being downloaded from the payload in a
large box and the 3 previous images in smaller boxes. The image ID and time at which the
first packet was received are shown below the large image. Additionally, at the bottom of
the page is a hyperlink which takes the user to the ssdv.habhub.org webpage which has a
log of all the images from the flight.

The control page has the ability to initiate transmissions to the payload it can request
battery voltage, internal temperature, CPU temperature, the number of pictures stored and
it can request a download of the latest image which was transmitted in full resolution. The
results are shown in a small log at the bottom with timestamps. The user can also request a
remote reboot - this is to be used in emergencies.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 36/133

The console screen is shown above. The remote console has a simple entry box at the
bottom with a display of results in a PuTTY-style console. There are a few limitations placed
upon the console, if a command takes more than 5 seconds to execute then it will be
terminated (this is to prevent programs like “top” being called which provide continuous
output), additionally, the command cannot take more than 1 packet to send, the responses
can take any number of packets to send, however. This is to prevent issues occurring when
the payload receives part of a command to execute but not the complete command,
additionally, very few commands will take more a few characters .

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 37/133

This is the configuration screen, allowing the user to select the payload from a list gathered
from the server, if they enter their key and click “Autoconfigure” then the settings will be
fetched from the server and filled in for them providing the key is correct; if they need to
(i.e. they’re offline) they can enter the information manually in the config.yml file.

Configuration Design

I will be using YAML (the recursive acronym stands for YAML Ain’t Markup Language) for my
configuration file on the payload, this is a very simple configuration language. They simply
need to be able to set their callsign, key, transmit and receive frequency, transmit and
receive bandwidth, spreading factor, error coding rate, whether they are in implicit mode
and what output power is being used. I will use a simple Java library called SnakeYAML
which will parse the YAML file and output the data into a hash table; I will then extract the
data from the hash table into the appropriate variables.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 38/133

Figure 15 - Example config.yml file.

Above is an exemplar configuration file, it allows the user to set their settings easily and
gives a brief explanation of the options. The file will sit in the same directory as the .jar
executable of the main program and will be called config.yml.

GPS Serial Interface

The payload software will need to interface with the GPS via a serial port, as noted in the
analysis the GPS outputs several different types of location string in a looping sequence. As
noted we are only interested in GGA strings, these look like this:

$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47

This can be parsed to extract data as follows: the items are separated by commas, the first
item is the type of string, this is GGA so this is the correct string to be parsing; the second is
the time at which the GPS fix was acquired, in this case 123519 refers to 12:35:19; the third
is the latitude, this is slightly harder to decode but to convert to degrees you must take the
first two numbers, these refer to the number of degrees, then the following numbers refer
to the number of minutes, the N shows that this is in the northern hemisphere as opposed
to the southern hemisphere, henceforth, the value of 4807.038,N refers to 48° 07.038'
North. The same applies to the next number except that it refers to longitude so can be
West (W) or East (E), in this case 01131.000 refers to 11° 31.000’ East, note that 3 digits are
dedicated to the number of degrees for longitude as opposed to 2 being dedicated to the
number of degrees for latitude, this is because latitude has a maximum value of 90, but
longitude has a maximum value of 180; the next number is not used but it refers to the fix
quality, the following, 08, refers to the number of satellites being tracked; the following
number is again unused in my implementation; the next number, 545.4 refers to the
altitude so this is 545.4m above sea level. None of the other pieces of data are used in my
implementation. It should be noted that when transmitting location data, if the latitude is

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 39/133

North, then it should be transmitted as positive value, if it is South, the it should be
negative. For longitude, West is negative and East is positive.

The GPS data will be needed by the 2-way LoRa software while both are running
asynchronously. All will be running from the same Java program so I shall simply launch a
separate thread which will loop a read operation from the GPS and each time it receives a
GGA string, it will parse it and update a variable in the main thread to contain the current
location data. The GPS operates at 96,000 baud and as noted uses a serial interface, so I
shall use the Pi4J serial library.

Because the GPS outputs data constantly, this data just builds up in the serial buffer on the
Pi, as a result, one possible issue which could arise is that because I will be reading GPS
strings at a lower rate than the GPS will be outputting them a queue of GPS strings will build
up in the buffer and the ones I am reading will become outdated resulting in useless
position information being transmitted. In order to fix this, I should simply clear the buffer
(this is done by reading and discarding all available bytes) after each GGA string has been
read.

Server

As noted previously, the server will allow users to configure their payload on a web portal
by providing their callsign, modem settings (frequency, bandwidth, etc.) and it will also
allow them to export telemetry as a CSV file. The server will also communicate with the
ground stations in order to: share payload details when configuring a ground station; 2-way
packets, receive telemetry strings and image packets from the ground stations and log them
or forward them to habhub.

I will use the Java HTTPConnection API to handle my HTTP requests, I will be using HTTP PUT
to upload information to the server and HTTP GET to acquire payload configuration
information when setting up the ground station.

When forwarding to the habhub servers they have a very specific prococol. When uploading
telemetry datashould be sent to the server in base 64 format, the url has to be
http://habitat.habhub.org/habitat/_design/payload_telemetry/_update/add_listener/
followed by the sha256 hash of the base 64 data. The HTTP headers should be JSON format
as below:

{"Accept" : "application/json", "Content-Type" : "application/json", "charsets" : "utf-8"}.

The data sent should a json string containing the base 64 string, the receiver name and the
time the packet was decoded. The request type will be HTTP PUT.

When uploading SSDV a PUT request will be sent to http://ssdv.habhub.org/api/v0/packets
where the data includes the raw base 64 of the data, the receiver name and the time that
the packet was received. The headers should be JSON, identical to that above for telemetry.
The request method will be HTTP POST.

Needless to say the character encoding used will be UTF-8.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 40/133

Database Design

On the server I will make use of a database to store information about each payload. Each
payload will need to have its callsign, settings and encryption key stored, as well as a log of
2-way packets sent by it with the time that that packet was decoded. My database will, of
course, be in Third Normal Form (3NF). Below are tables demonstrating the two entities in
my database and their attributes.

Database Table: Payload

Stores information about a payload. Note that this table has a composite key because
payloads can have the same callsign so to distinguish these the time and date created is also
part of the key.

Name Type Size Purpose Example
payload_id String 8 bytes Uniquely identifies a tuple. This is

an auto incrementing value
generated dynamically by the
database each time a value is
added. Primary key.

42

callsign String 10 bytes Identifies each payload and thus
each tuple in this table.

SKIPI2

created_at Date-
time

- Date and time at which this payload
was configured.

<hash>

txfreq Decimal 9,6 (see
purpose)

(Length 9, 6 of which are after
decimal place). Stores the
frequency at which the payload
radio will transmit.

868.850000

rxfreq Decimal 9,6 (see
purpose)

(Length 9, 6 of which are after
decimal place). Stores the
frequency that the payload radio
will listen on.

868.850000

txbw Integer 2 bytes Stores the bandwidth that the
payload radio will be using to
transmit.

250

rxbw Integer 2 bytes Stores the bandwidth that the
payload radio will listen on.

250

sf Integer 1 byte Stores the spreading factor that the
payload radio will be using.

7

coding Integer 1 byte Stores the error coding rate that the
payload radio will be using.

5 (would
correspond to
4/5)

explicit Boolean - Stores whether the payload radio is
using explicit header mode.

TRUE

key String 16 bytes Stores the key that is used to
determine authenticity of a packet.
This is generated by hashing the
callsign and the created_at hash.

52a05b30ffbc7de3

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 41/133

Database Table: Packet

Stores a log of two-way communication packets transmitted to or received by a payload
during a flight.

Name Type Size Purpose Example
packet_id Integer 8

bytes
Uniquely identifies a tuple.
This is an auto incrementing
value generated dynamically
by the database each time a
value is added. Primary key.

42

payload_id Integer 8
bytes

Identifies which payload this
packet was transmitted by.

42

time Date-
time

- Database generated hash
storing the date and time of
when this particular packet
entry was first received on
the server.

<hash>

raw String 256
bytes

Stores the raw string of the
packet.

$$SKIPI,0,123,456,789,0*55/n

Entity Relationship Diagram

Figure 16 - Entity relationship diagram for simple 2-table database.

The above ER diagram also includes the MySQL data types of each attribute; I will be using
MySQL for my database. As you can see, there is a ‘one to many’ relationship between the
payload and telemetry.

Interrupt Driven Cycle

As noted previously, the payload will follow a rigid cycle of transmitting 90 packets and then
receiving (up to) 10 while the ground station will need to continuously receive unless told to
do otherwise. In order to achieve this, I intend to implement an interrupt-driven design
whereby the ground station receives continually unless a transmit flag is set to true, which

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 42/133

will be done when a transmit packet has been received. When this flag is set to true, the
ground station should immediately terminate receiving and immediately hand control over
to the transmission code allowing queued packets to be sent to the radio via SPI for
transmission. The need for speed here is because the payload will timeout listening for
packets after a few seconds.

Image Taking

The payload will need to take images at regular intervals, as I will, by default, be using a
Raspberry Pi camera, I shall use raspistill, a command-line application, to take the images, I
shall use the Runtime Java library to execute raspistill -o <outputfilename>.jpg. When
images are transmitted, however, they are not transmitted at full resolution, so I will need
to convert them to a smaller size, this could be done easily with Java’s image handling
libraries, however, an easier solution would be to use ImageMagick, a free command-line
library which will resize images among other things.

Algorithms

In this section I detail the import algorithms involved in my project as pseudocode, flow
charts and/or plain English.

Receiving

The below flowchart and pseudocode denote how a packet is received when the station is in
receive mode.

Pseudocode:
While True:

 If receive cycle:

 Set LoRa radio mode to continuous receive mode;

 If Packet is waiting (DIO0 HIGH):

 Packet <- read from FIFO (address of packet in

RegFifoRxCurrentAddr);

Clear RxDone IRQ flag;

Add packet to received packet queue to await

processing;

 End;

 End;

End;

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 43/133

Flowchart:

Transmission

The below flowchart and pseudocode denote how a packet is actually transmitted.

Pseudocode:
While True:

 If transmit cycle:

 If transmit queue is not empty:

 Packet <- next packet from queue;

 Write packet to FIFO on radio using SPI

interface;

 Set LoRa radio mode to transmit mode;

 While transmission is not complete (DIO0 not

HIGH):

 Wait;

 End;

Clear TxDone IRQ flag;

 End;

 End;

End;

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 44/133

Flowchart:

Modification of Specific Registers Using SPI Interface

The pseudocode below gives a demonstration of the general method for writing a register:

func writeRegister(byte addr, bytearray data):

 toSend = new bytearray(length = data.length + 1);

 toSend[0] = addr & 0x80;

 toSend[1…] = data;

 spi.write(data);

endFunc;

The pseudocode below gives a demonstration of the general method of reading a register:

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 45/133

func readRegister(byte addr, int numberOfBytes):

 toSend = new bytearray(length=(1+numberOfBytes));

 data = spi.read(toSend); //returns a bytearray.

 return data;

endFunc;

Some values require more complex setting and getting methods due to, for example, data
being split between multiple registers. One such situation is setting frequency, the most
significant, mid significance and least significant 8 bits of the frequency are stored in
separate registers. An algorithm for this is shown below:

func setFrequency(double frequency):

 check opmode is sleep or standby, if not exit;

 int freq = frequency * 2^14;

 writeRegister(0x06, (freq >> 16) & 0xFF);

 writeRegister(0x07, (freq >> 8) & 0xFF);

 writeRegister(0x08, freq * 0xFF);

endFunc;

CRC-16-CCITT

The pseudocode below shows the hashing algorithm for the calculation of a CRC-16-CCITT
checksum for a byte array representing a string, returning a 4 digit hexadecimal number as a
string.

func calcCsum(bytearray data):

 int crc = 0xFFFF;

 int poly = 0x1021;

 for each byte as b in data:

 for i in 0 to 8:

 boolean bt = ((b >> (7-i) & 1) == 1;

 boolean c15 = ((crc >> 16 & 1) == 1;

 crc << 1;

 if (c15 ^ bt):

crc ^= poly

 End;

End;

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 46/133

End;

 crc = crc & 0xFFFF;

 return toHexString(crc);

endFunc;

Reading From the GPS

Loop to read from the GPS and clear the buffer after each successfully received GGA string.

String received = “”;

While true:

 if serial.hasBytes():

 byte b = serial.read();

 received += toASCIIChar(b);

 if c == “\n”: //”\n” is a newline character.

 If received.substring(0,6) == “$GNGGA”:

 generateTelemetry(received);

 serial.clearBuffer();

 received = “”;

 End;

 End;

End;

Generating Telemetry Strings

Function called when a new GPS GGA string is received to generate a telemetry sentence
ready for transmission.

func generateTelemetry(String gpsData, String callsign):

 Stringarray data = gpsData.split(“,”);

 If length of data >9:

 String lat = data[2];

 String lon = data[4];

 If data[3] == “S”:

 lat = “-“ + lat;

 End;

 if data[5] = “W”:

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 47/133

 lon = “-“ + lon;

 End;

 data[1].substring(0, 2) + ":" + data[1].substring(2,

4) + ":" + data[1].substring(4, 6);

 String telem = callsign + “,” +
String.valueOf(getUnixTime()) + “,” + time + “,” + lat + “,” +
lon + “,” + data[9] + “,” + data[7];

 String csum = calcCsum(telem);

 telem = “$$” + telem + “*” + csum + “\n”;

 return telem;

 End;

 return nothing;

endFunc;

Image Loop

Simple loop for image capture every 30 seconds.

While true:

 Take picture using command line operation ‘raspistill –o
“filename.jpg”’;

 Make a low resolution copy of this image using

ImageMagick;

 Encode this image for transmission with fsphil’s SSDV
utility store as out.bin;

 Sleep(30s);

End;

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 48/133

Whole System Data Flow Diagram

Figure 17 - Data Flow Diagram for Proposed System

Validation Required

There are very few instances in the program where the user has to provide direct input to
the program with most processes being automated. However, there are a few sections
where the user’s input will need to be validated. As noted formerly, user input to the
console should be validated to ensure that it would not take up more than 1 packet.
Additionally, command packets should not contain an asterisk or a comma as this will cause
the parser to fail on the receiving end. Also, command response packets should not contain
newlines, instead, newlines should be substituted for an unused control character when

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 49/133

sending and replaced on receiving, this is because the newline will also cause parsing to fail
as a newline denotes the end of a packet. Of course, as noted before, packet sizes will need
to be limited to 255 characters and thus long console commands will not be possible.

Further validation required would be ensuring that all characters transmitted by either
ground station or payload are ASCII characters. Additionally, packets received should have
their checksum checked both for integrity and authenticity, as described in the notes section
at the beginning of the design. Each packet has a CRC checksum automatically applied by
the radio, however, this will not be used, instead we will use the CRC-16-CCITT checksum
that we will have appended to each packet; this is because the LoRa CRC checksum has been
shown to be unreliable by testing by other members of the UKHAS and because our
checksum will take into account the key and thus also check for authenticity.

Test Strategy

I will be testing the software mainly with standard black box testing, I will test that the
software works correctly in a controlled environment where the payload and ground station
are separated physically and I have no control over the payload except through the ground
station. I will test the 2-way console, remote requests, telemetry transmission, SSDV
transmission and I will test the integrity of the location data acquired from the GPS.
Additionally, I will need to test the authentication system that I have discussed. I will of
course, also test carefully where user input is required to ensure that boundary, erroneous
and normal data are dealt with correctly. I will also need to ensure that data is correctly
uploaded to the server and that the server handles this data correctly, I will also need to be
sure that SQL injection attacks are not possible on my website, this is easily achieved with
correct use of prepared statements and escaped strings. I will also need to test the
functionality of my LoRa API, ensuring that when, for example, I set a frequency, the radio
does indeed get set to that frequency.

However, while the above tests are the core of my testing, I will also be testing the ability of
my software to perform in a real flight. In order to do this, I will first do ‘endurance’ testing,
whereby I will leave the payload software running for a long period of time and check that it
is still working correctly afterwards, this is important because once the payload is airborne I
have little ability to fix problems that occur. I will then be flying two test flights to test the 2-
way communications in a real flight. I will be documenting these flights with a short video.
The first flight is expected to have some issues which will hopefully be rectified before the
second flight. I have received permission from the Civil Aviation Authority to conduct these
flights on Sunday the 12th and Tuesday the 14th of February.

To summarise, I will be testing:

1. Integrity of transmitted data: I will need to ensure that data transmitted is valid, up-
to-date and encoded correctly. Telemetry should be up-to-date, with valid location
fix and encoded using ISO-8859-1, SSDV should be encoded with fsphil’s library and
have the first byte (always 0x55) removed.

2. Data displays on ground station: I will need to test the received data is handled
correctly by the ground station. Telemetry should have its checksum checked and

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 50/133

then if valid, the relevant data should be displayed as latitude (degrees), longitude
(degrees) and alaitude on the telemetry display tab. The currently transmitting
image should be displayed on the SSDV tab, with missing packets showing up as
block colour. Two-way data should be checked for valid checksum and then console
results should be displayed in the console and request results should be shown in
the transmission log. Additionally, all outgoing and incoming packets should be
displayed on the tx/rx logs on the left of the screen.

3. Authentication: I will need to ensure that the authentication system correctly
identifies only the authorised receivers. I will test this simply by setting the payload
and the ground station to use different keys and ensuring that they ignore
eachother’s two way communications, while otherwise they should handle
eachother’s two way communications as required.

4. Remote control: I will test all possible remote control operations with a ground
station and payload set to use the same key. I will send remote console commands, I
will request a remote reboot, I will toggle image sending and I will request the
number of pictures stored. All these should produce the correct results.

5. Web Server: The web server needs to be shown to be able to handle invalid input on
the payload configuration page, rejecting inputs which would simply not work.
Additionally, it needs to be ensured that the server handles HTTP requests from the
ground station correctly, forwarding telemetry to the habhub servers and logging 2-
way packets in my database.

6. LoRa API: I need to ensure that my LoRa API works as required; it should be able to
complete all the functions that are set out in the design. I will need to ensure that it
operates as expected, in that, when I set it to run at a particular frequency, it does
indeed run at that frequency, I will also check bandwidth is correct. This is to ensure
that my LoRa API is without error and that my algorithms for register modification
are indeed correct. As a final test of this, I will attempt to receive transmissions from
Dave Akerman’s LoRa receiver software (written in C, known to function correctly,
thoroughly tested by the HAB community) to ensure that my radio is indeed running
on the settings that my API supposedly set it to.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 51/133

Technical Solution

‘Util’ Module

Contains classes that are used by both the payload and the ground station, both the ground
station and the payload modules depend on this module.

com.sam.hab.util.csum.CRC16CCITT.java

Contains a static method which uses hashing algorithm to generate the CRC-16-CCITT
checksum of a byte array.

package com.sam.hab.util.csum;

public class CRC16CCITT {

 /**
 * Algorithm to generate a 16 bit Cyclic Redundancy Check checksum/hash. This
implementation uses polynomial 0x1012 and start value 0xFFFF.
 * @param val the byte array of data that a checksum is to be calculated for.
 * @return the checksum, in capital hexadecimal notation, i.e. EE56 would be a
possible checksum.
 */
 public static String calcCsum(byte[] val) {
 int crc = 0xFFFF;
 int poly = 0x1021;

 for (byte b : val) {
 for (int i = 0; i < 8; i++) {
 boolean bt = ((b >> (7-i) & 1) == 1);
 boolean c15 = ((crc >> 15 & 1) == 1);
 crc <<=1;
 if (c15 ^ bt) crc ^= poly;
 }

 }

 crc&=0xFFFF;
 return Integer.toHexString(crc).toUpperCase();
 }

}

com.sam.hab.util.lora.Config.java

A class which loads data from a YML file into a hash table data structure and then extracts
the individual values and stores them in private fields. Also contains setter and getter
methods to ensure the class is suitable encapsulated.

package com.sam.hab.util.lora;

import com.sam.hab.util.lora.Constants.*;
import com.sun.corba.se.impl.io.TypeMismatchException;
import org.yaml.snakeyaml.Yaml;

import java.io.*;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class Config {

 private String callsign;
 private double freq;
 private double listen;

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 52/133

 private Bandwidth txbandwidth;
 private Bandwidth rxbandwidth;
 private short sf;
 private CodingRate codingRate;
 private String key;
 private boolean implicit;
 private byte power;

 /**
 * In the constructor the config.yml file is read and using the SnakeYAML
library converted into a HashMap.
 * The HashMap's contents are then extracted, cast to the correct types and
stored in the appropriate field.
 */
 public Config() {
 Yaml yaml = new Yaml();
 File f = new File("config.yml");
 try {
 if (!f.exists()) {
 f.createNewFile();
 FileWriter writer = new FileWriter(f);
 writer.write("callsign: TEST00\nkey: key123456\nfreq:
869.850\nlisten: 869.525\ntxbw: 250K\nrxbw: 62K5\nsf: 7\ncoding: 5\nimplicit:
false\npower: 5");
 writer.close();

 }
 BufferedReader reader = new BufferedReader(new FileReader(f));
 String s = "";
 String line = reader.readLine();
 while (line != null) {
 s += line + "\n";
 line = reader.readLine();

 }

 reader.close();
 Map<Object, Object> conf = (Map<Object, Object>)yaml.load(s);
 callsign = (String) conf.get("callsign");
 freq = (double) conf.get("freq");
 listen = (double)conf.get("listen");
 txbandwidth = Bandwidth.getBandwidth((String) conf.get("txbw"));
 rxbandwidth = Bandwidth.getBandwidth((String) conf.get("rxbw"));
 sf = (short) (int) conf.get("sf");
 codingRate = CodingRate.valueOf("CR4_" +
String.valueOf(conf.get("coding")));
 implicit = (boolean) conf.get("implicit");
 power = (byte)((int)conf.get("power"));
 key = (String)conf.get("key");
 } catch (IOException e) {
 e.printStackTrace();

 }
 }

 public void setCallsign(String callsign) {
 this.callsign = callsign;
 }

 public void setFreq(double freq) {
 this.freq = freq;
 }

 public void setListen(double listen) {
 this.listen = listen;
 }

 public void setTxbandwidth(Bandwidth txbandwidth) {
 this.txbandwidth = txbandwidth;
 }

 public void setRxbandwidth(Bandwidth rxbandwidth) {

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 53/133

 this.rxbandwidth = rxbandwidth;
 }

 public void setSf(short sf) {
 this.sf = sf;
 }

 public void setCodingRate(CodingRate codingRate) {
 this.codingRate = codingRate;
 }

 public void setKey(String key) {
 this.key = key;
 }

 public void setImplicit(boolean implicit) {
 this.implicit = implicit;
 }

 /**
 * Stores all parameters in a HashMap and writes this HashMap to a file as
YAML.
 */
 public void save() {
 Yaml yaml = new Yaml();
 Map<Object, Object> conf = new HashMap<Object, Object>();
 conf.put("callsign", callsign);
 conf.put("freq", freq);
 conf.put("listen", listen);
 conf.put("txbw", Bandwidth.asString(txbandwidth));
 conf.put("rxbw", Bandwidth.asString(rxbandwidth));
 conf.put("sf", sf);
 conf.put("coding", codingRate.toString().replace("CR4_", ""));
 conf.put("implicit", implicit);
 conf.put("power", power);
 conf.put("key", key);
 File f = new File("config.yml");
 if (f.exists()) {
 f.delete();
 }
 try {
 f.createNewFile();
 FileWriter writer = new FileWriter(f);
 yaml.dump(conf,writer);
 writer.close();
 } catch (IOException e) {
 e.printStackTrace();

 }

 }

 public String getCallsign() {
 return callsign;
 }

 public double getFreq() {
 return freq;
 }

 public Bandwidth getReceiveBandwidth() {
 return rxbandwidth;
 }

 public Bandwidth getTransmitBandwidth() {
 return txbandwidth;
 }

 public short getSf() {
 return sf;

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 54/133

 }

 public CodingRate getCodingRate() {
 return codingRate;
 }

 public String getKey() {
 return key;
 }

 public boolean isImplicit() {
 return implicit;
 }

 public byte getPower() {
 return power;
 }

 public double getListen() {
 return listen;
 }

 public boolean getImplicit() {
 return implicit;
 }

}

com.sam.hab.util.lora.Constants.java

Contains all the LoRa constants, which are used when modifying/accessing registers on the
radio module, as enumerations.

package com.sam.hab.util.lora;

/**
 * A utility class to store all me constants! These are used for the LoRa radio
operation, as it uses an SPI interface most data is sent in the form of a few
bytes.
 */
public class Constants {

 /**
 * Registers stored with their memory address.
 */
 public enum Register {
 FIFO(0x00),

 OPMODE(0x01),

 FRMSB(0x06),
 FRMID(0x07),

 FRLSB(0x08),
 PACONFIG(0x09),

 FIFOADDRPOINTER(0x0D),

 FIFOTXBASEADDR(0x0E),
 FIFORXBASEADDR(0x0F),

 FIFORXCURRENTADDR(0x10),
 IRQFLAGS(0x12),

 RXNBBYTES(0x13),

 MODEMCONFIG1(0x1D),
 MODEMCONFIG2(0x1E),

 PAYLOADLENGTH(0x22),
 DIOMAPPING1(0x40),

 DIOMAPPING2(0x41);

 public final byte addr;

 Register(int addr) {
 this.addr = (byte) addr;

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 55/133

 }

 }

 /**
 * Whether the DIO0 pin is configured to go HIGH (1) on TXDONE or RXDONE.
 */
 public enum DIOMode {
 TXDONE,

 RXDONE;
 }

 /**
 * The available modes and the value that the RegOpMode register needs to be
set to to set the radio to this mode.
 * Node, not all modes are here, some are not used in my program so were not
included, it would be trivial to add them of course.
 */
 public enum Mode {
 SLEEP(0x80),
 STDBY(0x81),

 TX(0x83),
 RX(0x85);

 public final byte val;

 Mode(int val) {
 this.val = (byte) val;
 }

 public static Mode lookup(byte val) {
 for (Mode mode : Mode.values()) {
 if (mode.val == val) {
 return mode;
 }
 }
 return null;
 }

 }

 /**
 * All the available bandwidths that the radio can be set to along with the
value that must be sent to the radio to enable this bandwidth.
 */
 public enum Bandwidth {
 BW7_8(0),
 BW10_4(1),

 BW15_6(2),

 BW20_8(3),
 BW31_25(4),

 BW41_7(5),
 BW62_5(6),

 BW125(7),
 BW250(8),

 BW500(9);

 public final byte val;

 Bandwidth(int val) {
 this.val = (byte)val;
 }

 public static Bandwidth getBandwidth(String bw) {
 switch (bw) {
 case "7K8":
 return BW7_8;
 case "10K4":
 return BW10_4;

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 56/133

 case "15K6":
 return BW15_6;
 case "20K8":
 return BW20_8;
 case "21K25":
 return BW31_25;
 case "41K7":
 return BW41_7;
 case "62K5":
 return BW62_5;
 case "125K":
 return BW125;
 case "250K":
 return BW250;
 case "500K":
 return BW500;
 }
 return null;
 }

 public static String asString(Bandwidth bandwidth) {
 switch (bandwidth) {
 case BW7_8:
 return "7K8";
 case BW10_4:
 return "10K4";
 case BW15_6:
 return "15K6";
 case BW20_8:
 return "20K8";
 case BW31_25:
 return "21K25";
 case BW41_7:
 return "41K7";
 case BW62_5:
 return "62K5";
 case BW125:
 return "125K";
 case BW250:
 return "250K";
 case BW500:
 return "500K";
 }
 return null;
 }

 public static Bandwidth lookup(int txBw) {
 for (Bandwidth bw : Bandwidth.values()) {
 if (bw.val == txBw) {
 return bw;
 }
 }
 return null;
 }

 }

 /**
 * The error coding rate of the transmitted packet.
 */
 public enum CodingRate {
 CR4_5(1),
 CR4_6(2),

 CR4_7(3),
 CR4_8(4);

 public final byte val;

 CodingRate(int val) {

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 57/133

 this.val = (byte)val;
 }
 }

 /**
 * The available types of packet that can be sent/received using my 2-way
packet protocol.
 */
 public enum PacketType {
 CMD(0),

 SHELL(1),

 DIAG(2),
 OTHER(5);

 public final int id;

 PacketType(int id) {
 this.id = id;
 }

 public static PacketType lookup(int i) {
 for (PacketType type : PacketType.values()) {
 if (type.id == i) {
 return type;
 }

 }
 return null;
 }

 }
}

com.sam.hab.util.lora.LoRa.java

This is an encapsulated class which provides an interface for a LoRa module, it contains all
the methods for setting and getting data from the various registers and changing radio
settings and operation mode. Most of these methods use complex bitwise logic and are
commented in detail explaining what’s going on.

package com.sam.hab.util.lora;

import com.pi4j.io.gpio.*;
import com.pi4j.io.spi.SpiChannel;
import com.pi4j.io.spi.SpiDevice;
import com.pi4j.io.spi.SpiFactory;

import com.pi4j.wiringpi.Gpio;
import com.sam.hab.util.lora.Constants.*;
import com.sam.hab.util.txrx.CycleManager;

import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.util.Arrays;

public class LoRa {

 private double frequency;
 private Bandwidth bandwidth;
 private short spreadingFactor;
 private CodingRate codingRate;
 private boolean explicitHeader;
 private Mode mode;
 private final GpioController gpio;
 private SpiDevice spi = null;
 private DIOMode dioMapping = DIOMode.RXDONE;

 /**

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 58/133

 * Constructor for the LoRa interface class. Parameters are the modem settings
for the radio.
 * This encapsulated class contains all the advanced LoRa register modification
functionality, providing me, as the developer, with a simpler interface elsewhere
in the program.
 * @param frequency frequency to set the radio to.
 * @param bandwidth bandwidth to set the radio to.
 * @param spreadingFactor sf to set the radio to.
 * @param codingRate cr to set the radio to.
 * @param explicitHeader whether or not to use explicit headers (please use
explicit headers!).
 */
 public LoRa(double frequency, Bandwidth bandwidth, short spreadingFactor,
CodingRate codingRate, boolean explicitHeader) throws IOException {
 this.frequency = frequency;
 this.bandwidth = bandwidth;
 this.spreadingFactor = spreadingFactor;
 this.codingRate = codingRate;
 this.explicitHeader = explicitHeader;

 spi = SpiFactory.getInstance(SpiChannel.CS1, SpiDevice.DEFAULT_SPI_SPEED,
SpiDevice.DEFAULT_SPI_MODE);

 gpio = GpioFactory.getInstance();

 setMode(Mode.SLEEP);

 setDIOMapping(DIOMode.RXDONE);

 setFrequency(frequency);
 setModemConfig(bandwidth, spreadingFactor, codingRate, explicitHeader);
 setPAConfig((byte)0x08); //This is the default value which equates to
~10mW.
 clearIRQFlags();
 }

 /**
 * Called when packet is received.
 */
 public byte[] handlePacket() {
 try {
 byte[] payload = readPayload();
 resetRXPtr();

 setMode(Mode.RX);
 return payload;
 } catch (IOException e) {
 }
 return null;
 }

 /**
 * Used for all writing of registers via the SPI interface.
 * @param reg The register to write to.
 * @param values A byte array of values to write to the regsister.
 * @throws IOException if write operation fails, for example if the radio is
disconnected unexpectedly.
 */
 private void writeRegister(Register reg, byte... values) throws IOException {
 System.out.println(reg.toString());
 byte[] send = new byte[values.length + 1];
 send[0] = (byte)(reg.addr | 0x80);
 System.arraycopy(values, 0, send, 1, values.length);
 System.out.println("W:" + Arrays.toString(send));
 spi.write(send);
 }

 /**
 * Read the value held in a register.
 * @param reg The register to read from.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 59/133

 * @param nbBytes The number of bytes to read.
 * @return The value read from the register (a byte array).
 * @throws IOException
 */
 private byte[] readRegister(Register reg, int nbBytes) throws IOException {
 System.out.println(reg.toString());
 byte[] send = new byte[nbBytes + 1];
 send[0] = (byte)reg.addr;
 byte[] out = spi.write(send);
 System.out.println("R:" + Arrays.toString(out));
 return out;
 }

 /**
 * Set Frequency in MHz.
 * @param frequency Frequency to set the radio to.
 * @throws IOException
 */
 public void setFrequency(double frequency) throws IOException {
 assert this.mode == Mode.SLEEP || this.mode == Mode.STDBY; //Assertion used
as these conditions should never not be true.
 int freq = (int)(frequency * (7110656 / 434));
 //This method separates the frequency into the 8 most significant bits, the
8 middle bits and the 8 least significant bits as they are stored in separate
registers.
 writeRegister(Register.FRMSB, (byte)((freq >> 16) & 0xFF));
 writeRegister(Register.FRMID, (byte)((freq >> 8) & 0xFF));
 writeRegister(Register.FRLSB, (byte)(freq & 0xFF));
 }

 /**
 * Set the operation mode of the LoRa radio.
 * @param mode Mode to change to.
 * @throws IOException
 */
 public void setMode(Mode mode) throws IOException {
 if (this.mode != mode) {
 this.mode = mode;
 }
 writeRegister(Register.OPMODE, mode.val);
 if (this.mode != Mode.SLEEP) {
 long time = System.currentTimeMillis();
 while (Gpio.digitalRead(26) != 1) {
 try {
 Thread.sleep(10);
 } catch (InterruptedException e) {
 }
 if (System.currentTimeMillis() - time > 500) {
 return;
 }

 }
 clearIRQFlags();

 }
 }

 /**
 * Returns to the user the operation mode that the radio is currently operating
in.
 * @return The mode that the radio is currently operating in.
 * @throws IOException
 */
 public Mode getMode() throws IOException {
 byte reg = readRegister(Register.OPMODE, 1)[1];
 Mode mode = Mode.lookup(reg);
 if (mode != null) {
 this.mode = mode;
 }
 return mode;

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 60/133

 }

 /**
 * Used to configure modem settings, modifies the appropriate registers via the
SPI interface. Can be used to edit bandwidth, spreading factor, coding rate and
header mode.
 * @param bandwidth Bandwidth to set the radio to.
 * @param spreadingFactor New spreading factor.
 * @param codingRate New CRC error coding rate.
 * @param explicitHeader Whether to use explicit header mode.
 * @throws IOException
 */
 public void setModemConfig(Bandwidth bandwidth, short spreadingFactor,
CodingRate codingRate, boolean explicitHeader) throws IOException {
 byte val1 = (byte)((explicitHeader ? 0 : 1) | (codingRate.val << 1) |
bandwidth.val << 4);
 byte val2 = (byte)(0b00000000 | (spreadingFactor << 4));
 writeRegister(Register.MODEMCONFIG1, val1);

 writeRegister(Register.MODEMCONFIG2, val2);

 }

 /**
 * Used to write the packet to be sent to the LoRa FIFO.
 * @param str Payload to send. Must be a string encoded with ISO 8859-1.
 */
 public void writePayload(String str) throws IOException {
 byte[] payload = str.getBytes(StandardCharsets.ISO_8859_1);
 setMode(Mode.STDBY);
 if (payload.length < 256) {
 setPayloadLength((short)payload.length);
 byte baseAddr = readRegister(Register.FIFOTXBASEADDR, 1)[1];
 setFifoPointer(baseAddr);

 writeRegister(Register.FIFO, payload);
 }

 }

 /**
 * Set the pointer of the fifo to the given address.
 * @param ptr
 * @throws IOException
 */
 public void setFifoPointer(byte ptr) throws IOException {
 writeRegister(Register.FIFOADDRPOINTER, ptr);
 }

 /**
 * Used to set the packet length of the packet that is about to be written to
the LoRa FIFO.
 * Must not exceed 255.
 * @param length
 * @throws IOException
 */
 public void setPayloadLength(short length) throws IOException {
 writeRegister(Register.PAYLOADLENGTH, (byte)length);
 }

 /**
 * Set the power output configuration, see documentation on power output
limitations.
 * @param outputPower The output power register value.
 * @throws IOException
 */
 public void setPAConfig(byte outputPower) throws IOException {
 outputPower &= 0b00001111;
 //MSB is a 1 to set the PA_BOOST pin to HIGH. The 4 LSBs are the output
power value. The other 3 bits need to be 0 for my implementation.
 byte val = (byte)0b10000000;

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 61/133

 val |= outputPower;

 writeRegister(Register.PACONFIG, val);
 }

 /**
 * Read a received payload from the radio.
 * @return the payload.
 * @throws IOException
 */
 public byte[] readPayload() throws IOException {
 int nbBytes = 0xFF & readRegister(Register.RXNBBYTES, 1)[1];
 byte fifoRxCurrentAddr = readRegister(Register.FIFORXCURRENTADDR, 1)[1];
 setFifoPointer(fifoRxCurrentAddr);
 byte[] payload = Arrays.copyOfRange(readRegister(Register.FIFO, nbBytes),
1, nbBytes+1);
 return payload;
 }

 /**
 * See below.
 * @return Array of booleans for IRQ flags in this order: txdone, rxdone.
 * @throws IOException
 */
 public boolean[] getIRQFlags() throws IOException {
 byte val = readRegister(Register.IRQFLAGS, 1)[1];
 boolean[] flags = new boolean[2];
 flags[0] = ((val >> 7) & 0x01) == 1;

 flags[1] = ((val >> 3) * 0x01) == 1;
 return flags;
 }

 /**
 * Clear all IRQ flags. This also stops the DIO pins from being triggered.
 * @throws IOException
 */
 public void clearIRQFlags() throws IOException {
 writeRegister(Register.IRQFLAGS, (byte)0);
 }

 /**
 * Set the dio mapping, takes a byte[] of length 6.
 * @param mode Mapping.
 * @throws IOException
 */
 public void setDIOMapping(DIOMode mode) throws IOException {
 this.dioMapping = mode;
 if (mode == DIOMode.RXDONE) {
 writeRegister(Register.DIOMAPPING1, (byte)0x00);
 } else if (mode == DIOMode.TXDONE) {
 writeRegister(Register.DIOMAPPING1, (byte)0x40);
 }
 writeRegister(Register.DIOMAPPING2, (byte)0x00);
 }

 /**
 * Reset the pointer in the FIFO where received packets are stored.
 * @throws IOException
 * @throws InterruptedException
 */
 public void resetRXPtr() throws IOException {
 setMode(Mode.SLEEP);
 byte baseAddr = readRegister(Register.FIFORXBASEADDR, 1)[1];
 setFifoPointer(baseAddr);
 //setMode(Mode.STDBY);
 }

 /**
 * Check the state of the DIO0 pin.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 62/133

 * @return whether the pin is at HIGH (true) or LOW (false).
 */
 public boolean pollDIO0() {
 return Gpio.digitalRead(27) == 1;
 }

 /**
 * Check the state of the DIO5 pin.
 * @return whether the pin is at HIGH (true) or LOW (false).
 */
 public boolean pollDIO5() {
 return Gpio.digitalRead(26) == 1;
 }

 /**
 * Set the radio to begin transmission of some packets.
 * @param transmitList array of packets to transmit.
 * @throws IOException
 */
 public void send(String[] transmitList) throws IOException {
 setDIOMapping(DIOMode.TXDONE);
 int transmitPtr = 0;
 while (transmitPtr < transmitList.length) {
 if (transmitList[transmitPtr] != null) {
 try {
 Thread.sleep(500);
 } catch (InterruptedException e) {
 e.printStackTrace();

 }
 writePayload(transmitList[transmitPtr]);

 setMode(Mode.TX);
 }

 transmitPtr++;
 long time = System.currentTimeMillis();
 while (Gpio.digitalRead(27) != 1) {
 try {
 Thread.sleep(10);
 } catch (InterruptedException e) {
 }
 if (System.currentTimeMillis() - time > 500) {
 break;
 }

 }

 clearIRQFlags();
 }

 }

 @Override
 public String toString() {
 return "LoRa Module Setup:\nFrequency: " + frequency + "\nBandwidth: " +
bandwidth.toString() + "\nSpreading Factor: " + spreadingFactor + "\nCoding Rate: "
+ codingRate.toString() + "\nExplicit Header: " + explicitHeader + "\nMode: " +
mode.toString();
 }

}

com.sam.hab.util.txrx.CycleManager.java

This is the manager class that oversees the radio’s operation cycle, switching between
transmit and receive mode. Note that this class is polymorphic and has some methods
implemented differently in the ground station and the payload modules.

package com.sam.hab.util.txrx;

import com.sam.hab.util.csum.CRC16CCITT;
import com.sam.hab.util.lora.Constants.*;
import com.sam.hab.util.lora.LoRa;

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 63/133

import java.awt.image.BufferedImage;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.util.*;

import static com.sam.hab.util.lora.Constants.Mode.TX;

public abstract class CycleManager {

 /*
 * This class manages the switching between transmission and receiving modes of
the radio and manages the handling of all received packets and the preparation for
sending for all packets.
 */

 //
 private Queue<String> transmitQueue = new LinkedList<String>();
 private Queue<String> receiveQueue = new LinkedList<String>();

 private final boolean payload;

 private final LoRa lora;

 private final double[] freq;
 private final Bandwidth[] bandwidth;
 private final short sf;
 private final CodingRate codingRate;
 private final boolean explicit;

 protected final String callSign;
 protected final String key;

 public CycleManager(boolean payload, String callSign, double[] frequency,
Bandwidth[] bandwidth, short sf, CodingRate codingRate, boolean explicit, byte
power, String key) { //Explaining frequency and bandwidth arrays: the 0 index is
for transmit, the 1 index is for receive.
 this.payload = payload;
 this.freq = frequency;
 this.bandwidth = bandwidth;
 this.sf = sf;
 this.codingRate = codingRate;
 this.explicit = explicit;
 this.callSign = callSign;
 this.key = key;
 try {
 lora = new LoRa(freq[0], bandwidth[0], sf, codingRate, explicit);
 lora.setPAConfig(power);
 } catch (IOException e) {
 throw new RuntimeException("LoRa module contact not established, check
your wiring perhaps?");
 }

 Thread packetThread = new Thread(new PacketHandler(this));
 packetThread.start();

 }

 /**
 * Add a packet to the transmit queue.
 * @param payload Packet to add, must be a string using only ISO 8859-1
characters.
 */
 public void addToTx(String payload) {
 transmitQueue.add(payload);

 }

 /**
 * Get the next packet from the received packet queue.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 64/133

 * @return The packet, or null if there are none.
 */
 public String getNextReceived() {
 if (receiveQueue.size() > 0) {
 return receiveQueue.poll();
 }
 return null;
 }

 //Flag to determine when to transmit.
 private boolean transmit = false;

 /**
 * Sets the transmit flag to true so that the mainloop switches to transmit
mode on the next iteration, this is only actually used on the ground station.
 */
 public void txInterrupt() {
 transmit = true;
 }

 //Sets whether to transmit images, used only by the payload (obviously!) when
the ground station has requested an image transmission toggle.
 private boolean image = true;

 /**
 * Toggles image transmission for the payload.
 */
 public boolean toggleImage() {
 if (!payload) {
 return false;
 }
 image = !image;
 return image;
 }

 /**
 * This is the main loop for the program, switches between transmit mode and
receive mode as necessary.
 * The payload switches between transmit and receive in fixed intervals, the
ground station is always receiving unless instructed otherwise by the ground
payload.
 * @param startMode
 */
 public void mainLoop(Mode startMode) {
 Mode newMode = startMode;
 while (true) {
 try {
 if (newMode == TX) {
 transmit();
 newMode = Mode.RX;
 } else if (newMode == Mode.RX) {
 receive();
 if (transmit || payload) {
 newMode = Mode.TX;
 } else {
 newMode = Mode.RX;
 }

 }
 } catch (IOException e) {
 System.out.println("Unexpected IO exception while running main
loop.");
 System.out.println(lora);

 }
 }

 }

 /**
 * This method will receive packets until the transmit flag goes true or it

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 65/133

times out, there is a small timeout so that we do not have significant downtime not
transmitting.
 * Received packets are stored in the received packet queue using the addToRx()
method.
 * @throws IOException
 */
 private void receive() throws IOException {
 lora.setMode(Mode.STDBY);

 lora.setFrequency(freq[1]);
 lora.setModemConfig(bandwidth[1], sf, codingRate, explicit);

 lora.setDIOMapping(DIOMode.RXDONE);

 lora.setMode(Mode.RX);
 long timeout = System.currentTimeMillis() + 10000;
 while (System.currentTimeMillis() < timeout && !transmit) {
 while (!lora.pollDIO0() && !transmit && System.currentTimeMillis() <
timeout) {
 try {
 Thread.sleep(10);
 } catch (InterruptedException e) {
 e.printStackTrace();

 }
 }
 if (lora.pollDIO0()) {
 lora.clearIRQFlags();
 byte[] payload = lora.handlePacket();
 if (payload != null) {
 addToRx(payload);

 timeout = timeout + 1000;

 }
 }

 }
 }

 /**
 * Acquires the next set of packets to transmit and sends them to the LoRa
radio to transmit.
 * If this is the payload it will transmit 10 2-way packets (if available, if
not available these will just be telemetry),
 * then 10 telemetry then if image transmission is enabled it will transmit 70
image packets.
 * If this is the ground station it will transmit up to 10 2-way packets,
however, once all 2-way packets are transmitted
 * it'll just stop so as to return to telemetry and image sending by the
payload quickly..
 * @throws IOException
 */
 private void transmit() throws IOException {
 transmit = false;
 lora.setMode(Mode.STDBY);
 lora.setFrequency(freq[0]);

 lora.setModemConfig(bandwidth[0], sf, codingRate, explicit);
 String[] transmit = new String[(payload ? 90 : 10)];
 for (int i = 0; i < 10; i++) {
 if (transmitQueue.size() <= 0) {
 if (payload) {
 transmit[i] = getTelemetry();
 } else {
 transmit[i] = null;
 }
 } else {
 transmit[i] = doPacket(transmitQueue.poll(), String.valueOf(i),
key);

 }
 }
 if (payload) {
 for (int i = 10; i < 20; i++) {
 transmit[i] = getTelemetry();

 }

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 66/133

 for (int i = 20; i < 89; i++) {
 if (image) {
 transmit[i] = getImagePacket();
 } else {
 transmit[i] = null;
 }

 }
 transmit[89] = doPacket(TwoWayPacketGenerator.generateCommand(callSign,
"TRA"), String.valueOf(89), key);
 }
 for (String pckt : transmit) {
 onSend(pckt);
 }

 lora.send(transmit);
 }

 /**
 * This method takes a 2-way packet and configures it for sending by
substituting its ID into place and then appending the checksum.
 * @param packet The packet to prepare, this is a string.
 * @param id The id of the packet.
 * @param key The encryption key set by user in config.
 * @return The prepared packet with the checksum and id substituted in.
 */
 private String doPacket(String packet, String id, String key) {
 packet = packet.replace(">>","");
 packet = packet.replaceFirst("%s",id);
 return ">>" + packet + "*" + CRC16CCITT.calcCsum((packet + key).getBytes())
+ "\n";
 }

 /**
 * Adds the given payload to the received queue.
 * @param payload Payload to add to the queue.
 */
 public void addToRx(byte[] payload) {
 receiveQueue.add(new String(payload, StandardCharsets.ISO_8859_1));
 }

 /**
 * Below are several abstract methods which are used to allow this class to be
polymorphic. These methods are implemented differently on the payload and the
ground station.
 * For example, the payload does not need to be able to handle received
telemetry or image packets, and the ground station doesn't need to be able to
generate telemetry or image packets.
 */

 public abstract void handleTelemetry(ReceivedTelemetry telem);

 public abstract void onSend(String sent);

 public abstract void handleImage(byte[] bytes, int iID, int pID);

 public abstract void handleTwoWay(ReceivedPacket packet);

 public abstract String getTelemetry();

 public abstract String getImagePacket();
}

com.sam.hab.util.txrx.PacketHandler.java

This class runs a continuous loop that waits for there to be packets in the received packet
queue, pops that item from the queue and determines the packet type and then calls the

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 67/133

appropriate handling parsing from the PacketParser class and the appropriate handling
method from the CycleManager.

package com.sam.hab.util.txrx;

import java.nio.charset.StandardCharsets;
import java.util.Calendar;

public class PacketHandler implements Runnable {

 private final CycleManager cm;

 /**
 * This is a simple loop which gets the latest packet from the received queue,
determines its type and then calls the relevant parse and handle methods.
 * @param cm The cycle manager currently in use, needed in order to get latest
received packet.
 */
 public PacketHandler(CycleManager cm) {
 this.cm = cm;
 }

 @Override
 public void run() {
 Calendar cal = Calendar.getInstance();
 while (true) {
 try {
 String packet = cm.getNextReceived();
 if (packet != null) {
 byte[] bytes = packet.getBytes(StandardCharsets.ISO_8859_1);
 if (packet.length() > 0) {
 if (packet.charAt(0) == '>') {
 ReceivedPacket pckt = PacketParser.parseTwoWay(packet,

cm.key);
 cm.handleTwoWay(pckt);
 } else if (packet.charAt(0) == '$') {
 ReceivedTelemetry telem =

PacketParser.parseTelemetry(packet);
 if (telem != null) {
 cm.handleTelemetry(telem);

 }
 } else {
 int[] res = PacketParser.parseSSDV(bytes);
 try {
 cm.handleImage(bytes, res[0], res[1]);
 } catch (NullPointerException e) {
 e.printStackTrace();

 }

 }
 }

 }
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {
 }
 } catch (Exception e) {
 //e.printStackTrace();
 }
 }

 }

}

com.sam.hab.util.txrx.PacketParser.java

Parses SSDV, telemetry and 2-way packets to ensure the checksum is valid (and hence that
the packet is from a trusted source) and that the data follows the correct format.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 68/133

package com.sam.hab.util.txrx;

import com.sam.hab.util.lora.Constants.*;
import com.sam.hab.util.csum.CRC16CCITT;
import sun.misc.CRC16;

import java.io.*;
import java.util.Arrays;
import java.util.concurrent.TimeUnit;

public class PacketParser {

 /**
 * Simple algorithm to parse a two way packet, will first check the checksum is
valid and that the correct key has been used then it will then return a new
ReceivedPacket object with this packet's data.
 * @param raw The string of the packet received from the radio.
 * @param key The encryption key, set in config.
 * @return The ReceivedPacket object for this packet. Or null if the packet
failed the checksum/key test.
 */
 public static ReceivedPacket parseTwoWay(String raw, String key) {
 String cSum = raw.split("*")[1].replace("\n", "");
 String packet = raw.split("*")[0].replace(">", "");;
 if (!CRC16CCITT.calcCsum((packet.replace(">", "") +
key).getBytes()).equals(cSum)) {
 return null;
 }
 String[] packetList = packet.split(",");
 PacketType packetType = PacketType.lookup(Integer.valueOf(packetList[2]));
 if (packetType == null) {
 return null;
 }
 return new ReceivedPacket(raw, packetList[3],
Integer.valueOf(packetList[1]), packetType);

 }

 /**
 * Parses telemetry by splitting by comma, this works for the standard UKHAS
format setup as $$CALLSIGN,ID,HH:MM:SS,LAT,LON,SATS*CSUM\n only.
 * @param raw The string of the telemetry taken from the radio.
 * @return The ReceivedTelemetry object for this telemetry string, this will
then be sent to the server and the display.
 */
 public static ReceivedTelemetry parseTelemetry(String raw) {
 String cSum = raw.split("*")[1].replace("\n", "");
 String packet = raw.split("*")[0].replace("$", "");
 if (!CRC16CCITT.calcCsum((packet).getBytes()).equals(cSum)) {
 return null;
 }
 String packetList[] = packet.split(",");
 return new ReceivedTelemetry(raw, Float.valueOf(packetList[3]),
Float.valueOf(packetList[4]), Float.valueOf(packetList[5]),
Long.valueOf(packetList[1]));

 }

 /**
 * This parses SSDV data, it first stores the bytes received in the appropriate
image file, the image number is the 7th byte in the array of each packet.
 * The ssdv program by fsphil is then run to decode the SSDV into a jpg image.
 * @param in The bytes of one SSDV packet.
 * @return The image number (i.e. 7th item in the input array) and the packet
ID, also derived from the packet data.
 */
 public static int[] parseSSDV(byte[] in) {
 byte[] bytes = new byte[in.length+1];
 bytes[0] = 0x55;

 System.arraycopy(in, 0, bytes, 1, in.length);

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 69/133

 int imageNo = (0xFF & bytes[6]);
 int packetNo = (0xFF & bytes[7]) * 256 + (0xFF & bytes[8]);
 FileOutputStream fos = null;
 File file = new File("images/image_" + String.valueOf(imageNo) + ".bin");
 if (!file.getParentFile().exists()) {
 file.getParentFile().mkdirs();

 }
 Runtime rt = Runtime.getRuntime();
 try {
 file.createNewFile();
 fos = new FileOutputStream(file, true);
 fos.write(bytes);
 fos.close();
 Process pr = rt.exec("./ssdv -d images/image_" +
String.valueOf(imageNo) + ".bin images/current.jpg");
 pr.waitFor();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 } catch (InterruptedException e) {

 }
 return new int[] {imageNo, packetNo};
 }

}

com.sam.hab.util.txrx.ReceivedPacket.java

Simple class which contains data about a received packet, an instance of this is created
every time a valid packet is received and is then passed around the program.

package com.sam.hab.util.txrx;

import com.sam.hab.util.lora.Constants.*;

public class ReceivedPacket {

 public final String raw;
 public final String data;
 public final int id;
 public final PacketType type;

 /**
 * Simple class, objects of which are generated automatically each time a 2-way
communications packet is received.
 * @param raw the raw string of the packet.
 * @param data the data section of the packet.
 * @param id the id of the packet.
 * @param type the type of the packet.
 */
 public ReceivedPacket(String raw, String data, int id, PacketType type) {
 this.raw = raw;
 this.data = data;
 this.id = id;
 this.type = type;
 }

}

com.sam.hab.util.txrx.ReceivedTelemetry.java

Simple class which contains data about a received telemetry sentence, an instance of this is
created every time a valid telemetry sentence is received and is then passed around the
program.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 70/133

package com.sam.hab.util.txrx;

public class ReceivedTelemetry {

 public final String raw;
 public final float lat;
 public final float lon;
 public final float alt;
 public final long id;

 /**
 * Simple class, objects of which are generated automatically each time a
telemetry sentence is received.
 * @param raw the raw sentence.
 * @param lat the latitude which was included in the sentence.
 * @param lon the longitude which was included in the sentence.
 * @param alt the altitude which was in that sentence.
 * @param id the id of the sentence, should be number of seconds since 1/1/1970
at the time the packet was transmitted.
 */
 public ReceivedTelemetry(String raw, float lat, float lon, float alt, long id)
{
 this.raw = raw;
 this.lat = lat;
 this.lon = lon;
 this.alt = alt;
 this.id = id;
 }

}

com.sam.hab.util.txrx.TwoWayPacketGenerator.java

Simple class with several static method that generates the various different possible types
of 2-way request packet. It doesn’t include the packet ID or the checksum as these are
calculated when the packet is prepared for transmission. This contains methods to generate
shell packets, shell command packets, statistic packets and request/command packets.

package com.sam.hab.util.txrx;

public class TwoWayPacketGenerator {

 /**
 * Generates a shell response packet, used by the payload to encode the result
of a command executed in response to a remote shell command packet.
 * @param callsign the payload callsign.
 * @param response the result of executing the command.
 * @return an array of the packets which are to be transmitted to send the
response.
 */
 public static String[] generateShellPackets(String callsign, String[] response)
{
 for (int i = 0; i < response.length; i++) {
 String pckt = ">>" + callsign + ",%s,1," + response[i].replace('\n',
(char)0);
 response[i] = pckt;
 }
 return response;
 }

 /**
 * Generates a shell command packet to be sent to the payload to cause remote
execution of a shell command.
 * @param callsign payload callsign.
 * @param cmd the command to execute, cannot include asterisks.
 * @return the packet.
 */

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 71/133

 public static String generateShellCmdPacket(String callsign, String cmd) {
 return ">>" + callsign + ",%s,1," + cmd;
 }

 /**
 * Generates a stat packet, this is sent by the payload in response to a
statistic request by the ground station.
 * @param callsign payload callsign.
 * @param name the name of the stat/
 * @param stat the stat.
 * @return the packet.
 */
 public static String generateStatPacket(String callsign, String name, String
stat) {
 return ">>" + callsign + ",%s,2," + name + "/" + stat;
 }

 /**
 * Generates a command packet, this is a packet that it sent to the payload
requesting that it do something, this could be RBT (reboot) or many other things.
 * This is also used once by the payload to generate the TRA packet that
enables the ground station to begin transmitting.
 * @param callsign payload callsign.
 * @param cmd the command.
 * @return the packet.
 */
 public static String generateCommand(String callsign, String cmd) {
 return ">>" + callsign + ",%s,0," + cmd;
 }
}

‘Ground’ Module

This module contains all the classes that make up the ground station software. It depends
on the Util module.

com.sam.hab.ground.gui.GUI.java

This class handles the GUI and hence has methods for dealing with button clicks, the console
and displaying received and transmitted data. The GUI.form XML file contains the details of
the GUI. This class also handles the logging of transmission data to a file and the auto
configuration utility. This class makes use of the event based programming paradigm. This
method initialises the CycleManager with the ground station’s versions of CycleManager’s
polymorphic methods.

package com.sam.hab.ground.gui;

import com.sam.hab.ground.web.RequestHandler;
import com.sam.hab.util.lora.Config;
import com.sam.hab.util.lora.Constants;
import com.sam.hab.util.txrx.CycleManager;
import com.sam.hab.util.txrx.ReceivedPacket;
import com.sam.hab.util.txrx.ReceivedTelemetry;
import com.sam.hab.util.txrx.TwoWayPacketGenerator;

import javax.swing.*;
import javax.swing.text.DefaultCaret;
import java.awt.*;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.ItemEvent;
import java.awt.event.ItemListener;
import java.io.*;
import java.nio.charset.StandardCharsets;

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 72/133

import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;

public class GUI {
 private JTabbedPane tabbedPane1;
 private JTextArea rxcon;
 private JTextArea txcon;
 private JTextField lat;
 private JTextField lon;
 private JTextField alt;
 private JTextField lastpckt;
 private JTextField velv;
 private JLabel img;
 private JPanel ssdvPanel;
 private JPanel panelMain;
 private JTextArea consoleOutput;
 private JTextField consoleInput;
 private JButton rebootButton;
 private JTextArea controlResults;
 private JButton imageTransmit;
 private JButton noPicsStored;
 private JTextField timeSince;
 private JCheckBox uploadTelemetryCheckBox;
 private JCheckBox uploadImagesCheckBox;
 private JTextField callsign;
 private JButton autoconf;
 private JFormattedTextField key;

 public final CycleManager cm;
 private final File log;

 float lastAlt = 0;
 long lastTime = System.currentTimeMillis();
 long lastID = -1;

 private boolean uploadImage = true;
 private boolean uploadTelem = true;

 public GUI(Config conf) {

 //Prepare log file. This is timestamped so each launch has a new log file.
 log = new File("logs/" + new SimpleDateFormat("yyyy-MM-dd-HH-mm-
ss").format(new Date()) + ".txt");
 try {
 if (!log.getParentFile().exists()) {
 log.getParentFile().mkdirs();

 }
 log.createNewFile();
 } catch (IOException e) {
 e.printStackTrace();

 }

 //Init request handler.
 RequestHandler requestHandler = new RequestHandler();

 //Prepare the reboot button so it completes the correct action.
 rebootButton.addActionListener(new ActionListener() {
 @Override
 public void actionPerformed(ActionEvent e) {

cm.addToTx(TwoWayPacketGenerator.generateCommand(conf.getCallsign(), "RBT"));
 }

 });

 //Prepares the consoleInput so that when enter is pressed it sends the
given command.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 73/133

 consoleInput.addActionListener(new ActionListener() {
 @Override
 public void actionPerformed(ActionEvent e) {
 String cmd = consoleInput.getText();
 if (cmd.length() > 0 && cmd.length() < 255 - 14 -
conf.getCallsign().length() && !cmd.contains(",") && !cmd.contains("*")) {
//Ensures valid command.

cm.addToTx(TwoWayPacketGenerator.generateShellCmdPacket(conf.getCallsign(), cmd));
 consoleInput.setBackground(Color.GREEN);
 consoleInput.setText("");
 } else {
 consoleInput.setBackground(Color.RED);

 }
 }

 });

 autoconf.addActionListener(new ActionListener() {
 @Override
 public void actionPerformed(ActionEvent e) {
 String cs = callsign.getText();
 String ky = key.getText();

 String data = requestHandler.getPayloadData(cs);
 String[] payload = data.split(",");
 if (payload.length == 8) {
 String callsgn = payload[0];
 String txFreq = payload[1];
 int txBw = Integer.valueOf(payload[2]);
 String sf = payload[3];
 String coding = payload[4];
 boolean explicit = payload[5].equals("1");
 String rxFreq = payload[6];
 int rxBw = Integer.valueOf(payload[7]);
 conf.setCallsign(callsgn);
 conf.setListen(Double.valueOf(txFreq));

 conf.setRxbandwidth(Constants.Bandwidth.lookup(txBw));
 conf.setSf(Short.valueOf(sf));
 conf.setCodingRate(Constants.CodingRate.valueOf("CR4_" +
coding));
 conf.setImplicit(!explicit);

 conf.setFreq(Double.valueOf(rxFreq));
 conf.setTxbandwidth(Constants.Bandwidth.lookup(rxBw));

 conf.setKey(ky);

 conf.save();
 JOptionPane.showMessageDialog(panelMain, "Success! Configured
for " + callsgn + ". Please restart the program for changes to take effect.");
 } else {
 JOptionPane.showMessageDialog(panelMain, "Autoconfigure failed,
please edit config.yml and restart the program.");
 }

 }
 });

 //Prepares the image transmit toggle button so when clicked it prepares a
packet to send which toggles image transmission.
 imageTransmit.addActionListener(new ActionListener() {
 @Override
 public void actionPerformed(ActionEvent e) {

cm.addToTx(TwoWayPacketGenerator.generateCommand(conf.getCallsign(), "IMG"));
 }
 });

 //Prepares this button so when clicked it prepares a packet which will ask
the payload to transmit the number of stored images.
 noPicsStored.addActionListener(new ActionListener() {
 @Override
 public void actionPerformed(ActionEvent e) {

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 74/133

cm.addToTx(TwoWayPacketGenerator.generateCommand(conf.getCallsign(), "IMGNO"));
 }

 });

 //Init cycle manager.
 cm = new CycleManager(false, conf.getCallsign(), new double[]
{conf.getFreq(), conf.getListen()}, new Constants.Bandwidth[]
{conf.getTransmitBandwidth(), conf.getReceiveBandwidth()}, conf.getSf(),
conf.getCodingRate(), !conf.getImplicit(), conf.getPower(), conf.getKey()) {

 @Override
 public void handleTelemetry(ReceivedTelemetry telem) {
 if (telem == null) {
 return;
 }

 getAlt().setText(String.valueOf(telem.alt));

 getLat().setText(String.valueOf(toDeg(telem.lat)));
 getLon().setText(String.valueOf(toDeg(telem.lon)));

 writeRx(telem.raw);
 if (telem.id != lastID) {
 getLastpckt().setText(new
SimpleDateFormat("HH:mm:ss").format(new Date()));
 updateVelocities(telem.alt);

 lastID = telem.id;
 if (uploadTelem) {
 requestHandler.sendTelemetry(telem.raw);
 }

 }

 }

 @Override
 public void onSend(String sent) {
 if (sent != null) {
 writeTx(sent);
 }

 }

 @Override
 public void handleImage(byte[] bytes, int iID, int pID) {
 writeRx("Image no. " + iID + " packet no. " + pID + "
received.\n");
 if (uploadImage) {
 requestHandler.sendImage(new String(bytes,
StandardCharsets.ISO_8859_1));
 }

 }

 @Override
 public void handleTwoWay(ReceivedPacket packet) {
 if (packet == null) {
 return;
 }

 writeRx(packet.raw);
 switch (packet.type) {
 case CMD:
 if (packet.data.equals("TRA")) {
 this.txInterrupt();
 }
 break;
 case SHELL:
 getConsoleOutput().append(packet.data.replace((char)0,
'\n'));
 break;
 case DIAG:
 String[] data = packet.data.split("/");
 getControlResults().append(data[0] + ": " + data[1] +
"\n");
 break;

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 75/133

 case OTHER:
 //Not really sure what to do here? How about you?
 }
 requestHandler.sendTwoWay(packet.raw);
 }

 @Override
 public String getTelemetry() {
 return null;
 }

 @Override
 public String getImagePacket() {
 return null;
 }

 };

 new Thread(new Runnable() {

 @Override
 public void run() {
 while (true) {
 long diff = System.currentTimeMillis() - lastTime;
 diff /= 1000f;
 timeSince.setText(diff + "s");
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 }
 }

 }).start();

 //Upload checboxes.
 uploadImagesCheckBox.addItemListener(new ItemListener() {
 @Override
 public void itemStateChanged(ItemEvent e) {
 if (e.getStateChange() == ItemEvent.SELECTED) {
 uploadImage = true;
 } else if (e.getStateChange() == ItemEvent.DESELECTED){
 uploadImage = false;
 }

 }
 });
 uploadTelemetryCheckBox.addItemListener(new ItemListener() {
 @Override
 public void itemStateChanged(ItemEvent e) {
 if (e.getStateChange() == ItemEvent.SELECTED) {
 uploadTelem = true;
 } else if (e.getStateChange() == ItemEvent.DESELECTED){
 uploadTelem = false;
 }
 }

 });

 }

 private static Double toDeg(float nmea) {
 boolean neg = false;
 if (nmea < 0) {
 neg = true;
 nmea = Math.abs(nmea);

 }
 String in = Float.toString(nmea);
 String[] data = in.split("\\.");
 return (int)(1000000*(Double.valueOf(data[0].substring(0,data[0].length()-
2)) +
 Double.valueOf(data[0].substring(data[0].length()-2) + "." +

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 76/133

 data[1])/60d))/1000000d * (neg ? -1 : 1);

 }

 //Simple sets all the GUI elements to be formatted correctly.
 public void init() {
 rxcon.setLineWrap(true);
 txcon.setLineWrap(true);
 consoleOutput.setLineWrap(true);
 controlResults.setLineWrap(true);

((DefaultCaret)rxcon.getCaret()).setUpdatePolicy(DefaultCaret.ALWAYS_UPDATE);

((DefaultCaret)txcon.getCaret()).setUpdatePolicy(DefaultCaret.ALWAYS_UPDATE);

((DefaultCaret)consoleOutput.getCaret()).setUpdatePolicy(DefaultCaret.ALWAYS_UPDATE

);

((DefaultCaret)controlResults.getCaret()).setUpdatePolicy(DefaultCaret.ALWAYS_UPDAT

E);
 consoleOutput.setFont(new Font("monospaced", Font.PLAIN, 12));
 consoleInput.setFont(new Font("monospaced", Font.PLAIN, 12));
 controlResults.setFont(new Font("monospaced", Font.PLAIN, 12));
 rxcon.setFont(new Font("monospaced", Font.PLAIN, 12));
 txcon.setFont(new Font("monospaced", Font.PLAIN, 12));
 }

 public JTextArea getControlResults() {
 return controlResults;
 }

 public JLabel getImg() {
 return img;
 }

 public JPanel getPanelMain() {
 return panelMain;
 }

 public JTextField getLat() {
 return lat;
 }

 public JTextField getLon() {
 return lon;
 }

 public JTextField getAlt() {
 return alt;
 }

 public JTextField getLastpckt() {
 return lastpckt;
 }

 public JPanel getSsdvPanel() {

 return ssdvPanel;
 }

 /**
 * Simple method which writes the received given data to the UI and the log
file.
 * @param write string to write.
 */
 public void writeRx(String write) {
 write = write.replace((char)0, '\n');
 rxcon.append("->: " + write);
 try {

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 77/133

 FileWriter writer = new FileWriter(log, true);
 DateFormat format = new SimpleDateFormat("HH:mm:ss");
 writer.write("RX [" + format.format(new Date()) +"]: " + write);
 writer.flush();
 writer.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

 }

 /**
 * Simple method which writes the transmitted given data to the UI and the log
file.
 * @param write string to write.
 */
 public void writeTx(String write) {
 write = write.replace((char)0, '\n');
 txcon.append("<-:" + write);
 try {
 FileWriter writer = new FileWriter(log, true);
 DateFormat format = new SimpleDateFormat("HH:mm:ss");
 writer.write("TX [" + format.format(new Date()) +"]: " + write);
 writer.flush();

 writer.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();

 }
 }

 public JTextArea getConsoleOutput() {
 return consoleOutput;
 }

 /**
 * Updates the vertical velocity field. This is an estimate only.
 * @param alt new altitude.
 */
 private void updateVelocities(float alt) {
 float altSpeed = (alt - lastAlt)/((System.currentTimeMillis() -
lastTime)/1000f);
 altSpeed = (int)(altSpeed * 10) / 10f;
 velv.setText(String.valueOf(altSpeed) + " m/s");
 lastTime = System.currentTimeMillis();

 lastAlt = alt;

 }
}

com.sam.hab.ground.main.GroundMain.java

This is the ‘main’ class of the ground station, it contains the ‘main’ method which is the start
point of the main application thread. In this class the configuration and GUI are initialised
and the image decoding and displaying thread is initialised.

package com.sam.hab.ground.main;

import com.sam.hab.ground.gui.GUI;
import com.sam.hab.util.lora.Config;
import com.sam.hab.util.lora.Constants.*;

import javax.imageio.ImageIO;
import javax.swing.*;
import java.awt.*;
import java.awt.image.BufferedImage;

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 78/133

import java.io.File;
import java.io.FileInputStream;

public class GroundMain {

 public static void main(String[] args) throws InterruptedException {

 //Load configuration from config.yml (or create new if none exists).
 final Config conf = new Config();

 //Window setup.

 JFrame frame = new JFrame("Prototype 2-Way HAB Comms");
 GUI gui = new GUI(conf);
 gui.init();
 frame.setPreferredSize(new Dimension(1050, 720));
 frame.setSize(new Dimension(1050,720));
 frame.setContentPane(gui.getPanelMain());

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setVisible(true);

 //This thread continuously updates the image being displayed on the SSDV
tab so that we always have the latest image, it also deletes old images (>30minutes
old).
 Thread imageThread = new Thread(new Runnable() {
 @Override
 public void run() {
 while (true) {
 try {
 BufferedImage pic = ImageIO.read(new FileInputStream(new
File("images/current.jpg")));
 if (pic != null) {
 Image resized = pic.getScaledInstance(512, 384, 0);
 gui.getImg().setIcon(new ImageIcon(resized));
 }
 Thread.sleep(1000);
 File imagesFolder = new File("images");
 File[] files = imagesFolder.listFiles();
 for (int i = 0; i < files.length; i++) {
 if (System.currentTimeMillis() -
files[i].lastModified() > 1800000 && files[i].getName().matches("image_(.*).bin"))
{

 files[i].delete();
 }

 }
 } catch (Exception e) {
 e.printStackTrace();

 }
 }

 }
 });

 imageThread.start();

 //Ground station starts by transmitting.
 gui.cm.mainLoop(Mode.RX);
 }

}

com.sam.hab.ground.web.RequestHandler.java

This is a class which contains the various methods needed to interface with the server, these
use HTTP PUT methods to upload received data to my server. As can be seen, data is
handled differently for two way packets, telemetry and SSDV. There is also an HTTP GET
method which acquires payload data for a given callsign.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 79/133

package com.sam.hab.ground.web;

import java.io.*;
import java.net.HttpURLConnection;
import java.net.MalformedURLException;
import java.net.URL;
import java.nio.charset.StandardCharsets;

public class RequestHandler {

 String server = "http://212.250.101.219:8080/";

 /**
 * Sends telemetry to my server for forwarding to habitat tracker.
 * @param telem telemetry to send. Must be either ASCII or ISO 8859-1.
 */
 public void sendTelemetry(String telem) {
 try {
 URL url = new URL(server + "telemetryUpload");
 sendPut(url, telem);
 } catch (MalformedURLException e) {
 e.printStackTrace();

 }

 }

 /**
 * Sends image packets to my server for forwarding to ssdv.habhub.org.
 * @param img image packet to send. Must be encoded in ISO 8859-1.
 */
 public void sendImage(String img) {
 try {
 URL url = new URL(server + "imageUpload");
 sendPut(url, img);
 } catch (MalformedURLException e) {
 e.printStackTrace();

 }
 }

 /**
 * Simple method which sends a HTTP PUT request to the url supplied with the
data supplied.
 * @param url the url to send to.
 * @param data the data to send.
 */
 public void sendPut(URL url, String data) {
 try {
 HttpURLConnection connection = (HttpURLConnection)url.openConnection();
 connection.setRequestMethod("PUT");
 connection.setDoOutput(true);
 OutputStream out = connection.getOutputStream();

 out.write(data.getBytes(StandardCharsets.ISO_8859_1));
 out.flush();

 out.close();
 connection.getInputStream();
 } catch (IOException e) {
 e.printStackTrace();
 }

 }

 /**
 * Uploads a 2-way packet to my server for logging in my marvellous database.
 * @param packet packet to log.
 */
 public void sendTwoWay(String packet) {
 try {
 URL url = new URL(server + "packetUpload");
 sendPut(url, packet);
 } catch (MalformedURLException e) {

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 80/133

 e.printStackTrace();

 }
 }

 public String getPayloadData(String callsign) {
 try {
 URL url = new URL(server + callsign);
 HttpURLConnection connection = (HttpURLConnection)url.openConnection();
 connection.setRequestMethod("GET");
 connection.setDoOutput(true);
 BufferedReader reader = new BufferedReader(new
InputStreamReader(connection.getInputStream()));
 String data = reader.readLine();

 reader.close();
 return data;
 } catch (IOException e) {
 e.printStackTrace();
 }
 return "";
 }

}

‘Payload’ Module

This module contains the code for the Payload module, it depends on the Util module. This
module is programmed defensively in order to minimise the possibility of terminal errors
occurring.

com.sam.hab.payload.main.PayloadMain.java

This class contains the main method for the payload, this is the method that is called to start
the main application thread. This method initialises the configuration data and the
CycleManager, it also contains the payload’s version of the polymorphic CycleManager
methods. This method also contains the static method for generating telemetry using GPS
data. Finally, the method initialises the GPS read loop.

package com.sam.hab.payload.main;

import com.sam.hab.payload.serial.GPSLoop;
import com.sam.hab.util.csum.CRC16CCITT;
import com.sam.hab.util.lora.Config;
import com.sam.hab.util.lora.Constants;
import com.sam.hab.util.txrx.CycleManager;
import com.sam.hab.util.txrx.ReceivedPacket;
import com.sam.hab.util.txrx.ReceivedTelemetry;
import com.sam.hab.util.txrx.TwoWayPacketGenerator;

import java.io.*;
import java.nio.charset.StandardCharsets;
import java.util.Arrays;
import java.util.concurrent.TimeUnit;

public class PayloadMain {

 private static String currentTelemetry;
 private static String callsign;

 private static Config conf;
 private static CycleManager cm;
 private static ImageManager im;

 /**
 * Takes a GPS GGA string and generates a telemetry string using it, then
stores this in the static variable currentTelemetry.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 81/133

 * @param gps the GGA string.
 */
 public static void generateTelemetry(String gps) {
 if (gps.startsWith("$GNGGA"))
 {
 String[] data = gps.split(",");
 if (data.length > 9)
 {
 try {
 String lat = (data[3].equals("S") ? "-" : "") + data[2];
 String lon = (data[5].equals("W") ? "-" : "") + data[4];
 String time = data[1].substring(0, 2) + ":" +
data[1].substring(2, 4) + ":" + data[1].substring(4, 6);
 String telemetry = callsign + "," +
String.valueOf(System.currentTimeMillis() / 1000) + "," + time + "," + lat + "," +
lon + "," + data[9] + "," + data[7];
 String csum =
CRC16CCITT.calcCsum(telemetry.getBytes(StandardCharsets.ISO_8859_1));
 telemetry = "$$" + telemetry + "*" + csum + "\n";
 currentTelemetry = telemetry;
 } catch (StringIndexOutOfBoundsException e) {
 } catch (ArrayIndexOutOfBoundsException e) {
 }

 }
 }

 }

 public static void main(String[] args) {
 conf = new Config();
 callsign = conf.getCallsign();
 Thread gps = new Thread(new GPSLoop());
 gps.start();
 im = new ImageManager(conf.getCallsign());
 while (currentTelemetry == null) {
 try {
 Thread.sleep(500);
 } catch (InterruptedException e) {
 e.printStackTrace();

 }
 }
 cm = new CycleManager(true, conf.getCallsign(), new double[]
{conf.getFreq(), conf.getListen()}, new Constants.Bandwidth[]
{conf.getTransmitBandwidth(), conf.getReceiveBandwidth()}, conf.getSf(),
conf.getCodingRate(), !conf.getImplicit(), conf.getPower(), conf.getKey()) {
 @Override
 public void handleTelemetry(ReceivedTelemetry telem) {
 return;
 }

 @Override
 public void onSend(String sent) {
 return;
 }

 @Override
 public void handleImage(byte[] bytes, int iID, int pID) {
 return;
 }

 @Override
 public void handleTwoWay(ReceivedPacket packet) {
 switch (packet.type) {
 case CMD:
 handleCommand(packet);
 break;
 case SHELL:
 handleShell(packet);
 break;

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 82/133

 case OTHER:
 System.err.println("Packet classed 'OTHER' received:");
 System.err.println(packet.data);
 }
 }

 @Override
 public String getTelemetry() {
 return currentTelemetry;
 }

 @Override
 public String getImagePacket() {
 byte[] pckt = im.getImagePacket();
 if (pckt != null) {
 return new String(pckt, StandardCharsets.ISO_8859_1);
 }
 return null;
 }
 };

 //Payloads begin by transmitting.
 cm.mainLoop(Constants.Mode.TX);
 }

 /**
 * Takes a received command packet and determines what action is to be taken,
then takes that action.
 * @param packet The packet to analyse.
 */
 public static void handleCommand(ReceivedPacket packet) {
 switch(packet.data) {
 case "RBT":
 Runtime rt = Runtime.getRuntime();
 try {
 rt.exec("sudo reboot");
 } catch (IOException e) {
 e.printStackTrace();

 }
 break;
 case "IMGNO":
 File f = new File("images/");
 int imageNo = 0;
 if (f.exists() && f.isDirectory()) {
 imageNo = f.list().length;
 }

cm.addToTx(TwoWayPacketGenerator.generateStatPacket(conf.getCallsign(), "IMGNO",
String.valueOf(imageNo)));
 break;
 case "IMG":
 boolean sendImages = cm.toggleImage();

cm.addToTx(TwoWayPacketGenerator.generateStatPacket(conf.getCallsign(), "IMG",
String.valueOf(sendImages)));
 break;
 }

 }

 /**
 * Takes a shell packet and executes the given command, storing the result and
preparing it for sending, adds that result to the transmit queue.
 * @param packet the packet to analyse.
 */
 public static void handleShell(ReceivedPacket packet) {
 Runtime rt = Runtime.getRuntime();
 try {
 Process pr = rt.exec(packet.data);

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 83/133

 if (pr.waitFor(5, TimeUnit.SECONDS)) {
 InputStream stream = pr.getInputStream();
 BufferedReader reader = new BufferedReader(new
InputStreamReader(stream));
 String output = "";
 String line = reader.readLine();
 while (line != null) {
 output += line + "\n";
 line = reader.readLine();
 }
 int len = 255 - 14 - conf.getCallsign().length();
 String[] toSend = new String[(int)Math.ceil(output.length() /
(float)len)];
 if (output.length() > len) {
 for (int i = 0; i < toSend.length-1; i++) {
 toSend[i] = output.substring(0, (len > output.length() ?

output.length() -1 : len -1));
 output = output.substring(len);

 }
 }
 toSend[toSend.length -1] = output;
 String[] packets =
TwoWayPacketGenerator.generateShellPackets(conf.getCallsign(), toSend);
 for (String pckt : Arrays.asList(packets)) {
 cm.addToTx(pckt);
 }
 }
 } catch (IOException e) {
 e.printStackTrace();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 }

}

com.sam.hab.payload.main.ImageManager.java

This class initialises a separate thread which contains a loop which takes an image every ~1
minute; it then creates a low resolution copy of this image and encodes if for sending using
fsphil’s SSDV command line application. This makes use of the Java Runtime library to
execute bash commands.

package com.sam.hab.payload.main;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.util.Arrays;
import java.util.Calendar;
import java.util.LinkedList;
import java.util.Queue;

public class ImageManager {

 private Queue<byte[]> imageQueue = new LinkedList<byte[]>();

 private String latestImage = "";
 private boolean fullDownload = false;

 /**
 * This class creates a thread which loops continuously taking a picture every
30 seconds or so (the inaccuracy is because the time taken to execute the commands
is variable, particularly convert).
 * It also provides the means by which to get SSDV encoded image data in 256
byte packets.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 84/133

 * @param callsign The payload callsign, this is used when encoding SSDV
images.
 */
 public ImageManager(String callsign) {
 new Thread(new Runnable() {
 @Override
 public void run() {
 Calendar cal = Calendar.getInstance();
 int count = 0;
 Runtime rt = Runtime.getRuntime();
 try {
 rt.exec("mkdir images").waitFor();
 while (true) {
 String name = String.valueOf(System.currentTimeMillis() /
1000) + ".jpg";
 rt.exec("raspistill -o images/" + name).waitFor();
 rt.exec("convert images/" + name + " -resize 768x576!
tmp.jpg").waitFor();
 rt.exec("./ssdv -e -c " + callsign + " -i " +
String.valueOf(count) + " tmp.jpg out.bin").waitFor();
 latestImage = name;
 count++;
 Thread.sleep(30000);
 }
 } catch (IOException e) {
 e.printStackTrace();
 } catch (InterruptedException e) {
 e.printStackTrace();

 }
 }

 }).start();
 }

 /**
 * Returns the next image packet that is ready to be sent by the payload.
 * @return A 256 byte array which equates to one packet.
 */
 public byte[] getImagePacket() {
 if (imageQueue.size() <= 1) {
 try {
 FileInputStream fis = new FileInputStream(new File("out.bin"));
 while (fis.available() > 0) {
 fis.read();
 byte[] packet = new byte[255];
 for (int i = 0; i < 255; i++) {
 packet[i] = (byte)fis.read();
 }
 imageQueue.add(packet);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }

 }
 byte[] packet = imageQueue.poll();
 return packet;
 }

}

com.sam.hab.payload.serial.GPSLoop.java

This class has two functions, firstly it sets the GPS module to airborne mode using a simple
recursive method and then it runs a continually repeating loop which reads the GPS serial
connection for GGA GPS data strings containing location fix data.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 85/133

package com.sam.hab.payload.serial;

import com.pi4j.io.serial.Baud;
import com.pi4j.io.serial.Serial;
import com.pi4j.io.serial.SerialConfig;
import com.pi4j.io.serial.SerialFactory;
import com.pi4j.io.serial.SerialPort;
import com.sam.hab.payload.main.PayloadMain;

import java.io.IOException;
import java.sql.Time;
import java.util.Arrays;

public class GPSLoop implements Runnable {
 SerialConfig config;

 Serial serial;

 //This is the array of bytes that needs to be sent to the GPS to put it into
airborne mode.
 int[] airborneMode = new int[] {0xFF, 0xB5, 0x62, 0x06, 0x24, 0x24, 0x00, 0xFF,
0xFF, 0x06, 0x03, 0x00, 0x00, 0x00, 0x00, 0x10, 0x27, 0x00, 0x00, 0x05, 0x00, 0xFA,
0x00, 0xFA, 0x00, 0x64, 0x00, 0x2C, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x16, 0xDC};

 /**
 * Contains serial port initialisation, the GPS runs at 9600 baud with all
settings as default.
 */
 public GPSLoop() {
 this.config = new SerialConfig();
 this.serial = SerialFactory.createInstance();
 try {
 this.config.device(SerialPort.getDefaultPort()).baud(Baud._9600);
 this.serial.open(this.config);
 if (!setAirborneMode(0)) {
 System.exit(-1);
 }

 }
 catch (IOException e) {
 e.printStackTrace();

 }
 catch (InterruptedException e) {
 e.printStackTrace();

 }
 }

 /**
 * My GPS needs to be in airborne mode to bypass the COCOM limits that disable
a GPS if it reaches a high altitude because it is assumed to be an ICBM.
 * This is a recursive algorithm that sets the GPS into airborne mode, it will
continuously try 100 times recursively but if it fails after the 100th try then the
program will exit.
 * This prevents me from starting a flight not in airborne mode.
 */
 private boolean setAirborneMode(int attempts) throws IOException,
InterruptedException {
 for (int i = 0; i < airborneMode.length; i++) {
 this.serial.write((byte)airborneMode[i]);
 }

 Thread.sleep(1000);
 byte[] read = this.serial.read();
 String s = "";
 for (byte b : read) {
 s += (char)(0xFF & b);
 }
 if (s.contains("µb\u0005\u0001\u0002\u0000\u0006$2[")) { //This is the
unicode representation of the sequence of bytes which the GPS will send if it has
successfully been put into airborne mode.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 86/133

 return true;
 } else if (attempts > 99) {
 return false;
 } else {
 return setAirborneMode(attempts + 1);
 }

 }

 /**
 * Main loop for the GPS runnable, simply continuously reads from the GPS until
a newline character and then attempts to generate telemetry using that GPS data
(GPS data is terminated by newline).
 */
 public void run() {
 String received = "";
 while (true) {
 try {
 if (this.serial.available() > 0) {
 char c = (char)(0xFF & this.serial.read(1)[0]);
 received = received + c;
 if (c == '\n') {
 if (received.startsWith("$GNGGA")) {
 PayloadMain.generateTelemetry(received);
 this.serial.read();
 }
 received = "";
 }

 }
 } catch (IOException e) {
 e.printStackTrace();

 }
 try {
 Thread.sleep(10);
 } catch (InterruptedException e) {
 e.printStackTrace();

 }
 }

 }

}

Web Module

This module contains the server code, this consists of several HTML documents and PHP
programs making up the web portal, it also contains the WebServer.py file which contains
the interface for the ground station.

index.html

Homepage of the website.

<html>

<head>

 <title>Project Icarus Portal</title>

 <link rel="stylesheet" type="text/css" href="style.css">

</head>

<body>

 <div class="nav">

 <center>

 <h1>Project Icarus</h1>

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 87/133

 <h5>A 2-way communications system for High Altitude Ballooning. Works

with Habitat.</h5>

 <h5>By Sam Sully (@Sullore or jakeio on #highaltitude).</h5>

 </center>

 </div>

 <div class="tablemain">

 <div class="content">

 <center>

 <table>

 <tr>

 <td>Configure Payload
Setup

your callsign and LoRa parameters.</td>

 </tr>

 <tr>

 <td>Export Logs
Export 2-

way packet logs from flights in CSV format (more formats in future).</td>

 </tr>

 <tr>

 <td>View Logtail
View a

live log of packets being received by this server.</td>

 </tr>

 </table>

 </center>

 </div>

 </div>

</body>

</html>

conf.html

Payload configuration page. Contains an HTML form to input payload data.

<html>

 <head>

 <title>Configure Payload</title>

 <link rel="stylesheet" type="text/css" href="style.css">

 </head>

 <body style="font-family:Arial;">

 <div class="nav">

 <center>

 <h1>Project Icarus</h1>

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 88/133

 <h5>A 2-way communications system for High Altitude Ballooning.

Works with Habitat.</h5>

 <h5>By Sam Sully (@Sullore or jakeio on #highaltitude).</h5>

 </center>

 </div>

 <!--Simple HTML website using a form to input all the data to configure a

payload for input to the database.-->

 <div class="content">

 <form action="conf.php" method="post">

 Callsign:

 <input type="text" name="callsign">

 Transmit Frequency (MHz):

 <input type="text" name="txfrequency">

 Receive Frequency (MHz):

 <input type="text" name="rxfrequency">

 Transmit Bandwidth:

 <input type="radio" name="txbandwidth" value="9">500KHz

 <input type="radio" name="txbandwidth" value="8" checked>250KHz

 <input type="radio" name="txbandwidth" value="7">125KHz

 <input type="radio" name="txbandwidth" value="6">62.5KHz

 <input type="radio" name="txbandwidth" value="5">41.7KHz

 <input type="radio" name="txbandwidth" value="4">31.25KHz

 <input type="radio" name="txbandwidth" value="3">20.8KHz

 <input type="radio" name="txbandwidth" value="2">15.6KHz

 <input type="radio" name="txbandwidth" value="1">10.4KHz

 <input type="radio" name="txbandwidth" value="0">7.8KHz

 Receive Bandwidth:

 <input type="radio" name="rxbandwidth" value="9">500KHz

 <input type="radio" name="rxbandwidth" value="8" checked>250KHz

 <input type="radio" name="rxbandwidth" value="7">125KHz

 <input type="radio" name="rxbandwidth" value="6">62.5KHz

 <input type="radio" name="rxbandwidth" value="5">41.7KHz

 <input type="radio" name="rxbandwidth" value="4">31.25KHz

 <input type="radio" name="rxbandwidth" value="3">20.8KHz

 <input type="radio" name="rxbandwidth" value="2">15.6KHz

 <input type="radio" name="rxbandwidth" value="1">10.4KHz

 <input type="radio" name="rxbandwidth" value="0">7.8KHz

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 89/133

 Spreading Factor (6-12):

 <input type="text" name="spreading">

 Error Coding Rate:

 <input type="radio" name="coding" value="5" checked>4/5

 <input type="radio" name="coding" value="6">4/6

 <input type="radio" name="coding" value="7">4/7

 <input type="radio" name="coding" value="8">4/8

 Explicit Header Mode:

 <input type="radio" name="header" value="1" checked>Yes

 <input type="radio" name="header" value="0">No

 <input type="submit" value = "Save">

 </form>

 </div>

 </body>

</html>

export.html

Page for exporting 2-way packets from the database in CSV format. Uses an HTML form to
get the payload callsign and start and stop dates for the export window.

<html>

 <head>

 <title>Export 2-Way Data</title>

 <link rel="stylesheet" type="text/css" href="style.css">

 </head>

 <body style="font-family:Arial;">

 <div class="nav">

 <center>

 <h1>Project Icarus</h1>

 <h5>A 2-way communications system for High Altitude Ballooning.

Works with Habitat.</h5>

 <h5>By Sam Sully (@Sullore or jakeio on #highaltitude).</h5>

 </center>

 </div>

 <div class="content">

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 90/133

 <p>Use the form below to export 2-way packets transmitted by your

payload.

 <form action="export.php" method="post">

 Callsign:

 <input type="text" name="callsign">

 Window start:

 <input type="date" name="start">

 Window End:

 <input type="date" name="end">

 <input type="submit" value = "Save">

 </form>

 </div>

 </body>

</html>

logtail.html

Displays the logtail.php web page in an iframe; hence, gives an automatically updating
console without refreshing the whole page continually.

<html>

 <head>

 <title>View Logtail</title>

 <link rel="stylesheet" type="text/css" href="style.css">

 </head>

 <body style="font-family:Arial;">

 <div class="nav">

 <center>

 <h1>Project Icarus</h1>

 <h5>A 2-way communications system for High Altitude Ballooning.

Works with Habitat.</h5>

 <h5>By Sam Sully (@Sullore or jakeio on #highaltitude).</h5>

 </center>

 </div>

 <div class="content">

 <iframe src="logtail.php" width=75% height=80%></iframe>

 </div>

 </body>

</html>

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 91/133

style.css

Contains the CSS for the website, it roughly matches the styling of the UKHAS website
habhub.org.

body {

 margin:0;

}

.tablemain td {

 display:block;

 margin: 40px;

 padding:10px;

 padding-bottom:20px;

 padding-top:20px;

 border: 1px solid #eeeeee;

 text-decoration: none;

 text-align: center;

 font-family: Arial;

 font-size: 12px;

 color: #666;

}

.tablemain a {

 color: #00a3d3;

 font-size: 20px;

 text-decoration: none;

}

.tablemain td:hover {

 background-color: #f1f1f1;

}

.content {

 text-align: center;

 width: 95%;

 padding-top: 120px;

 margin: auto;

 background-color: #fcfcfc;

}

.nav {

 font-weight:bold;

 text-align:center;

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 92/133

 padding-bottom:20px;

}

.nav center {

 position:fixed;

 width:100%;

 color:#f2f2f2;

 background-color:#00a3d3;

 height:125px;

}

.nav h1 {

 font-family: Arial;

 margin-bottom: 0;

}

.nav h5 {

 margin:10px;

 font-family: Arial;

}

.nav a {

 text-decoration:none;

 color:#f2f2f2;

}

conf.php

Takes the POST data from the form on config.html and checks the data for validity before
entering it into the database.

<html>

 <head>

 <title>Configure Payload</title>

 <link rel="stylesheet" type="text/css" href="style.css">

 </head>

 <body style="font-family:Arial;">

 <div class="nav">

 <center>

 <h1>Project Icarus</h1>

 <h5>A 2-way communications system for High Altitude Ballooning.

Works with Habitat.</h5>

 <h5>By Sam Sully (@Sullore or jakeio on #highaltitude).</h5>

 </center>

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 93/133

 </div>

 <div class="content">

 <?php

 //Validation, ensure all data valid.

 if (count($_POST) < 8 || (is_null($_POST["callsign"]) ||

$_POST["txfrequency"] <= 0 || $_POST["rxfrequency"] <= 0 || $_POST["spreading"] >

12 || $_POST["spreading"] < 6 || strlen($_POST["callsign"]) > 6)) {

 //End if data invalid.

 die("Please supply all values within valid ranges.");

 }

 //New SQL connection.

 $conn = new mysqli("localhost","root","OlympiaRPG","icarus");

 if ($conn->connect_error) {

 die("Connection to MySQL server failed. Bad things a-happening!");

 }

 //Extract data from HTTP POST.

 $callsign = $_POST["callsign"];

 $txfreq = $_POST["txfrequency"];

 $rxfreq = $_POST["rxfrequency"];

 $txbandwidth = $_POST["txbandwidth"];

 $rxbandwidth = $_POST["rxbandwidth"];

 $sf = $_POST["spreading"];

 $coding = $_POST["coding"];

 $explicit = $_POST["header"];

 //Prepare SQL statement.

 $stmt = $conn->prepare("INSERT INTO payload

(callsign,txfrequency,txbandwidth,spreading_factor,coding,explicit,created_at,rxfre

quency,rxbandwidth) VALUES (?,?,?,?,?,?,NOW(),?,?)");

 $stmt-

>bind_param("sddiiidd",$callsign,$txfreq,$txbandwidth,$sf,$coding,$explicit,$rxfreq

,$rxbandwidth);

 $stmt->execute();

 //Insert and echo success message.

 echo "Successfully added to payload database!";

 $stmt->close();

 $conn->close();

 ?>

 </div>

 </body>

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 94/133

</html>

export.php

Takes the POST data from the export.html page and then exports the requested packets
from the database, putting them in CSV format.

<?php

//Open new database connection.

$conn = new mysqli("localhost","root","OlympiaRPG","icarus");

if ($conn->connect_error) {

 //End program if database failed to load.

 die("Connection to MySQL server failed. Bad things a-happening!");

}

//Acquire data from HTTP POST.

$start = $_POST["start"];

$end = $_POST["end"];

$callsign = $_POST["callsign"];

//Prepare SQL statement, this is cross-table parametrised SQL using an INNER JOIN.

$stmt = $conn->prepare("SELECT packet.raw FROM packet INNER JOIN payload ON

payload.payload_id = packet.payload_id WHERE payload.callsign = ? AND packet.time <

? AND packet.time > ?");

$stmt->bind_param("sss",$callsign,$end,$start);

$stmt->bind_result($result);

$stmt->execute();

//Output CSV data.

printf("type,data
");

while ($stmt->fetch()) {

 $data = explode(",", explode("*", $result)[0]);

 printf($data[2] . "," . $data[3] . "
");

}

?>

logtail.php

Reads the log.txt file and displays its contents, has a meta tag that causes it to refresh every
2 seconds.

<html>

<head>

<!--The below tag makes the page refresh every 2 seconds. This ensures the log is

always up-to-date.-->

<meta http-equiv="refresh" content="2">

</head>

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 95/133

<body>

<?php

//Open the log file.

$file = fopen("log.txt", "r") or die("No file!");

//Read the log.

$data = fread($file, filesize("log.txt"));

fclose($file);

//Split the log by newline.

$exploded = explode("\n",$data);

//The below for loop outputs each line separately followed by a
 (line break).

for ($i = count($exploded) -1; $i > count($exploded)-50; $i--) {

 if ($i < 0) {

 break;

 }

 echo $exploded[$i] . "
";

}

?>

</body>

</html>

WebServer.py

Handles the GET and PUT methods from the ground station. Takes the data for telemetry
and SSDV and formats them in JSON before forwarding to the habhub server. Also logs 2-
way packets received and provides the GET handler for getting payload configuration data
from the database.

from http.server import HTTPServer,SimpleHTTPRequestHandler
from time import strftime
import requests as r
import base64,hashlib,MySQLdb,crcmod,datetime

checksum = crcmod.predefined.mkCrcFun('crc-ccitt-false')

db = MySQLdb.connect(host="localhost",user="root",passwd="OlympiaRPG",db="icarus")
cursor = db.cursor()

class TestHandler(SimpleHTTPRequestHandler):

 '''
 This function handles the HTTP GET request which can be sent by the ground
station in order ro request a payload's configuration details.
 It simply looks up in the database any payload with the given callsign and if
one is found it returns the configuration data as CSV.
 If not, it returns nothing.
 '''
 def do_GET(self):
 path = self.path[1:]
 cursor.execute("SELECT * FROM payload WHERE callsign=%s", (path,))
 result = cursor.fetchall()

 maxID = -1

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 96/133

 maxDate = datetime.datetime(1970, 1, 1)
 for row in result:
 if row[2] > maxDate:
 maxID = row[0]
 maxDate = row[2]
 if maxID == -1:
 return
 cursor.execute("SELECT
callsign,txfrequency,txbandwidth,spreading_factor,coding,explicit,rxfrequency,rxban
dwidth FROM payload WHERE payload_id=%s", (maxID,))
 result = cursor.fetchall()[0]

 self.send_response(200)
 self.send_header('Content-type','text/html')
 self.end_headers()
 out = result[0] + "," + str(result[1]) + "," + str(result[2]) + "," +
str(result[3]) + "," + str(result[4]) + "," + str(result[5]) + "," + str(result[6])
+ "," + str(result[7])
 self.wfile.write(out.encode("iso-8859-1"))

 '''
 This function handles the potential PUT requests to upload telemetry, SSDV or
packet data to the server from the ground station.
 The request type is determined by the URL used, /telemetryUpload, /imageUpload
and /packetUpload are self-explanatory.
 The appropriate function is then called to handle the request.
 '''
 def do_PUT(self):
 path = self.path
 length = int(self.headers['content-length'])
 data = self.rfile.read(length).decode("iso-8859-1")
 if path == "/telemetryUpload":
 handleTelem(data)
 elif path == "/imageUpload":
 handleSSDV(data)
 elif path == "/packetUpload":
 handlePacket(data)

 self.send_response(201)
 self.send_header('Content-type','text/html')
 self.end_headers()
 self.wfile.write("Received.".encode())

'''
This function handles telemetry data, this is forwarded to the habhub server for
logging and displaying on a map.
'''
def handleTelem(data):
 b64 = (base64.b64encode(data.encode()))

 sha256 = hashlib.sha256(b64).hexdigest()
 b64 = b64.decode()
 now = strftime("%Y-%0m-%0dT%H:%M:%SZ")
 json = "{\"data\": {\"_raw\": \"%s\"},\"receivers\": {\"%s\":
{\"time_created\": \"%s\",\"time_uploaded\": \"%s\"}}}" % (b64, "SAMPI", now, now)
 headers = {"Accept" : "application/json", "Content-Type" : "application/json",
"charsets" : "utf-8"}
 try:
 res =
r.put("http://habitat.habhub.org/habitat/_design/payload_telemetry/_update/add_list
ener/"+sha256, headers=headers, data=json)
 with open("log.txt", "a+") as f:
 f.write("[TELEM FWD] " + data)
 except:
 print("Unable to reach habitat.")

'''
This function handles SSDV data, it simply uploads it to the habhub servers for
displaying on ssdv.habhub.org.
'''

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 97/133

def handleSSDV(data):
 data = "U" + data
 b64 = base64.b64encode(bytearray(data.encode('iso-8859-1'))).decode('utf-8')
 headers = {"Accept" : "application/json", "Content-Type" : "application/json",
"charsets" : "utf-8"}
 now = strftime("%Y-%0m-%0dT%H:%M:%SZ")
 upload = "{\"type\": \"packet\", \"packet\": \"%s\", \"encoding\": \"base64\",
\"received\": \"%s\", \"receiver\": \"%s\"}" % (b64, now, "SAMPI")
 try:
 res = r.post("http://ssdv.habhub.org/api/v0/packets", headers=headers,
data=upload, timeout=2)
 with open("log.txt", "a+") as f:
 f.write("[IMG PCKT FWD]\n")
 except:
 print("Unable to reach habitat.")

'''
This function will input a 2-way packet into the database. The data is escaped
before it is put into the database.
'''
def handlePacket(raw):
 raw = raw.replace("\n", "\\n")
 data = raw.split("*")
 sentence = data[0].replace(">","")
 csum = data[1]
 packetData = sentence.split(",")
 callsign = packetData[0]
 print(packetData)
 cursor.execute("SELECT * FROM payload WHERE callsign=%s", (callsign,))
 result = cursor.fetchall()
 maxID = -1

 maxDate = datetime.datetime(1970, 1, 1)
 for row in result:
 if row[2] > maxDate:
 maxID = row[0]
 maxDate = row[2]
 if maxID == -1:
 return
 cursor.execute("INSERT INTO packet (payload_id,time,raw) VALUES (%s,NOW(),%s)",
(maxID,db.escape_string(raw),))
 db.commit()
 with open("log.txt", "a+") as f:
 f.write("[PCKT LOGGED]" + raw + "\n")

server = HTTPServer(("",8080), TestHandler)

try:
 server.serve_forever()
except KeyboardInterrupt:
 server.server_close()

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 98/133

Testing

LoRa Radio Module Testing

I need to test thoroughly that my LoRa module is inducing the correct functionality of the
LoRa radio. The LoRa radio’s interface is complex and low level so without testing what the
radio actually does when running I cannot be sure that it is running at the correct settings
and that my register modification algorithms work. From tests later in this section it will be
clear that transmission and receiving work correctly, however, I need to ensure that
transmission is occurring on the correct frequency, bandwidth and with the spreading
factor, etc.

Test ID Description Data/Action Expected
Result

Actual Result Evidence

1.1 Test frequency
of
transmission

Set frequency to
869.850MHz and
use radio spectrum
analysing software
to determine if
transmission is
indeed occurring at
this frequency.

Should be
transmitting at
869.860MHz.

Is
transmitting
at
869.850MHz
as required.

See
figure
28.

1.2 Test of
bandwidth of
transmission

Set bandwidth to
62.5kHz and use
radio spectrum
analysing software
to determine if
transmission is
indeed occurring at
this bandwidth.

Should be
transmitting at
62.5kHz.

Is
transmitting
at 62.5kHz.
The
frequency at
the left of
the peak is
roughly 60-
65kHz from
the right of
the peak.

See
figure
29.

1.3 Test of
spreading
factor, explicit
header mode
and other
modem
parameters

Attempt to transmit
data from my
software to a well-
tested LoRa
gateway software
developed by David
Akerman in C.

If my software
handles
modem
parameters
correctly, then
his software
should be able
to receive data
from mine
when set to the
same modem
parameters.

As required,
David
Akerman’s
LoRa
gateway
receives data
from my
LoRa
transmitter
correctly
when set to
the same
parameters.

None.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 99/133

Payload Testing

The payload has no input whatsoever; it simply runs on a continuous loop. The only stimuli
that need to be tested are those of the ground station and these will be tested in the ‘2-Way
Communications Testing’ section. A summary table is at the end of the section.

Telemetry and SSDV

The first specification point for the payload is that by default it transmits telemetry and
SSDV continuously unless there are 2-way packets to transmit in the defined cycle of 20
telemetry and 70 SSDV packets. This has been successfully achieved as can be seen in the
screenshot below.

Figure 18 - Log of packets received during part of a 90-packet cycle; the packets are timestamped.

The payload had been left running at this point for 24 hours and as can be seen it is still
running correctly as far as a black box approach is concerned no issues are visible. This sees
that specification point 3.a is fulfilled.

GPS Data Integrity

My test plan indicates that the integrity of GPS data should be analysed to ensure that
location data is up-to-date and that the location is accurate. Below is a telemetry string that
was transmitted after the payload had been transmitting for several days:

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 100/133

Figure 19 - Telemetry string from after the payload had been transmitting for several days.

Looking at the timestamp of when the packet was received, this is 17:12:14 and the time
given in the telemetry string which is extracted directly from the GPS string is 17:12:11. The
small delay can be accounted for by error in the clock of the receiving Pi and by the time
taken to transmit and parse the packet. While this test may seem pointless, it is important
to demonstrate that the GPS data is up-to-date as there is a possibility of a queue building
up in the serial buffer which would result in old GPS data being treated as current which
would be useless when tracking the payload during a flight.

Another important test for the GPS is that it is correctly put into airborne mode and
functions correctly at high altitudes above 9km (which is the default limit), this telemetry
packet was transmitted during my flight in February:

You can see that the altitude parameter (19293.3) is greater than 9km so clearly the GPS
was indeed correctly put into airborne mode.

Image Taking

The payload is required to take images regularly. After leaving the payload online for about
30 minutes this is a screenshot of the ls command (list files) in the images directory on the
payload.

Figure 20 - All files stored in images folder after 30 minutes of payload running.

As can be seen there were 31 images taken in this interval, so images are indeed being
collected at a rate of 1 per minute.

Summary

A summary of the payload testing is shown in the below table.

Test ID Description Data/Action Expected Result Actual Result
2.1 Telemetry

transmission
Examine
payload
transmit cycle
to determine
that telemetry
is transmitted.

Payload is
transmitted
regularly with
correct location fix
data.

As required. Payload
is transmitted
correctly; all data is
correct and in
correct format.

2.2 SSDV Check payload Image should be As required, image

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 101/133

transmission is transmitting
image packets.

transmitted as part
of the standard
cycle in the ratio of
70 image packets
to 20 telemetry
packets.

transmitted in
correct ratio.

2.3 Image taking Check images
folder after the
payload has
been on for 30
minutes.

There should be
roughly 30 images
in the images
folder as the
camera should’ve
been taking
pictures at a rate
of 1 per minute.

There were 31
images in the folder.

2.4 GPS Airborne
Mode

The GPS should
be tested at a
high altitude.

It should continue
to transmit correct
location data
above 9km,
indicating that the
GPS is in airborne
mode.

The GPS worked
above 9km and was
tested up to ~19km.

2.5 GPS Timing The GPS
timestamp
should be
analysed.

The timestamp
sent on telemetry
is the timestamp of
when the GPS fix
was acquired. We
should test
whether the GPS
data is current to
ensure a queue is
not building up in
the serial buffer.

The data was
current, even after
the payload was left
running for several
days.

2-Way Communications Test ing

The 2-way communications should be tested to ensure that remote console works and
appropriate validation is applied to remote packets, additionally, all remote control
commands should work properly from reboot to image number requests.

Test ID Description Data/Action Expected
Result

Actual Result Evidence

3.1 Remote Shell The user
should attempt
to use the
remote shell
system from
the ground

Commands
should be
decoded by the
payload and
executed as
bash

The commands
were all
executed
correctly on the
payload and the
outputs were

See
figure 21
below.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 102/133

station. The
commands: df -
h, ls -la and
echo TEST
should be
tested.

commands, the
result should
then be sent
back.

transmitted in
multiple packets
if necessary. In
the screenshot,
you can see the
console on the
left and the
transmission logs
on the right.

3.2 Remote Shell
Length

The user
should attempt
to use the
remote shell
system again
but with a
command that
will return a
result that
cannot fit in
one packet.

The output
should be split
between
several packets
and
transmitted
separately.

This was
achieved
correctly, from
the screenshot in
the evidence we
can see in the
top right log that
the response to
ls -la was sent in
multiple packets.

Figure 22.

3.3 Remote
Command:
Reboot

The remote
reboot packet
should be
triggered on
the ground
station and
transmitted.

The payload
should reboot.

The payload
reboots, after a
short delay the
payload begins
transmitting
again. All image
IDs reset to 0 so
we know the
device has
restarted.

None
provided.

3.4 Remote
Command:
Image Number

The image
number packet
should be
transmitted.

The payload
should respond
at the start of
the next cycle
with the
number of
pictures in the
images folder.

The payload
responds with
the correct data
listing the
number of
images in the
images folder.

Figure 23.

3.5 Remote
Command:
Toggle Image
Sending

The image
toggle packet
should be
transmitted.

The payload
should cease
transmitting
images from
the next cycle
onwards. When
another is
transmitted,
images should

Image
transmission is
toggled, for
successive cycles
no image packets
are transmitted
until another
IMG packet is
transmitted

Figure 24
and 25.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 103/133

resume from
the next cycle.

toggling image
sending again.
You can see logs
of several cycles
where no images
were transmitted
during the time
where image
transmission was
toggled off.

3.6 Checksum
authentication

Send a
communication
from the
ground station
where the key
is set to a
different value
to that of the
payload.

The payload
should ignore
the request.

As required, the
payload ignores
the packet
because the
checksum
authentication
has failed.

None
provided.

Ground Station and Server Testing

The ground station needs to be tested to ensure that all received data is logged, forwarded
and displayed correctly in that telemetry is displayed on the telemetry tab, SSDV is decoded
and displayed on the SSDV tab, control results are displayed in the log on the control tab,
console responses are displayed in the console tab and that all packets received or
transmitted are logged to file and the two logs on the right of the screen. It also needs to be
tested that packets are forwarded to the server for logging or forwarding to habhub and
that the logging and forwarding occurs correctly.

Telemetry Display

The ground station should display the data from each received telemetry packet along with
time since the packet was received. It should display separately, the latitude, longitude,
altitude and it should calculate the vertical velocity (estimate) based on time between
packets.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 104/133

As can be seen in the above screenshot all the data is correctly displayed, also, telemetry is
displayed in the received log also. Additionally, velocity is calculated, as can be seen from
my video demonstration, the velocity works correctly when in flight you can see the ascent
velocity was roughly 6m/s. However, there is one issue, the latitude and longitude are given
as NMEA data not correctly in degrees so I suggest that I update this to convert the NMEA
data of the form ddmm.mmmm (d=degrees, m=minutes) to degrees in the form dd.dddddd
as is used by most common mapping software, I already noted the conversion method in
the design section.

SSDV Display

Additionally, the ground station needs to display the latest image that is currently being
transmitted by the payload. It should display a partial image while the image has not been
fully transmitted. As you can see from the image below, as image packets are transmitted
the current version of the image is displayed correctly in the SSDV tab.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 105/133

As you can see from the screenshot this is a partially transmitted image, so even partial
images are displayed correctly as required. From the log on the right you can see that we
are part way through receiving image number 5.

Control Results

When a remote control action is responded to by the payload, the result should be
displayed in the log on the ‘Control’ tab, this could be the response to a statistic request or a
remote control operation like toggling image sending. Having send many requests for the
number of pictures stored and toggling image sending off, on and off again I get the
following data displayed.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 106/133

As you can see, the log does indeed correctly display received responses from the payload,
however, it does not scroll so once a certain amount of data has been received, the log is
then useless.

Automatic Configuration System

In the setup tab, the user can input the name of their payload and the encryption key in
order to attempt to acquire the payload configuration data from the server and
automatically load it into the config.yml file. Two tests must be performed on this, first a
payload that exists in the database must be entered and then a payload that does not exist
in the database.

The following screenshot shows the response to entering the details of a payload that is in
the database: in this case I used ‘GSCOTF’, my payload.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 107/133

This suggests the connection to the server was successful. Additionally, the config.yml file
has been updated correctly.

When an invalid payload is entered, the result displayed below is returned informing the
user they should go and manually edit the config.yml file to configure their payload. The
config.yml file is not modified in this case.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 108/133

Console Validation

When entering commands to the remote console, the program should reject commands of
length greater than the maximum length (see design), commands which contain an asterisk
and commands which contain a comma. I shall be testing whether these are correctly
rejected.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 109/133

The above screenshot shows that the entry field goes red and the command is rejected if a
command which is above the maximum length is entered.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 110/133

The above screenshot shows that the entry field goes red and the command is rejected if a
command which contains a comma is entered.

However, when a command containing an asterisk is entered it is accepted, this needs to be
altered as a command containing an asterisk will not be decodable.

Summary

A summary of all tests carried out on the ground station.

Test ID Description Data/Action Expected Result Actual Result
3.1 Telemetry display

test
Examine the
telemetry display
tab after
telemetry has
been received.

Individual
telemetry
components
should be
displayed in the
correct box, as
well as velocity
calculated using
this and previous
telemetry fix.

As required except
latitude and
longitude are not
displayed in
degrees, they are as
NMEA data of the
form
ddmm.mmmm, this
will be rectified.

3.2 SSDV display test Examine SSDV
display after
partial image
transmission

Image should be
displayed
correctly with
untransmuted
sections as block
colours.

As required.

3.3 Control display
test

Examine the
control tab after
several 2-way
operations have
been enacted.

Results of control
operations should
be displayed in
the console.

As required except
the console does
not scroll, this will
be rectified.

3.4 Autoconfiguration
test with valid
data

Attempt to use
autoconfiguration
with a valid
payload callsign.

Data should be
downloaded from
the server and
written to the
config.yml file, a
success message
should be
displayed

As required.

3.5 Autoconfiguration
test with invalid
data

Attempt to use
autoconfiguration
with an invalid
callsign.

An error message
should be
displayed.

As required.

3.6 Remote console
length validation

Attempt to send
a remote
command that is
too long.

Should be
rejected.

As required.

3.7 Remote console Attempt to send Both should be The command

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 111/133

command and
asterisk validation

a command
containing a
comma and a
command
containing an
asterisk.

rejected. containing a comma
is rejected, that
containing an
asterisk is not. This
is an oversight by
me and will be
rectified.

Web Testing and Validation

The website has several inputs that need to be tested with erroneous and boundary data.

Configuration Page

The data input here needs to be valid for a payload and of the appropriate datatype for the
database. Below is the input page with valid data in every field.

Test
ID

Description Data/Action Expected
Result

Actual Result Evidence

4.1 Boundary
Callsign

Callsign
with length
greater than
6
characters.
Callsign
WIBBLE222
was used.

Should be
rejected.

Not rejected,
accepted and
input to
database, this
will be rectified.

None.

4.2 Erroneous
frequency

Frequency
that is not a
number.
The

Should be
rejected.

As required.
Message
displayed saying
input invalid.

See figure 26.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 112/133

frequency
value of
“KITTENS”
was used.

4.3 Boundary
frequency

Enter a
frequency
that is less
than 0.

Should be
rejected.

Not rejected.
This will be
rectified.

None.

4.4 Boundary
spreading
factor

Put in
spreading
factor
above 12 or
below 6.

Should be
rejected.

As required.
Message
displayed saying
input invalid.

See figure 26.

4.5 Erroneous
spreading
factor

I used the
string
“KITTENS”
instead of a
valid
integer.

Should be
rejected.

As required.
Message
displayed saying
input invalid.

See figure 26.

4.6 Valid data Valid data in
every field
should be
tested.

Should be
accepted and
put into the
database.

As required. See screenshot
before this table
for data used.

Export Page

On the export page of the website you can enter a payload callsign and two dates between
which to extract data. Below is a screenshot of the page.

Test
ID

Description Data/Action Expected
Result

Actual Result Evidence

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 113/133

5.1 Text
exporting of
2-way
packets

Attempt to
export data
from any
time range.
The query in
the
screenshot
above was
used in this
example.

Data should be
returned for
that time
range in CSV
format.

Data returned
correctly in CSV
format.

Figure 27.

5.2 Test of dates. Attempt to
export data
for just one
day.

Data should be
returned for
just that day.

As required.
Data returned
for just the
required day.

None.

Logtail Page

A log of packets received by the server should be displayed on the logtail page. From the
below screenshot we can see that this is working correctly. I tested this page by watching
the log while the payload was transmitting and all packets were correctly forwarded.

“IMG PCKT FWD” means an image packet was forwarded to habhub. This log could be
improved by reducing the latency (perhaps by using AJAX).

Habhub Upload

It needs to be ensured that data is correctly forwarded to habhub.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 114/133

Below is a screenshot of the habhub SSDV live images feed, you can see images from my
payload are being displayed correctly. This shows that image packets are being consistently
forwarded by my server to the habhub servers.

Below is a screenshot of the habhub tracker, you can see the GSCOTF payload (my payload)
on the map being shown correctly. This demonstrates that telemetry data is being uploaded
correctly by my server to the habhub servers.

Flight Test

I flew two test flights for my software both from Monmouth. For the first flight, I had the
LoRa radio set to transmit from the payload on 869.850MHz at 250kHz bandwidth and to
the payload on 869.525MHz at 250kHz bandwidth also. The launch was successful despite a

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 115/133

near collision with a tree and the flight quickly ascended away, we left the launch site and
headed for the predicted landing site which was at the south of the Brecon Beacons. On the
road, we had constant contact with the payload and were receiving location data and live
images thanks to antennas mounted on the roof and I attempted several 2-way
communication transmissions, however, only one was successful throughout the flight, at
this point the payload was at around 10km altitude and we were using the rooftop antenna
in the car not the high gain Yagi antenna. Nevertheless, we continued the chase and
eventually found the payload in Sennybridge, quite far from the predicted landing site,
however, easy to locate due to the payload being located on a hill meaning its signal carried
further. It was clear from this flight that I would need to reduce the bandwidth for uplinks
meaning the radio’s power would be spread over a smaller band of frequencies hopefully
increasing range. I made this and other adjustments to the payload software over the
following day and continued with my second flight the day after that. Below you can see an
image of Dave Akerman and myself filling the first balloon and below that, the landing site
from the first flight.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 116/133

For the second flight we had an arrangement with David Akerman from the UKHAS, he was
going to go ahead towards the predicted landing site before us, giving me time to stay at the
launch site and test my 2-way communications system from the ground using a high gain
Yagi antenna (meaning improved range), the intention was to do this for 15 minutes after
launch. As before we filled the balloon and launched, however, rather than rushing off to
chase cars we got out the Yagi and a friend of mine kindly held it in roughly the direction the
payload had gone, I then (using VNC to access my Pi via a tablet computer) operated the
remote control functionality of my software, I successfully transmitted 2-way packets to the
payload requesting number of pictures stored, toggling image transmission and most
importantly I had several successful transmissions of remote console commands which were
responded to, the commands I tested included df -h (checks status of disks) and ls -la (lists
files in directory), these were transmitted and responded to in full (no packet loss). This was
a huge success, demonstrating that my project works, enabling remote control of a payload
while it is airborne. Our tests were done at significant range, between 5 and 10km,
however, I had to stop and get on the road to chase the payload down but when I stopped
testing I still had a strong link with the payload and calculations suggest I could’ve extended
that range to 60km and upwards.

We then began our chase, we managed to receive telemetry and images from the payload
almost continuously throughout the flight even though we were slowed down by a lorry
who, it appeared, wasn’t quite sure where they were going! We arrived at the landing site,
David Akerman had already arrived and had gained permission from the farmer who owned
the land to retrieve the payload. I sent a few remote commands to the payload telling it to
stop transmitting images and querying how many images had been taken, then we went
and retrieved the payload from the field, overleaf there is an image of the landing site. The
largest box is my payload GSCOTF, which was operating the 2-way communications
software. The other two payloads are David Akerman’s, one was a very reliable backup
tracker running RTTY and the other was one of Dave’s new projects using a BBC Microbit.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 117/133

In conclusion, my project has been shown to work in the situation where it is designed to
and can now be used by members of the UKHAS. The source is available on GitHub so
hopefully members of the UKHAS will fork it and fly their own versions at some point in the
near future. In fact, a group in Budapest have begun using my software themselves.

Testing Evidence

Figure 21- Testing evidence for the remote console.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 118/133

Figure 22 - Log of received packets showing output of the ls -la command being split between several packets. A new packet

can be seen to begin with each ">>".

Figure 23 - Screenshot of the ground station software control tab after a the IMGNO packet was transmitted and responded
to, you can see the result in the result column on the left and in the receive log on the right you can see the statistic packet

was logged.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 119/133

Figure 24 - Shows the transmission of the IMG packet to toggle image sending and the response 'false' shows that image

transmission is now set to false.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 120/133

Figure 25 - Logs showing multiple cycles where no images are being transmitted because image transmission is set to false.

Figure 26 - Demonstrates the error message displayed when invalid data input to configuration page.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 121/133

Figure 27 - Data outputted by the export 2-way packets page. You can see the top row has the column names so this data

can be exported into a CSV file and read by software like MS Excel.

Figure 28 - Showing Gqrx, an SDR (Software Defined Radio) software, analysing what is being transmitted at 869.850MHz
during testing. The yellow bars represent peaks in intensity (a transmission) and the blue represents background noise (no

transmission).

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 122/133

Figure 29 - Showing Gqrx, an SDR (Software Defined Radio) software, analysing what is being transmitted at 869.525MHz
during testing. The difference between the frequency of the left of the peak and the frequency of the right of the peak is

roughly 60-65kHz (depending on where you determine the edges to be).

Changes

I have noted throughout the testing section anything that should be changed. I have
produced a table below demonstrating my changes.

Relevant Test Change Made New Test Result Evidence
3.1 – Testing
telemetry display

Instead of just displaying the
raw data from the

Data displayed is in
latitude and longitude
degrees rather than
NMEA data.

See
figure
30.

3.3 – Testing remote
control results
display

Added a JScrollPane around
the console.

Scrolls when full now. See
figure
31.

3.7 – Testing remote
console command
validation

Added a check to ensure
asterisks aren’t in remote
command.

Asterisks are rejected. See
figure
32.

4.1 – Testing web
configuration page

Added a length check to
ensure callsign is length ≤ 6.

Rejects invalid callsigns
as required.

None.

4.3 – Testing web
configuration page

Added a check to ensure
frequency cannot be
negative.

Rejects invalid
frequencies.

None.

Code Changes

The method below was created to convert NMEA data into degrees as required by the first
test.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 123/133

The line below was modified to ensure that commands containing asterisks are rejected in
that the final AND clause was added to the if statement.

To ensure that frequencies cannot be set to negative numbers and that callsigns must be of
length at most 6, this block of code was modified.

Originally, the frequency checks only checked if the frequency was equal to zero, I changed
this to equal to or less than. Additionally, I added the final clause checking if the length of
callsign is larger than 6.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 124/133

Correction Evidence

Figure 30 - Screenshot showing location data being displayed correctly in degrees.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 125/133

Figure 31 - Shows the remote control results console with a scroll bar.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 126/133

Evaluation

Achievement of Objectives

I have quoted below my objectives from the analysis. I have only quoted the main headings
not the detailed descriptions. Below each point I will evaluate how successfully I have
achieved it (in italics).

Ground Station

1. The transceiver controller should:
a. Provide the user with a clear front-end.

The interface clearly shows in labelled dialogue boxes data which has been
received from the payload; as well, all tabs are clearly labelled with self-
documenting identifiers. However, there are some areas where the purpose of
an input field may be unclear, for example, the console input field is not
clearly labelled. Additionally, the transmission and receiving console are not
labelled, although in this case the direction of the arrow denotes the direction
of the transmission.

b. Provide a configuration file which allows the user to set the callsign,
transmission frequency and bandwidth, the receiving frequency and
bandwidth, the error coding rate, the spreading factor, the transmission
power and whether the payload is using explicit packet headers. The user
should also be able to set the key for 2-way packet authentication.
This has been achieved clearly as shown in testing, the config.yml file is
produced by the ground station and allows the user to modify parameters
easily (YAML is a very straightforward configuration system). Changes to
parameters are only taken into account when the program restarts, this could
be improved in future to allow changes to radio parameters on the fly.

c. Allow normal LoRa receiving using an 868MHz module or a 434MHz module.
The ground station can receive normal telemetry and SSDV and it will display
this data to the user. So this software could be used to receive data from any
LoRa payload transmitting UKHAS telemetry and SSDV.

d. Decode SSDV image packets and display on the graphical interface, also
forward SSDV image packets to the habhub servers.
As shown in testing, SSDV images are decoded as they are transmitted and
are displayed correctly in the SSDV tab, this includes partially transmitted
images and images with missing packets, all are displayed correctly (with
block colour replacing missing/non-transmitted packets). Additionally, as
shown in testing, all SSDV packets are forwarded to the habhub server and
displayed correctly on the ssdv.habhub.org website.

e. Parse telemetry, ignoring those with failed checksums or incomplete data
and showing the relevant data on the telemetry display.
As shown in testing, telemetry is parsed and displayed, with each component

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 127/133

in a separate field, in the telemetry tab. All packets with invalid checksums
are ignored and all packets with no data are ignored.

f. All received packets should be logged to a file with a timestamp.
When the program is launched a log file, named YYYY-MM-DD-HH-MM-SS.txt,
is created (i.e. the name is the timestamp) and every transmission both to or
from the payload that is received/transmitted by this ground station is logged
to this file. This actually goes beyond the requirement.

g. Switch to transmit mode after receiving a packet from the payload stating
that it is entering listening mode and send any 2-way communication packets
that are queued.
As required, when the TRA packet is received the ground station transmits 10
queued 2-way packets (if available).

h. Allow the user to queue packets for transmission by either clicking one of the
command buttons in the control menu or by sending a remote console
command.
This works as required, users can click one of the request buttons on the
control tab to queue a packet or enter a (valid) command in the console. One
area for improvement here would be perhaps to display a live graphic or
textbox showing the current contents of the transmit queue, perhaps even
providing an option to clear the queue.

i. Allow two-way communication with the airborne payload as described.
This works as required, as shown by my flight test the system clearly worked
at distance and allowed me to effectively have complete remote control over
my payload. Although theoretically any action can be achieved through the
remote console, it would be a suitable extension in the future to add more
request options in the control tab, it might be useful to be able to adjust radio
settings remotely and it might be useful to add more sensors to the payload
and then give an option to get data from those sensors.

j. If the user has configured their payload on the web portal, the ground station
should be able to, given the payload callsign, download the payload
configuration and write the configuration file for the user. The user will, of
course, have to enter the key themselves.
This was demonstrated to work completely correctly in testing, though if
invalid parameters are downloaded from the database or input into the
config.yml file the radio will function unpredictably. Theoretically, however, it
should be impossible to input invalid parameters into the website, except
setting frequency to a value that the particular radio does not support.

k. Allow the user to toggle uploading data to the server (effectively allow
‘offline mode’ for testing).
This is achieved correctly, there are two tick boxes in the setup tab which
allow the user to turn uploading of data on and off by simply toggling a bool
flag.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 128/133

Server

2. The server should:
a. Wait for telemetry and SSDV data to be received and then forward this data

to habhub.
Data is forwarded to habhub and is displayed on their servers correctly as it is
for all other payloads registered on habhub.

b. Provide a means to export 2-way communications data in CSV format from
the web portal.
This works as intended, allowing exporting of the packet type and data from
each packet. This could definitely be improved, by allowing users perhaps to
export each packet with a timestamp of when it was logged. This would be a
suitable improvement.

c. Allow users to view a live log of telemetry packets and 2-way packets
received by the server, also indicating when an image packet is received.
This works adequately, however, the interface is clunky as it is simply a web-
page set to refresh every 2 seconds. Additionally, it might be good if image
packets could give more information than just ‘IMG PACKET’, perhaps the
payload callsign, image ID and packet ID could be displayed here also.

d. Provide a web portal to allow users to configure their payload in the
database.
This works as intended and appropriate validation is in place to prevent
obviously invalid inputs. It is impossible to prevent invalid inputs entirely,
however, because the software cannot know the exact range of available
frequencies to the LoRa module being used.

Payload Software

3. The payload software should:
a. Transmit standard telemetry and SSDV on LoRa.

This is indeed achieved, standard telemetry and SSDV are transmitted on the
LoRa for the majority of the time, telemetry and SSDV are transmitted on
every cycle (technically, SSDV can be toggled). There is no potential
improvement here except that potentially the rate of packet transmission
could be improved by reducing the time gap between transmissions. Detailed
testing would be needed to ensure the minimum time gap before which
packet loss occurs because the ground station cannot keep up.

b. Have a configuration file functioning in the same way as that of the ground
station.
This is achieved correctly. The same code was used as is used for the ground
station configuration.

c. Allow the 2-way communications to function as described in section 1,
allowing the user to view diagnostics, access shell remotely, reboot, control
transmission mode, etc.
As described in the evaluation of ground station objectives, this functions
perfectly though could be improved with additional features. The payload

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 129/133

correctly responds to all request packets as required and executes shell
commands and responds with the results. This functions perfectly and as
intended with no known issues.

d. Add all packets which are required to be transmitted to a queue so that they
can be sent in required order.
Packets are always transmitted in the correct order as a queue is used as
required.

e. Read from the GPS regularly, updating the current telemetry data so that the
most up-to-date telemetry is transmitted each cycle. Additionally, it should
clear the serial cache after reading a location fix from the radio as otherwise
the buffer will fill up with old location fixes.
This is achieved as required, the current location fix is updated regularly as is
the current telemetry string, meaning a current location is always transmitted
in telemetry making tracking and locating the payload significantly easier. As
required, the serial buffer is regularly cleared so a queue of location data does
not build up.

f. Take images at fixed intervals using the Raspberry Pi camera module.
Images are taken at fixed intervals and are stored in a directory called
‘images’ in the same directory as the jar file. The images are stored with a
timestamp making it easy to work out how far along the flight they were
taken.

g. Should be designed to continue functioning without failure under unforeseen
circumstances.
In the event of an exception, most should be caught and handled
appropriately, in the event that an exception is not caught there are several
catch-all clauses which catch the generic error: ‘Exception’. I’ve tested the
payload and it runs continuously without issue. The only issue that does occur
after an extremely long runtime (this would be several days) is that the disk
fills up and images can no longer be taken, however, the payload continues to
transmit telemetry and image packets (of the last image taken) even in this
state.

Client Feedback

I have published my project on GitHub with detailed installation instructions for members of
the UKHAS to use and hopefully modify to suit their projects. The prototype that I’ve built
hopefully provides a good framework for members of the UKHAS to build other projects
which involve 2-way communications with HAB payloads. Dave Akerman, as noted above,
also joined me for both my launches and gave some feedback on the functionality of the
software. Dave Akerman’s comments are below, Dave sent me this as a pastebin over IRC.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 130/133

As you can see Dave was impressed with my project, achieving two-way communications is
something that only a handful of HAB enthusiasts have done as of yet. On the launch day
Dave was interested to see my software in use. Clearly I’ve successfully produced a piece of
software which can be used by members of the UKHAS. Furthermore, a team of radio
enthusiasts from Budapest have begun using my software for prototyping of a WAN.

Additionally, I run a club at my school which aims to get other students into HAB and asked
for some feedback from two members of this club, Peter Barnes, an amateur radio operator
who’s going to study Electronic Engineering at Swansea University; and Matthew Crane,
who’s going to study Computer Science at Exeter University.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 131/133

As you can see in both cases, the impression is that the software works very well and
achieves its primary goals of enabling reliable 2-way communications with an airborne HAB.
Peter commented on a particular aspect of one of my launches that demonstrates the utility
of my software, just before launch, images stopped being transmitted and I couldn’t work
out why, however, using the remote console I was able to ascertain that the camera cable
had become detached, which was an easy fix. Normally, I would’ve had to open up the
payload, and plugin HDMI and such for this. He also comments on its stability throughout
the flight and the capacity to control and monitor the payload remotely while it was
airborne, he comments that requesting image number, toggling image sending and
rebooting the Pi worked as required when he used the software.

Peter commented that the user interface was fairly easy to understand. He did give some
suggestions, such that the transmission queue should be made visible, this is a feature I
think would be a good addition to the software, it would certainly be useful to be able to
see all the packets that have been prepared for transmission, perhaps even with the option
of removing some if you’ve changed your mind about a particular command, or perhaps
made a typo! Peter also suggested that the user-interface be made more compact for use
outside, the software was being run off a Pi which was being accessed remotely on a tablet,

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 132/133

this did make it a little clunky when attempting to interact, and I remember that Peter did
actually trigger the payload to reboot twice when meaning to request number of pictures
stored! So perhaps I’ve not achieved my aim of making the software function well on a
touchscreen, it might be useful to redesign the UI with a phone/tablet in mind, not using
Java Swing as this is fairly constraining!

Matthew commented that, again the software was easy to use, though he commented that
when the remote console command box goes red, although it is clear that the command
was rejected, he had no idea why they were being rejected. Additionally, he commented
that it was a little annoying that you can edit the text of the transmission logs, which is
easily rectified!

Potential Extensions and Improvements

I have a few suggestions for potential extensions and improvements to this project, some of
which have been informed by the comments received in my client feedback.

1. Ergonomic and Aesthetic Design - There is no denying that my interface is slightly
clunky, while this is fit for purpose for this is not targeted at naïve users, it’s always
nice when an application has pleasing aesthetic design, while not a priority in my
prototype it is now something that I can turn to. One suggested method of making
use of the software ergonomic would be perhaps creating a web interface that can
be accessed by any device on a local network, meaning all local devices, from
mobiles to tablets to laptops, could access the control system with ease. This would
make the software easier to use and would be easier to design a good UI for
HTML/CSS are better tools for this than Java Swing. Obviously, the local network
would require password authentication! Another suggestion along the same lines of
this was perhaps an app that connects (again, via local network) to the ground
station software on the Raspberry Pi, this would be equally easy to use and would
provide easier portability.

2. Transmission Queue – following on from Peter’s comments, it would be very nice to
have access to the transmission queue to see what commands had been queued for
transmission on the ground station, perhaps even allowing on-the-fly editing of the
commands or removal of commands. Further on this point, it might be nice to
implement the queue as a priority queue rather than a normal queue as this would
allow important commands to be prioritised over others.

3. Slave Network – in my research, I discussed a slave network being created to allow
other members of the UKHAS to setup ground stations that would contribute both to
transmission to and receiving from a payload while still giving full control over what
is transmitted to the owner of the payload. While I decided that this was not
necessary in this prototype, it might be a nice thing to start working on now, as it
would certainly increase the range of the 2-way communications, perhaps even
allowing for flights to be sent around the world, with different stations gaining
contact with it as it flies.

4. Further Request Features – while the two way system now provides a functioning
framework that allows complete remote control of a payload, it would be nice to add

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 133/133

support for more remote requests, perhaps CPU temperature and possibly the
integration of some sensors on the payload which could then have their state polled
remotely via the 2-way system. For this, however, I would need to add a hat to my Pi
with some sensors on it. Perhaps the development of a standard board that includes
all the required components for this would be suitable (Dave Akerman has created
such a board, called the PITS (Pi-In-The-Sky) board).

5. Custom Telemetry Format – at the moment, all telemetry transmitted from the
payload follows the standard format of
$$CALLSIGN,ID,TIME,LAT,LON,ALT,SATS*CSUM\n, however, it might be a suitable
addition to allow users to define their own telemetry format, perhaps to include
data from the aforementioned sensors which could be added to the project.

6. Image History – at present, only the current image that is being transmitted is
displayed to the user, all others are discarded; it might be a good idea to have the
last n images available for the user to see perhaps in a grid-like display on a popup
window.

7. Prediction Integration – it might be an interesting feature if the latest data from the
payload was used to predict it’s landing location, this could be achieved by using the
CUSF landing predictor which is used by the UKHAS generally and is known to be
very accurate.

8. Multiple Radios – it might be interesting to try to experiment with the parallel radio
system that I suggested in my research where we have 2 radios running continuously
in parallel at different frequencies allowing 100% duty cycle on both uplink and
downlink. It might be inhibited by interference but further experimentation is
required to determine feasibility.

9. Live Videos – something that might be feasible with this would be to, on request
from the ground station, transmit live analogue video (not high quality of course) for
a few seconds, albeit the LoRa radios would not be suitable for this as their
modulation is handled internally, however, this would be a very interesting and
exciting feature if it worked!

Final Conclusions

Overall, I feel that my project has met the requirements set out in my objectives and has
been well received by HAB enthusiasts in the UKHAS. It will hopefully be used in future by
members of the UKHAS in their own flights, perhaps even forking my GitHub repository to
modify the code themselves (perhaps implementing sensors). I intend to continue
development of this beyond A-Level, perhaps creating a more user-friendly design, as well
as attempting to achieve some of my other extensions.

The software has been shown to work reliably in my test flight and my testing has verified
that is functions to significant tolerance and is resistant to errors and that the payload’s
defensive programming means that it is unlikely to fall over (it hasn’t done so yet, and it’s
been running non-stop for several days as I write this).

