
AQA Education (AQA) is a registered charity (number 1073334) and a company limited by guarantee registered in

England and Wales (number 3644723). Our registered address is AQA, Devas Street, Manchester M15 6EX.

Teacher Standardisation
Spring 2018
A-level Computer Science (7517)

Booklet 1

2	

Table	of	Contents	

Analysis	..	3	

NEA	Design	–	Screen	Transition	Diagram	...	9	

NEA	Design	–	Algorithms	...	10	

NEA	Design	–	Data	Flow	Diagram	...	13	

NEA	Design-	Data	Structures	..	14	

NEA	Design-	File	Structures	and	Organisation	...	18	

NEA	Design-	HCI	...	20	

Annotated	program	code	..	26	

Testing	-	Test	Strategy	...	59	

Testing	-	Test	Plan	...	60	

Testing	Screenshots	..	74	

NEA	Evaluation	...	99	

NEA	Questionnaire	...	101	

Filled	Questionnaires	..	102	

2

Emily	Chance-Hill	 150229	

NEA	Analysis	 1	

Introduction:	

Snakes	and	Ladders	is	a	traditional	board	
game	where	two	players	take	turns	to	roll	
dice	and	move	their	corresponding	pieces	
up	the	board,	aiming	to	reach	the	end	space	
before	their	opponent.	The	snakes	and	
ladders	are	positioned	across	the	board	
and	if	the	player	lands	on	either	the	bottom	
of	a	ladder	or	the	top	of	a	snake,	they	are	
moved	up	or	down	the	board	respectively.		

The	game	is	popular	and	there	are	many	
variations	of	it	already	created,	so	it	could	
be	difficult	to	put	an	individual	stamp	on	a	new	version	of	the	game,	or	whether	
it	would	even	be	a	good	idea	to	make	the	game	stray	from	its	traditional	format.	
However,	these	days,	physical	board	games	are	played	less	and	less,	and	people	
tend	to	look	to	their	devices	to	play	games,	so	I	decided	to	create	an	application	
that	could	be	played	on	computer	or	transferred	to	a	device,	so	that	people	can	
play	the	board	game	wherever	they	are.		

My	target	audience	is	children	between	about	5	and	10	years	of	age	and	families,	
and	almost	all	children	I	know	play	on	tablets	and	smart	phones,	so	I	think	it	is	
important	that	I	create	a	game	which	is	transferable	to	a	hand-held	device.	This	
is	an	example	of	a	traditional	snakes	and	ladders	board	(see	fig	1).	It	uses	lots	of	
bright	colours	and	has	numbered	spaces	to	make	it	appropriate	for	children.	
These	are	some	of	the	qualities	that	I	want	to	incorporate	in	my	adaptation,	
along	with	other	features	specifically	aimed	at	young	users.	

For	example,	the	game	needs	to	be	simple	to	control,	so	I	will	most	likely	try	to	
have	clickable	buttons	as	controls	rather	than	more	complicated	text	commands.	
This	will	affect	which	application	I	choose	to	use	when	designing	my	app.	The	
graphics	will	also	need	to	be	clear,	bright	and	inviting,	possibly	incorporating	
cartoons	to	invite	the	attention	of	the	users.	There	will	also	need	to	be	clear	
labelling	for	each	button	because	very	young	users	may	need	lots	of	indicators	as	
well	as	graphical	suggestions	to	understand	how	to	use	the	app.	

How	I	researched:	

While	conducting	my	research,	I	downloaded	several	phone	applications	and	
looked	at	online	versions	of	snakes	and	ladders	and	other,	similar	board	games.	I	
tried	to	look	at	the	more	popular	game	adaptations,	as	I	want	to	look	at	the	most	
successful	methods	and	interpretations	of	traditional	games.	I	wanted	to	analyse	
what	was	a	better	technique;	keeping	the	game	traditional	to	make	it	

1	http://www.prateeknarang.com/Winning-a-Snakes-and-Ladders-Game/	

3

4	

recognisable	and	comfortable	for	the	user,	or	utilise	the	fact	that	I	am	creating	a	
digital	version	of	the	game	by	developing	the	game	in	a	new	way.	

	There	was	a	range	of	sources	that	I	looked	at,	but	I	decided	on	the	current	
system	to	base	my	solution	from	because	it	was	in	a	similar	format	to	what	I	
think	I	will	make;	with	separate	sections	for	each	traditional	component	of	the	
game,	even	where	it	may	not	be	necessary	on	a	digital	device,	to	keep	it	realistic,	
and	it	was	the	one	of	the	most	popular	hits	when	I	searched	for	‘snakes	and	
ladders	game’.	

Description	of	current	system:	

One	of	the	most	popular	snakes	and	ladders	games	online	was	on	a	website	
called	‘playonlinedicegames.com’.	I	decided	to	create	my	new	system	using	this	
as	a	current	system,	while	also	considering	true-life	snakes	and	ladders	to	try	
and	keep	the	game	somewhat	traditional.		

The	current	system	has	a	menu	screen,	dice	screen	and	game	screen	all	on	the	
same	page,	so	all	are	visible	all	of	the	time.	It	doesn’t	give	the	option	to	play	with	
two	players	across	separate	devices,	but	you	can	choose	to	either	let	the	
computer	play	the	other	side	automatically,	or	you	click	the	dice	for	both	sides	
both	players.	The	game	is	somewhat	ambiguous,	however,	because	the	two	
options	of	game	play	are	either	a	computer	symbol	(where	the	other	player’s	
turns	are	completed	automatically)	or	a	person	(where	you,	the	user,	has	to	click	
for	both	players).	Even	on	the	‘two	player’	mode,	however,	the	game	only	
references	“you”	and	“the	opponent”	instead	of	player	1	and	player	2,	so	it	does	
not	seem	like	an	actual	two	player	mode.	This	is	a	negative	for	gameplay	for	the	
user	because	the	only	option	for	two-player	mode	is	confusing,	especially	for	
younger	users	who	are	likely	trying	to	play	the	game	with	their	friends.		

There	is	a	button	in	the	dice	section,	and	a	message	board	above	it	to	say	whose	
roll	it	is,	which	helps	to	make	following	the	game	easier	for	the	user	to	follow.	
Both	players	can	land	on	the	same	space,	but	the	icons	block	each	other	out	
which	is	confusing	when	playing.	This	is	another	negative	from	the	user’s	
perspective	as	it	can	be	easy	to	lose	track	of	which	piece	belongs	to	whom	and	
where	the	individual	pieces	are.	There	is	also	no	notification	when	a	player	is	
sent	wither	up	a	ladder	or	down	a	snake,	so	you	have	to	watch	the	board	very	
carefully	to	keep	track	of	what	is	happening.	Younger	users	especially	are	not	
likely	to	be	paying	this	kind	of	close	attention,	so	they	could	easily	fail	to	trace	
the	game	properly,	which	could	seriously	impact	gameplay	quality.	When	a	
player	wins,	a	banner	appears	in	above	the	dice	and	menu	sections	to	say	
whether	you	have	won	or	lost,	which	is	also	a	useful	indicator	for	the	user.		

The	game	is	very	standard,	and	has	no	real	options	of	game	play	like	difficulty	or	
any	extra	features,	so	I	feel	like	they	have	not	taken	full	advantage	of	the	
possibilities	of	creating	the	traditional	game	digitally.	This	means	that	the	user	
could	become	bored	with	the	game	very	quickly,	especially	modern,	young	users	
who	generally	require	more	amusement	than	a	standard	board	game	can	
provide.	I	want	to	improve	on	this	dullness	for	my	own	version	of	the	game.		

4

Emily	Chance-Hill	 150229	

2	

Description	of	My	System:	

Based	on	the	current	system,	I	have	decided	to	create	a	system	which	is	
traditional	enough	so	that	people	can	easily	recognise	the	game,	as	this	seems	
popular	when	conducting	my	research,	but	I	want	to	advance	the	system	to	make	
it	more	interesting,	as	I	feel	like	a	lot	more	can	be	accomplished	by	creating	a	
digital	solution.		

I	want	the	user	to	be	able	to	play	single	player,	or	have	the	option	to	play	two	
player	on	the	same	device;	I	found	this	is	many	apps	in	my	research,	the	game	
references	the	players	as	separate,	but	on	the	same	device,	so	the	phone/tablet	
can	simply	be	passed	between	players	as	they	have	their	turns.	This	feels	more	
like	the	traditional	game	to	me;	several	people	playing	on	the	same	board.	I	want	
to	add	some	extra	form	of	gameplay,	however,	where	the	players	can	affect	each	
other’s	positions,	for	example,	to	add	some	originality	to	the	game	where	I	can.		

I	want	to	have	separate	screens	or	windows	for	menus	and	dice	so	that	the	game	
is	dynamic	and	doesn’t	always	stay	on	the	same	screen,	as	this	can	get	boring	to	
look	at.	I	will	try	to	make	improvements	of	things	in	the	current	system,	which	
are	user-unfriendly.	For	example,	I	won’t	allow	the	players	to	land	on	the	same	
space,	and	I	will	make	sure	to	put	up	a	notification	on	the	screen	somewhere	to	
tell	the	players	if	someone	lands	on	a	snake	or	ladder,	to	make	the	game	easier	to	
follow.		

I	have	decided	to	use	kivy	and	python	to	create	my	system,	as	I	feel	more	
comfortable	with	the	parent-child	relationships	in	kivy	and	how	it	produces	
python	objects	than	I	do	with	any	other	graphically	capable	language.	I	want	to	
use	something	which	can	produce	a	graphical	window	so	that	the	game	can	be	

2	http://www.playonlinedicegames.com/snakesandladders	

5

6	

played	on	a	device,	and	has	buttons	which	can	be	clicked	and	a	board	which	is	
colourful,	rather	than	a	python-based	text-based	game,	which	can	be	hard	to	
follow	and	look	and	feel	messy	when	playing	as	the	user	has	to	type	to	signal	any	
kind	of	action.	

My	Aims	and	Objectives:	

• Make	a	menu	screen
o Should	be	able	to	grant	access	to	different	areas	of	the	game	such

as	load	game,	save	game	or	play	game
o Should	be	able	to	quit	the	game	from	here

• Create	a	board	with	a	grid	of	game	spaces	which	a	piece	can	move	up
o The	grid	should	be	colourful	and	be	numbered	to	make	following

the	gameplay	easier
o Any	obstacles	should	be	randomly	generated
o Should	have	an	end	space	which,	if	reached,	determines	a	winner

based	on	which	player	landed	on	it
• Make	Snakes

o Can	alter	a	player’s	position	backwards	on	the	board
o Has	a	graphical	or	clear	representation	on	the	board	space

• Make	Ladders
o Can	alter	a	player’s	position	backwards	on	the	board
o Has	a	graphical	or	clear	representation	on	the	board	space

• Make	dice/spinner	to	give	the	illusion	of	a	traditional	physical	board
game

o Should	have	a	graphical	screen	where	the	user	can	click	something
to	produce	a	dice	roll/spin.

o Should	then	call	something	in	main	program	to	randomly	generate
a	number	for	a	dice	roll/spin.

• Create	Players
o Should	have	different,	identifiable	pieces	for	player	one,	player	two

and	the	computer
o Should	be	able	to	move	across	the	board	and	land	in	any	specific

space
• Make	single	player	mode	so	that	the	user	can	play	against	the

computer
o The	computer	should	roll	automatically,	but	the	player	should	be

told	what	they	have	rolled	so	that	they	can	easily	trace	the	game
o There	should	be	a	menu	created	so	that	the	user	can	choose

whether	to	play	in	single	or	two	player	mode.
• Be	able	to	save	games

o Should	be	able	to	save	several	games	with	unique	file	names,
which	can	be	inputted	by	the	user	to	load	a	specific	game.

o Player	positions,	game	format	(e.g.	how	many	players	there	are),
and	obstacle	positions	should	all	be	saved	and	be	able	to	be
reloaded	in	exactly	the	same	way.

• Be	able	to	load	games

6

Emily	Chance-Hill	 150229	

o Player	positions,	game	format	(e.g.	how	many	players	there	are),
and	obstacle	positions	should	be	able	to	be	reloaded	in	exactly	the
same	way	as	they	were	saved.

o The	game	should	continue	as	if	it	was	never	paused;	for	example,
the	game	should	remember	who	had	the	last	turn	and	start	from
the	next	person	(if	in	two	player	mode).

• Create	additional	gameplay	features
o To	add	my	own	twist	to	the	game,	I	want	to	add	new	features	such

as	being	able	to	play	the	game	on	different	difficulty	levels.	As	the
game	gets	harder:

§ The	amount	of	obstacles	on	the	board	should	increase;	the
proportion	of	snakes	to	ladders	should	favour	snakes	as	the
difficulty	gets	harder.

§ The	size	of	the	board	should	increase	to	make	the	game
longer

o I	also	want	to	add	extra	gameplay	features	such	as	spaces	where
the	players	can	either	improve	their	own	position	or	sabotage
their	opponent	if	they	land	on	it.	I	feel	like	this	would	increase	the
competitiveness	of	the	game	and	make	it	more	exciting.

7

8	

Start	

Single	player	
against	computer?	

Two	player	on	
device?	

Player/Computer	rolls	die	
and	moves	piece	

Change	whose	turn	it	is	

Has	
player/computer	

won?	

Has	
player/computer	
landed	on	snake	of	

ladder?	

Move	player/computer	piece	

No
Yes

Yes

No

Output	who	has	
won	

Restart	game	

Yes

No

Move	player	1/2	piece	

Player1/2	rolls	die	and	moves	
piece	

Change	whose	turn	it	is	

Has	player1/2	won?	

Has	player	1/2	
landed	on	snake	of	

ladder?	

No

Yes

No

No

Yes

Yes

8

Emily	Chance-Hill	 	 150229	

	
	
NEA	Design-	Screen	Transition	Diagram	
NEA	Design-	Pseudo	Code	Algorithms	for	fundamental	components	of	

program	
	

<<Creating	the	game	grid	with	buttons>>	

9

10	

NEA	Design	-	Algorithms	

CLASS	snakes_and_ladders_grid:	
DEFINE	create_grid_buttons:	

Make	list_of_colours	for	button	backgrounds	
IF	difficulty	level	is	easy:	

Set:	
rows		=	7	
columns		=	5	
sabotage	=	3	
snakes	=	1	
ladders	=	3	

IF	difficulty	level	is	intermediate:	
Set:	
rows		=	9	
columns		=	7	
sabotage	=	6	
snakes	=	5	
ladders	=5	

IF	difficulty	level	is	hard:	
Set:	
rows		=	11	
columns		=	9	
sabotage	=	8	
snakes	=	7	
ladders	=	5	

Number	of	buttons	=	Rows	x	Columns	
Maximum	space	=	number	of	buttons	–	2	
FOR	number	FROM	1	to	maximum	space:	

List	of	Possible	Spaces	+	number	

IF	game	is	being	loaded:	
PASS	

ELSE:	
Call	Create	snakes	positions	subroutine	
Call	Create	ladders	positions	subroutine	
Call	Create	sabotage	spaces	positions	subroutine	
Set	player	positions	to	0	

FOR	number	FROM	1	to	maximum	space:	
Select	colour	from	list	of	colours	
CREATE	button	with	number	for	position	
IF	position	of	button	is	in	list	of	snakes	positions:	

Change	Background	image	of	button	to	a	snake	
ELSE	IF	position	of	button	is	in	list	of	ladders	positions:	

Change	Background	image	of	button	to	a	ladder	
ELSE	IF	position	of	button	is	in	list	of	sabotage	spaces:	

Change	Button	text	to	SABOTAGE	
GRIDLAYOUT	add	current	button	

CREATE	button	shortcut	to	main	menu	

10

Emily	Chance-Hill	 	 150229	

	 	 	 Menu	button	when	pressed	go	to	menu	screen	
	 	 CREATE	button	shortcut	to	spinner	screen	
	 	 	 Spinner	button	when	pressed	go	to	spinner	screen	
	 	 GRIDLAYOUT	add	buttons:	menu	and	spinner	
	 	 IF	game	is	being	loaded:	
	 	 	 IF	game	is	two	player:	
	 	 	 	 Call	function	to	position	players	1	and	2	
	 	 	 ELSE:	
	 	 	 	 Call	function	to	position	player	1	and	Computer	
	
<<Example	of	creating	obstacle:	same	can	be	used	for	snakes,	ladders	and	
sabotage	spaces>>	
(in	snakes	and	ladders	grid	class)	
DEFINE	create	obstacle	(number	of	obstacles	needed):	
	 FOR	1	to	total	number	of	obstacle:	
	 	 Space	=	randomly	select	from	Possible	Spaces		

WHILE	space	selected	not	in	appropriate	range:	
	 	 	 Space	=	randomly	select	from	Possible	Spaces		
	 	 Add	space	to	list	of	existing	Obstacles	
	 	 Remove	space	from	list	of	Possible	spaces		
	
<<Positioning	Player	pieces>>	
(in	snakes	and	ladders	grid	class)	
DEFINE	player	positions	(current	player):	
	 IF	current	player	=	1:	(do	for	players	1,	2	and	the	computer)	

Decide	how	many	rows	up	the	board	the	player	piece	is	based	on	
player	position	

	 	 IF	player	position	=	0:	position	player	off	board	
	 	 ELSE:	

Decide	how	many	spaces	across	the	player	piece	is	based	on	
player	position	
Player	position	=	width	of	window	x	(across/columns),	
height	of	window	x	(high/columns)	

	 	 set	player	piece	position	to	calculated	position	
	
<<Moving	a	player	piece>>	
(in	snakes	and	ladders	grid	class)	
DEFINE	move	piece(current	spin,	current	player):	
	 IF	current	player	=	1:	(repeat	for	2	and	computer)	
	 	 Player	position	+	current	spin	
	 	 IF	player	position	>=	maximum	space:	
	 	 	 Current	screen	=	Winner	Screen	(player	=	1)	
	 	 IF	game	is	in	two	player	mode:	
	 	 	 IF	both	player	positions	>	0:	
	 	 	 	 IF	player	1	position	=	player	2	position:	
	 	 	 	 	 IF	player	2	position	>=	maximum	space:	
	 	 	 	 	 	 Player	1	position	=	maximum	space	
	 	 	 	 	 	 Current	=	Winner	screen	(player	1)	
	 	 	 	 	 ELSE:	

11

12	

Player	1	position	+	1	
(ELSE	IF	game	is	in	single	player	mode:	

IF	both	player	and	computer	positions	>	0:	
IF	player	position	=	computer	position	

IF	computer	pos	=	maximum	space:	
Player	1	position	=	maximum	space	
Current	=	Winner	screen	(player	1)	

ELSE:	
Player	1	position	+	1)<<only	for	player	

1,	do	not	repeat	for	player	2	and	computer	as	game	modes	are	a	given>>	
Current	screen	=	display	screen	(current	spin)	
Check	new	position	of	player	against	obstacle	positions	
Position	player	piece:	player	positions	(player	1)	

<<checking	for	clashes	between	a	player	piece	and	an	obstacle>>	
(in	snakes	and	ladders	grid	class)	
DEFINE	check	for	clashes	(player):	

if	current	player	is	player	1:	(repeat	for	player	2	and	computer)	
for	snake	in	list	of	snake	positions:	

if	snake	position	is	the	same	as	player	position:	
player	position	is	moved	down	one	row	
call	display	screen	to	tell	user	what	they	have	
landed	on	

if	player	2	position	if	the	same	as	player	1	position:	
player	1	position	increases	by	1	

for	ladder	in	ladder	positions:	
if	ladder	position	is	the	same	as	player	position:	

player	position	is	moved	up	a	row		
call	display	screen	to	tell	user	what	they	have	
landed	on	

if	player	2	position	if	the	same	as	player	1	position:	
player	1	position	increases	by	1	

if	player	1	position	is	the	equal	to	or	above	the	maximum	
number	of	spaces:	

call	winner	screen	to	tell	player	who	has	won	

for	space	in	list	of	sabotage	space	positions:	
if	player	one	position	is	the	same	as	sabotage	space	
position:	

display	sabotage	screen	

if	player	1	position	is	the	equal	to	or	above	the	maximum	number	
of	spaces:	

call	winner	screen	to	tell	player	who	has	won	

12

Emily	Chance-Hill	 150229	

NEA	Design	–	Data	Flow	Diagram

13

14	

NEA	Design-	Data	Structures	

Index	 Type	of	
Data	
Structure	

How	it	will	be	
used	

Where	will	it	be	
used	

Why	I	will	use	it	

1	 List	
(possible	[])	

To	store	all	of	
the	available	
spaces	that	an	
obstacle	can	be	
positioned	on	

Throughout	the	code	
wherever	obstacles	
are	created,	but	
rooted	in	the	
snakesGrid	class	and	
referenced	through	
that	

It	can	help	to	ensure	the	obstacles	
don’t	clash	in	any	way,	and	it	is	
easier	than	using	several	if	and	
while	statements	for	each	obstacle	
to	ensure	it	doesn’t	clash.	This	way,	
I	can	just	randomise	the	available	
spaces	in	whatever	range	is	
necessary	for	that	obstacle,	and	
once	the	obstacle	position	is	set	it	
can	be	removed	from	the	list	of	
available	spaces	ready	for	the	next	
obstacle	to	be	made	

2	 List	
(positions[],	
positions2				
[],	
positions3			
[],	
positions4			
[])	

To	store	the	
game	data	when	
a	game	is	saved	

In	the	MenuWidget	
class,	in	save_game()	

This	is	the	most	efficient	way	I	
could	find	to	store	all	of	the	game	
data.	I	could	use	several	lists,	for	
example,	one	for	general	data	and	
then	one	for	each	category	of	
obstacles.	I	could	then	use	these	
lists	to	import	the	data	into	a	text	
file	for	each	list	to	be	saved	
permanently	

3	 List	
(positions	[
])	

To	store	loaded	
game	data	from	
a	text	file	

In	the	MenuWidget	
class,	in	load_game()	

In	reverse	of	the	SaveWidget	lists,	I	
could	import	the	data	from	each	
text	file	to	its	own	list,	to	then	sort	
through	and	allocate	to	different	
variables	to	enable	me	to	set	up	the	
game	identically	to	how	it	was	
saved	

4	 List	
(snakes_pos	
[])	

To	store	all	the	
current	snakes	
positions	

In	the	snakesGrid	
class,	referenced	
throughout	the	
program,	for	
example	to	compare	
player	positions	to	
snakes	positions	

When	the	snakes	positions	are	
created,	I	can	simply	import	the	
positions	straight	into	this	list	as	
they	are	set,	then	the	list	can	be	
used	whenever	the	snakes	
positions	need	to	be	referenced,	
such	as	when	the	board	is	created	
to	see	where	the	snake	images	need	
to	be	placed,	when	a	game	has	to	be	
saved	including	obstacle	positions	
or	when	a	player	moves	and	the	
program	has	to	check	if	they	have	
clashed	with	an	obstacle.	It	is	easier	
to	loop	through	a	list	to	check	
rather	than	having	several	if	
statements	for	individual	variables.	

5	 List	 To	store	all	the	 In	the	snakesGrid	 (same	as	snakes	positions	list)	

14

Emily	Chance-Hill	 	 150229	

	
	
Hierarchy	of	objects	
	
App	Widget	–	this	is	the	core	class	required	and	is	the	parent	of	all	other	class	
instances.	The	App	has	a	run	method	that	starts	the	program	
	
Screen	Manager	–	Contains	all	of	the	screens	that	can	be	called	and	handles	the	
transitions	between	the	screens.	
	
Screens	–	There	are	11	screens	that	can	be	displayed,	each	screen	will	have	
different	widgets	loaded	onto	them.	The	screen	manager	controls	the	currently	
displayed	screen.	
The	11	screens	will	be:	

• Save	Screen-	This	screen	has	the	box	the	user	enters	a	filename	in	to	save	
a	game	that	comes	up	when	a	player	chooses	to	save	a	game	

o SW-	SaveWidget	
§ Grid	Layout	

• Button	to	tell	user	to	enter	filename	
• Text	Input	box	for	the	user	to	enter	filename	in	
• Clickable	button	to	submit	name	
• Clickable	button	to	go	back	to	menu	screen	

(if	filename	entered	already	exists):	
• Button	to	tell	user	name	is	invalid	
• Button	to	tell	user	to	retype	filename	
• Clickable	button	to	save	over	existing	game	

• Load	Screen-	This	screen	has	the	box	the	user	enters	a	filename	in	to	load	
an	existing	game	

o LW-	LoadWidget	
§ Grid	Layout	

• Button	to	tell	user	to	enter	filename	
• Text	Input	box	for	the	user	to	enter	filename	in	
• Clickable	button	to	submit	filename	
• Clickable	button	to	go	back	to	menu	screen	

(ladders_pos	
[])	

current	ladders	
positions	

class,	referenced	
throughout	the	
program	

6	 List	
(sabotage[
])	

To	store	all	the	
current	sabotage	
space	positions	

In	the	snakesGrid	
class,	referenced	
throughout	the	
program	

(same	as	snakes	positions	list)	

7	 List	(colours	
[])	

A	list	of	lists	of	
numbers	to	
program	the	
background	
colour	of	the	
buttons	I	create	
in	a	pattern.	

In	the	SnakesGrid	
class	in	the	function	
create_buttons.	

	

15

16	

(if	name	entered	doesn’t	exist):	
• Button	to	tell	user	the	name	entered	is	invalid
• Button	to	tell	user	to	retype	name

• Menu	Screen-	This	screen	comes	up	first	where	the	user	can	choose	to
play	a	new	game,	save	a	game	or	load	a	game.	All	screens	should	link	back
to	this	screen

o MW-	MenuWidget
§ Grid	Layout

• Clickable	button	to	play	new	game
• Clickable	button	to	save	game
• Clickable	button	to	load	game
• Clickable	button	to	quit	window

• Game	Options	Screen	i.e.	Single	Player,	Two	player
o GOW-	GameOptionsWidget

§ Grid	Layout
• Clickable	button	for	Single	Player
• Clickable	button	for	Two	Player
• Clickable	button	to	go	back	to	Menu	Screen
• Button	to	show	which	game	piece	belongs	to	who

(x3)
• Difficulty	Level	Screen	i.e.	Easy,	Intermediate,	Hard

o DL-	DifficultyLevel
§ Grid	Layout

• Clickable	button	for	easy
• Clickable	button	for	intermediate
• Clickable	button	for	hard
• Clickable	button	to	go	back	to	menu	screen

• Sabotage	Screen-	when	a	player	lands	on	a	sabotage	space	the	screen
displays	their	options	and	what	the	rolled

o SbW-	SabotageWidget
§ Grid	Layout

• Button	to	tell	player	what	they	have	rolled
• Button	to	tell	player	they	landed	on	a	sabotage	space
• Clickable	button	to	move	5	spaces	ahead
• Clickable	button	to	move	opponent	5	spaces	behind

• Snakes	Grid	Screen-	the	main	game	screen	containing	the	game	board
o SG-	snakesGrid

§ Grid	Layout
• Button	displaying	either	a	snake,	ladder,	sabotage	or

the	number	space	(x	the	number	of	spaces	based	on
difficulty	level)

• Clickable	button	to	make	spin	by	going	to	spinner
screen

• Clickable	button	to	go	to	menu	screen
• Obstacle	Screen-	when	a	player	lands	on	a	snake	or	ladder	this	screen

comes	up	to	tell	the	player	what	they	landed	on
o OW-	ObstacleWidget

§ Grid	Layout

16

Emily	Chance-Hill	 150229	

• Button	to	tell	player	what	they	have	landed	on
• Clickable	button	to	go	back	to	main	screen	to

continue	playing
• Winner	Screen-	when	a	player	wins	the	game	this	screen	appears	to	tell

the	players	who	won	and	gives	them	their	next	options
o WW-	WinnerWidget

§ Grid	Layout
• Button	to	tell	players	who	has	won
• Clickable	button	to	play	another	game
• Clickable	button	to	go	back	to	main	menu
• Clickable	button	to	quit	window

• Spinner	Screen-	This	screen	contains	the	clickable	image	of	a	spinner	for
the	players	to	make	their	spin

o SpW-	SpinnerWidget
§ Grid	Layout

• Button	to	tell	the	current	player	to	click	on	the
spinner

• Clickable	button	to	make	a	spin
• Display	Screen-	If	no	obstacle	is	landed	on,	this	screen	appears	to	tell	the

player	what	they	rolled
o DW-	DisplayWidget

§ Grid	Layout
• Button	to	tell	user	which	player	has	spun	what
• Clickable	button	to	go	back	to	main	screen	and

continue	playing	game

o Widgets
Each	screen	contains	a	widget.	This	is	a	container	that	has	a	layout
child	object,	which	contains	the	items	displayed	upon	it.	The	widget
contains	functions,	which	are	used	by	the	children

§ Layouts
Each	widget	has	a	layout	to	store	all	of	the	buttons	needed	for
that	screen.	The	pre-set	layout	organises	the	positions	of	the
buttons,	which	can	be	edited	by	me	to	fit	them	into	a	certain
order.

• Buttons
The	screens	have	either	clickable	buttons,	which	will
trigger	a	transition	to	a	different	screen,	or	non-
clickable	buttons	(labels)	that	are	used	to	give
information	to	the	user	but	will	not	do	anything	when
clicked.

17

18	

NEA	Design-	File	Structures	and	Organisation	

Index	 File	type	 How	it	will	be	
used	

Where	it	will	
be	used	

Why	I	will	use	it	

1	 Text	file	
(SavedGame””.txt)	

To	store	some	
of	the	game	
data	when	a	
game	is	saved.	

In	the	
MenuWidget	
class,	in	
save_game	()	

When	a	game	is	saved,	the	
text	file	will	be	created	using	
the	file	name	entered	by	the	
user	to	contain	all	of	the	
game	data	such	as	difficulty	
level,	number	of	players,	
player	positions	and	current	
player.	The	program	when	
loading	the	game	can	then	
access	this	data	to	recreate	
the	board	accurately.	Each	
piece	of	data	is	stored	on	a	
separate	line	by	adding	“\n”	
to	the	end	of	each	line.	This	
keeps	the	information	
separate,	and	the	“\n”	is	
removed	when	the	data	is	
reloaded	to	find	the	original	
data	items.	

E.g.
“10	=	player	1	position
0	=	player	2	position
2	=	computer	position
1	=	number	of	players
easy	=	difficulty	level
1”	=	current	player

2	 Text	file	
(SavedS””.txt)	

To	store	the	
positions	of	
the	snakes	
when	a	game	
is	saved.	

In	the	
MenuWidget	
class,	in	
save_game	()	

It	will	be	easier	to	save	the	
list	of	obstacles	all	separately	
to	the	rest	of	the	data,	as	the	
number	of	each	fluctuates	
depending	on	the	difficulty	
level,	which	could	prove	
complicated	to	predict	when	
reloading	game	data.	Each	
snake’s	location	is	saved	on	a	
separate	line	as	before,	using	
“/n”,	then	the	data	can	be	
extracted	and	looped	through	
without	concern	about	the	
amount	of	the	obstacle.	

E.g.
“23

18

Emily	Chance-Hill	 150229	

12”	Each	line	is	a	snake	
position.	

3	 Text	file	
(SavedL””.txt)	

To	store	the	
positions	of	
the	ladders	
when	a	game	
is	saved.	

In	the	
MenuWidget	
class,	in	
save_game	()	

Same	as	snakes	save	file.	

E.g.
“21
8
6”	each	line	is	a	ladder
position.

4	 Text	file	
(SavedB””.txt)	

To	store	the	
positions	of	
the	sabotage	
spaces	when	a	
game	is	saved.	

In	the	
MenuWidget	
class,	in	
save_game	()	

Same	as	snakes	save	file.	

E.g.
“4
15
5”	Each	line	is	a	sabotage
space	position.

19

20	

NEA	Design-	HCI	

Play	Game	

Save	Game	

Load	Game	

Quit	

Two	Player	

Player	1	Image	 Player	2	Image	 Computer	Image	

Single	Player	 Quit	

Menu	Screen	

Game	Options	Screen	

20

Emily	Chance-Hill	 	 150229	

	
	

Intermediate	

Easy	

Hard	

Back	

33	

34	35	36	37	38	

8	

28	

23	

18	

13	

3	

24	25	26	27	

19	20	21	22	

14	15	16	17	

9	10	11	12	

4	5	6	7	

Menu	Spin	1	2	

29	30	31	32	

Difficulty	Level	Screen	

Main	Game	Screen	example-	would	have	varied	number	of	spaces	for	different	
difficulties	

21

22	

Player	“”,	Click	to	spin	

Spinner	Image	

Player	“”,	you	spun	a	“”	

YOU	LANDED	ON	A	SABOAGE	SPACE	

Move	5	spaces	ahead	

Move	your	opponent	five	spaces	behind	

Spinner	Screen	

Sabotage	Screen	

Gives	player	information	before	giving	them	
options	for	gameplay	

22

Emily	Chance-Hill	 150229	

Player	“”,	you	spun	a	“”	

Back	

Player	“”,	has	landed	on	a		“”	

Back	

Display	Screen	

Obstacle	Display	Screen	

23

24	

Enter	your	name:	

(Text	Input	box)	

Submit	

There	is	an	existing	file	with	this	
name	

Back	

Re-type	file	name	to	create	new	file	

Replace	Existing	file	

Enter	your	name:	

(Text	Input	box)	

Submit	

Back	

Re-type	you	file	name	to	try	again	

There	is	no	file	with	this	name	

Save	Screen	

Load	Screen	

Error	messages	only	appear	when	an	invalid	file	name	has	been	submitted.	

24

Emily	Chance-Hill	 	 150229	

This	box	is	a	different	colour	to	highlight	the	message-	the	player	has	to	read	it	
because	it	will	not	be	accessible	once	they	click	a	button	and	leave	this	page.	

Play	Again	

The	winner	is	Player	“”	

Back	to	Main	Menu	

Quit	

Winner	Screen	

I	will	use	pastel	theme	colours,	such	as	purple,	blue,	red	and	green/yellow	as	these	suit	both	
boys	and	girls	and	will	appeal	to	younger	audiences,	which	are	my	focus	audience.	I	have	
specifically	designed	the	buttons	to	be	large,	and	should	be	clickable	all	over	to	make	the	game	
as	simple	as	possible	to	use	for	young	users.	The	instructions	on	buttons	are	clear	and	simple,	
for	example	when	selecting	a	file	name,	the	user	is	instructed	to	‘type	all	player’s	names’,	as	
logically	the	same	two	people,	or	one	person	playing	single	player,	will	not	need	more	than	one	
save	each	because	they	will	complete	their	last	game	before	starting	a	new	one	together.	This	
has	the	advantage	of	making	saving	a	game	a	lot	easier	for	younger	users,	as	they	may	not	know	
what	a	‘file	name’	is,	plus	the	first	thing	a	child	tends	to	be	able	to	spell	is	their	name.	I	will	also	
use	that	standard	font	type	for	kivy	(see	example	below	of	basic	button	I	created	as	simulation)	
as	it	is	rounded	and	simple	for	younger	users	to	read.	I	also	want	to	use	a	large	font	type	to	
make	the	words	as	clear	and	visible	as	I	can	for	the	young	user,	around	font	size	40	or	50	within	
the	application,	depending	on	the	scale	of	the	button	it	is	on.		

	
On	the	basic	menu	screens	and	in	the	game	board	screens,	I	will	use	a	pattern	of	these	theme	
colours	to	make	it	visually	attractive.	This	mixture	of	colours	will	continue	throughout	all	the	
screens,	but	some	screens	need	to	use	the	colour	to	bring	attention	to	certain	buttons.	For	
example,	on	the	winner	screen,	I	will	make	the	button	with	the	information	on	about	who	has	
won	a	different	colour	to	bring	the	user’s	attention	to	it,	because	once	a	button	is	clicked	and	
this	screen	is	gone	the	information	is	lost.	Also	on	the	load	and	save	screens,	I	will	use	different	
combinations	of	the	colours	to	make	them	identifiable	because	they	look	so	similar.	The	mixed	
use	of	colour,	I	think,	gives	the	game	a	wacky	style,	which	again	will	appeal	to	my	younger	
users.		

25

26	

Annotated	program	code	

from	kivy.app	import	App	
from	kivy.uix.widget	import	Widget	
from	kivy.uix.screenmanager	import	ScreenManager,	Screen,	FadeTransition,	
WipeTransition,	SwapTransition,	RiseInTransition,	FallOutTransition	
from	kivy.uix.popup	import	Popup	
from	kivy.uix.label	import	Label	
from	kivy.uix.button	import	Button	
from	kivy.uix.boxlayout	import	BoxLayout	
import	random	
import	time	
from	kivy.clock	import	mainthread	
from	kivy.graphics	import	BorderImage	
from	kivy.uix.image	import	Image	
from	kivy.graphics	import	Color,	Line,	Rectangle	
from	kivy.uix.filechooser	import	FileChooserListView,	FileChooserIconView	
from	kivy.core.window	import	Window;	Window.clearcolor	=	(255,255,255,1)	

class	SaveWidget(Widget):	
error	=	False	
'''widget	type	to	enable	class	object	to	be	added	to	screenmanager'''	
btn	=	Button()	
btn2	=	Button()	
btn3	=	Button()	
'''set	buttons	as	direct	children	of	class	so	that	they	can	be		
referenced	using	'self'	or	referencing	the	class	object	to	be		
able	to	remove	and	add	them	within	different	functions	within		
and	out	of	the	class'''	
def	reset(self):	

self.error	=	False	
def	remove(self):	

gr	=	self.ids.SaveGrid	
gr.remove_widget(self.btn)	
gr.remove_widget(self.btn2)	
gr.remove_widget(self.btn3)	
'''function	is	called	as	entering	screen	from	clicking	button	
Save	Game,	buttons	displaying	error	messages	are	removed	
so	that	player	is	allowed	to	enter	a	file	name	first'''	

def	check_input(self):	
names	=	[]	
myLine	=	''	
try:	

files	=	open("filenames.txt",	"r")	
myList	=	files.readlines()	
files.close()	
write_files	=	open("filenames.txt","a")	

26

Emily	Chance-Hill	 	 150229	

	 	 	 for	line	in	myList:	
	 	 	 	 for	character	in	range(0,len(line)-1):	
	 	 	 	 	 myLine	+=	line[character]	
	 	 	 	 names.append(myLine)	
	 	 	 	 myLine	=	''	
	 	 	 	 '''when	text	file	was	saved,	'\n'	was	used	to	save	on	
	 	 	 	 separate	lines,	this	for	loop	removes	the	'\n'	to	find	
the	
	 	 	 	 root	file	name'''	
	 	 	 if	self.filename.text	not	in	names:	
	 	 	 	 self.error	=	False	
	 	 	 	 name	=	str(self.filename.text)	
	 	 	 	 write_files.write(name+"\n")	
	 	 	 	 write_files.close()	
	 	 	 	 mw	=	
self.parent.manager.get_screen('Menu').children[0]	
	 	 	 	 mw.save_game(self.filename.text)	
	 	 	 	 self.parent.manager.current	=	'Menu'	
	 	 	 else:	
	 	 	 	 	
	 	 	 	 gr	=	self.ids.SaveGrid	
	 	 	 	 if	self.error	==	False:	
	 	 	 	 	 self.btn	=	Button(text="There	is	an	existing	
file	with	this	name",	size=(Window.width/2,	Window.height/5),	
pos=(Window.width/2,Window.height*(4/5)),	
background_color=(255,255,0,0.3),	color=(0,0,0,1))	
	 	 	 	 	 self.btn2	=	Button(text="Replace	existing	
file",	size=(Window.width/2,	Window.height/5),	pos=(Window.width/2,	
Window.height*(3/5)),background_color=(0,0,255,0.5),	color=(0,0,0,1))	
	 	 	 	 	 self.btn3	=	Button(text="Re-type	your	file	
name	to	create	new	file",	
size=(Window.width/2,Window.height/5),pos=(Window.width/2,Window.heigh
t*(2/5)),background_color=(0,128,128,0.5),	color=(0,0,0,1))	
	 	 	 	 	 self.btn2.bind(on_press=self.save)	
	 	 	 	 	 gr.add_widget(self.btn)	
	 	 	 	 	 gr.add_widget(self.btn2)	
	 	 	 	 	 gr.add_widget(self.btn3)	
	 	 	 	 	 self.error	=	True	
	 	 	 	 	 '''program	opens	the	text	file	containing	all	
the	filenames	
	 	 	 	 	 entered	so	far	in	the	game,	if	the	filename	
entered	already	exists	
	 	 	 	 	 in	the	text	file	the	error	buttons	are	printed	
allowing	the		
	 	 	 	 	 player	to	either	save	over	the	file	with	the	
same	name	or		
	 	 	 	 	 retype	their	file	name.	When	the	submit	
button	is	repressed	

27

28	

this	process	is	repeated	so	no	loop	is	
required'''	

except	FileNotFoundError:	
print("HERE")	
files	=	open("filenames.txt","w")	
files.write(str(self.filename.text)+"\n")	
files.close()	
mw	=	self.parent.manager.get_screen('Menu').children[0]	
mw.save_game(self.filename.text)	
self.parent.manager.current	=	'Menu'	
'''if	the	file	is	not	found	this	means	no	file	has	ever	been	
saved.	In	this	case,	the	text	file	is	created	and	the	name	

saved,	
then	the	program	skips	straight	to	the	saving	the	game	

because	if	no	
file	names	exist	there	can	be	no	error'''	

def	save(self,	instance):	
mw	=	self.parent.manager.get_screen('Menu').children[0]	
mw.save_game(self.filename.text)	
self.parent.manager.current	=	'Menu'	
'''this	function	is	called	from	within	the	same	class	from	the	
button	'replace	existing	file',	when	it	is	clicked.	It	goes	to	
the	save	function	within	snakedGrid	class	to	save	all	of	the		
obstacle	and	player	positions'''	

class	LoadWidget(Widget):	
error	=	False	
btn	=	Button()	
btn2	=	Button()	
'''set	buttons	as	direct	children	of	class	so	that	they	can	be		
referenced	using	'self'	or	referencing	the	class	object	to	be		
able	to	remove	and	add	them	within	different	functions	within	
and	out	of	the	class'''	
def	reset(self):	

self.error=False	
def	remove(self):	

gr	=	self.ids.LoadGrid	
gr.remove_widget(self.btn)	
gr.remove_widget(self.btn2)	
'''error	message	buttons	removed	when	Open	Saved	Game	button	
in	Menu	Widget	is	clicked,	and	they	are	only	regenerated	when	
player	enters	an	unknown	file	name'''	

def	load_game(self):	
myLine	=	''	
names	=	[]	
try:	

files	=	open("filenames.txt",	"r")	

28

Emily	Chance-Hill	 	 150229	

	 	 	 myList	=	files.readlines()	
	 	 	 files.close()	
	 	 	 for	line	in	myList:	
	 	 	 	 for	character	in	range(0,len(line)-1):	
	 	 	 	 	 myLine	+=	line[character]	
	 	 	 	 names.append(myLine)	
	 	 	 	 myLine	=	''	
	 	 	 	 '''removes	'\n'	from	text	file	names	to	find	root	
names'''	
	 	 	 if	self.loadname.text	not	in	names:	
	 	 	 	 self.not_found()	
	 	 	 else:	
	 	 	 	 self.error	=	False	
	 	 	 	 mn	=	
self.parent.manager.get_screen('Menu').children[0]	
	 	 	 	 mn.load_game(self.loadname.text)	
	 	 except	FileNotFoundError:	
	 	 	 self.not_found()	
	 	 	 '''opens	text	file	containing	all	saved	filenames,	if	the	name	
	 	 	 the	player	is	trying	to	load	is	not	in	the	text	file,	function	
	 	 	 not_found	is	called(see	next	comments).	if	the	file	
containing	
	 	 	 the	names	cannot	be	found	that	means	there	aren't	any	
saved	files,	
	 	 	 so	the	same	not_found	function	is	called'''	
	 def	not_found(self):	
	 	 if	self.error	==	False:	
	 	 	 gr	=	self.ids.LoadGrid	
	 	 	 self.btn	=	Button(text="There	is	no	existing	file	with	this	
name",	size=(Window.width/2,	Window.height/4),	
pos=(Window.width/2,Window.height*(3/4)),	background_color=(0,0,255,0.5),	
color=(0,0,0,1))	
	 	 	 self.btn2	=	Button(text="Re-type	your	file	name	to	try	
again",	
size=(Window.width/2,Window.height/4),pos=(Window.width/2,Window.heigh
t*(2/4)),	background_color=(0,0,255,0.5),	color=(0,0,0,1))	
	 	 	 gr.add_widget(self.btn)	
	 	 	 gr.add_widget(self.btn2)	
	 	 	 self.error	=	True	
	 	 	
	 	 	 '''If	the	file	name	entered	does	not	exist	within	the	text	file	
of	
	 	 	 saved	names,	the	error	messages	telling	the	player	to	re-
enter	
	 	 	 the	name	appear	in	the	Gridlayout'''	
	 	 	
class	MenuWidget(Widget):	
	 file_no	=	0	
	 def	remove(self):	

29

30	

load	=	self.parent.manager.get_screen('Load').children[0]	
load.remove()	
'''calls	the	error	messages	from	the	load	screen	to	be	removed	
so	that	the	page	is	refreshed.	Called	when	Open	Saved	Game	
button	is	pressed'''	

def	check(self):	
gd	=	self.parent.manager.get_screen('Game').children[0]	
sv	=	self.parent.manager.get_screen('Save').children[0]	
if	gd.been_in_game	==	True	and	gd.complete	==	False:	

sv.remove()	
self.parent.manager.current	=		'Save'	

else:	
self.ids.Save.color	=	0,0,0,0.4	
'''This	function	handles	the	error	that	the	Player	could	

choose	to	
save	a	game	when	the	game	screen	had	not	been	entered,	

which	means	
there	were	no	values	to	save	and	the	program	errored.	I	

made	a	
boolean	value	been_in_game	which	is	set	to	true	when	the	

game	
board	is	created	and	set	back	to	False	when	the	window	

reloads,	
and	while	the	value	is	false	if	the	colour	of	the	save	value	

text	
is	greyed	out	and	the	user	cannot	select	it.'''	

def	save_game(self,	name):	
self.ids.Save.color	=	0,0,0,1	
'''save	colour	text	returned	back	to	normal'''	
gd	=	self.parent.manager.get_screen('Game').children[0]	
sp	=	self.parent.manager.get_screen('Spinner').children[0]	

self.file_no	+=	1	
positions	=	[]	
positions2	=	[]	
positions3	=	[]	
positions4	=[]	
save	=	open("SavedGame"+str(name)+".txt","w")	
positions.append(str(gd.one_pos))	
print("P1",	gd.one_pos)	
positions.append(str(gd.two_pos))	
print("P2",	gd.two_pos)	
positions.append(str(gd.auto_pos))	
print("Computer",	gd.auto_pos)	
positions.append(str(gd.player_number))	
print("Number	of	players",	gd.player_number)	
positions.append(str(gd.level))	
print("Difficulty",	gd.level)	
positions.append(sp.player)	

30

Emily	Chance-Hill	 	 150229	

	 	 print("Current	player",	sp.player)	
	 	 print("player",gd.player_number)	
	 	 print("snakes	positions",	gd.snakes_pos)	
	 	 print("ladder	positions",	gd.ladders_pos)	
	 	 print("sabotage	space	positions",	gd.sabotage)	
	 	 save.writelines("%s\n"	%	item	for	item	in	positions)	
	 	 save.close()	
	 	 save2	=	open("SavedS"+str(name)+".txt","w")	
	 	 for	snake	in	gd.snakes_pos:	
	 	 	 positions2.append(snake)	
	 	 save2.writelines("%s\n"	%	item	for	item	in	positions2)	
	 	 save2.close()	
	 	 save3	=	open("SavedL"+str(name)+".txt","w")	
	 	 for	ladder	in	gd.ladders_pos:	
	 	 	 positions3.append(ladder)	
	 	 save3.writelines("%s\n"	%	item	for	item	in	positions3)	
	 	 save3.close()	
	 	 save4	=	open("SavedB"+str(name)+".txt","w")	
	 	 for	space	in	gd.sabotage:	
	 	 	 print("sabotage",	gd.sabotage)	
	 	 	 positions4.append(space)	
	 	 save4.writelines("%s\n"	%	item	for	item	in	positions4)	
	 	 save4.close()	
	 	 '''makes	separate	text	files	to	save	snakes,	ladders	and	sabotage	
	 	 positions	and	another	for	everything	else.	I	created	them	
separately	
	 	 because	the	amount	of	each	are	not	set,	so	it	is	simpler	to		
	 	 loop	through	the	lines	to	find	out	how	many	there	are	rather		
	 	 than	have	a	set	of	if	statements	for	each	to	find	out	how	many.	
	 	 The	file	name	selected	by	the	user	is	saved	into	the	name	to	make	
	 	 it	identifiable'''	
	 	 	
	 	 	
	 def	load_game(self,name):	
	 	 gd	=	self.parent.manager.get_screen('Game').children[0]	
	 	 ww	=	self.parent.manager.get_screen('Win').children[0]	
	 	 sp	=	self.parent.manager.get_screen('Spinner').children[0]	
	 	 sv	=	self.parent.manager.get_screen('Save').children[0]	
	 	 gd.complete	=	False	
	 	 gd.ladders_pos	=	[]	
	 	 gd.snakes_pos	=	[]	
	 	 gd.sabotage	=	[]	
	 	 gd.loading	=	True	
	 	 ww.restart()	
	 	 print("FILE	FROM	LOAD",	sv.filename.text)	
	 	 try:	
	 	 	 load	=	open("SavedGame"+str(name)+".txt","r")	
	 	 	 saved	=	load.readlines()	
	 	 	 count	=	0	

31

32	

positions	=	[]	
myLine	=	''	
for	line	in	saved:	

for	character	in	range(0,len(line)-1):	
myLine	+=	line[character]	

positions.append(myLine)	
myLine	=	''	
'''removes	the	\n	from	the	lines'''	

gd.one_pos	=	int(positions[0])	
gd.two_pos	=	int(positions[1])	
gd.auto_pos	=	int(positions[2])	
gd.player_number	=	int(positions[3])	
gd.level	=	positions[4]	
print("POS4",	positions[4])	
if	positions[4]	==	"easy":	

rows	=	7	
cols	=	5	

elif	positions[4]	==	"inter":	
rows	=	9	
cols	=	7	

elif	positions[4]	==	"hard":	
rows	=	11	
cols	=	9	

gd.max	=	(rows*cols)-2	
for	space	in	range(1,gd.max):	

gd.possible.append(space)	
'''sets	rows	and	columns	of	game	board	based	on	

difficulty	
level	saved	from	previous	game,	then	sets	

snakesGrid	
attribute	'max'	based	on	this	to	set	attribute	

'possible'	
which	is	used	when	placing	obstacles	on	the	board'''	

sp.player	=	positions[5]	
load.close()	
load2	=	open("SavedS"+str(name)+".txt","r")	
saved2	=	load2.readlines()	
count	=	0	
myLine	=	''	
for	line	in	saved2:	

for	character	in	range(0,len(line)-1):	
myLine	+=	line[character]	

gd.snakes_pos.append(int(myLine))	
myLine	=	''	 	

for	snake	in	gd.snakes_pos:	
gd.possible.remove(snake)	
gd.possible.remove(snake-cols)	

32

Emily	Chance-Hill	 	 150229	

	 	 	 	 if	snake	<(gd.max-cols):	
	 	 	 	 	 gd.possible.remove(snake+cols)	
	 	 	 load2.close()	
	 	 	 load3	=	open("SavedL"+str(name)+".txt","r")	
	 	 	 saved3	=	load3.readlines()	
	 	 	 count	=	0	
	 	 	 myLine	=	''	
	 	 	 for	line	in	saved3:	
	 	 	 	 for	character	in	range(0,len(line)-1):	
	 	 	 	 	 myLine	+=	line[character]	
	 	 	 	 gd.ladders_pos.append(int(myLine))	
	 	 	 	 myLine	=	''	 	
	 	 	 for	ladder	in	gd.ladders_pos:	
	 	 	 	 gd.possible.remove(ladder)	
	 	 	 	 gd.possible.remove(ladder+cols)	
	 	 	 	 if	ladder	>cols:	
	 	 	 	 	 gd.possible.remove(ladder-cols)	
	 	 	 load3.close()	
	 	 	 load4	=	open("SavedB"+str(name)+".txt","r")	
	 	 	 saved4	=	load4.readlines()	
	 	 	 count	=	0	
	 	 	 myLine	=	''	
	 	 	 for	line	in	saved4:	
	 	 	 	 for	character	in	range(0,len(line)-1):	
	 	 	 	 	 myLine	+=	line[character]	
	 	 	 	 gd.sabotage.append(int(myLine))	
	 	 	 	 myLine	=	''	
	 	 	 for	space	in	gd.sabotage:	
	 	 	 	 print	(space)	
	 	 	 	 print	(gd.possible)	
	 	 	 	 gd.possible.remove(space)	
	 	 	 load4.close()	
	 	 	 	
	 	 	 gd.create_buttons(gd.level)	
	 	 	 gd.parent.manager.current	=	'Game'	
	 	 	 '''snakesGrid	attributes	are	set	based	on	the	text	file	
	 	 	 saved	for	that	game.	each	time	a	new	obstacle	is	set,	
	 	 	 that	value	in	the	list	attribute	'possible'	is	removed.'''	
	 	 except	FileNotFoundError:	
	 	 	 print("There	is	no	saved	game")	
	 	 	 self.parent.manager.current	=	'Menu'	
	 	 	 '''if	the	game	is	working	correctly,	this	error	should	never		
	 	 	 occur	because	the	error	checking	when	a	file	name	is	
entered	should	
	 	 	 prevent	it,	but	it	is	another	method	of	error	handling	in	case		
	 	 	 something	is	not	working	in	the	original	error	checking'''	
	
	
class	GameOptionsWidget(Widget):	

33

34	

def	single_player(self):	
gd	=	self.parent.manager.get_screen('Game').children[0]	
gd.auto_pos	=	0	
gd.one_pos	=	0	
gd.player_number	=	1	

def	two_player(self):	
print(self.parent.manager.get_screen('Game'))	
gd	=	self.parent.manager.get_screen('Game').children[0]	
gd.one_pos	=	0	
gd.two_pos	=	0	
gd.player_number	=	2	
'''when,	on	the	options	screen,	either	Single	Player	or	Two	player	
is	selected,	these	functions	are	called	to	set	the	attributes	for	
snakesGrid	so	the	program	knows	whether	to	use	players	one	and	
two	or	one	and	auto'''	

class	DifficultyLevel(Widget):	
def	easy(self):	

self.parent.manager.current	=	'Game'	
gd	=	self.parent.manager.get_screen('Game').children[0]	
gd.level	=	'easy'	
self.set_board()	
gd.create_buttons('easy')	

def	inter(self):	
gd	=	self.parent.manager.get_screen('Game').children[0]	
gd.level	=	'inter'	
self.set_board()	
gd.create_buttons('inter')	
self.parent.manager.current	=	'Game'	

def	hard(self):	
self.parent.manager.current	=	'Game'	
gd	=	self.parent.manager.get_screen('Game').children[0]	
gd.level	=	'hard'	
self.set_board()	
gd.create_buttons('hard')	
'''when	player	selects	difficulty	from	Difficulty	Widget	the	
program	is	brought	to	the	corresponding	function,	so	the	correct	
amount	of	buttons	for	the	board	are	created	and	the	snakesGrid	
attribute	'level'	is	set	to	the	difficulty.	Then,	for	each,	
the	function	'restart'	is	called	from	the	winner	widget	which		
ensures	all	of	the	snakesGrid	attributes	are	set	to	their	original	
values	ready	to	be	altered	in	the	rest	of	the	game'''	

def	set_board(self):	
ww	=	self.parent.manager.get_screen('Win').children[0]	
ww.restart()	

34

Emily	Chance-Hill	 	 150229	

	 	 	 	
class	SabotageWidget(Widget):	
	 btn	=	Button()	
	 def	ahead(self):	
	 	 self.bring_back_color()	
	 	 '''original	text	colour	of	'Behind'	button	is	brought	back'''	
	 	 self.parent.manager.current	=	'Game'	
	 	 gd	=	self.parent.manager.get_screen('Game').children[0]	
	 	 sp	=	self.parent.manager.get_screen('Spinner').children[0]	
	 	 if	sp.player	==	'O':	
	 	 	 gd.one_pos+=	5	
	 	 	 gd.check_for_clashes(1)	
	 	 	 gd.player_pos(1)	
	 	 elif	sp.player	==	'T':	
	 	 	 gd.two_pos	+=	5	
	 	 	 gd.check_for_clashes(2)	
	 	 	 gd.player_pos(2)	
	 	 	 '''from	the	Sabotage	Widget	screen	the	player	can	select	
whether	they	
	 	 	 want	to	go	5	spaces	ahead	or	move	their	opponent	5	spaces	
back.	If	they	
	 	 	 choose	to	move	ahead	their	position	is	increased	by	5,	the	
new	position	
	 	 	 is	checked	in	a	grid	in	snakesGrid	to	make	sure	they	havent	
landed		
	 	 	 on	a	snake	or	ladder	and	their	new	position	is	displayed	in	
snakesGrid	
	 	 	 function	'player_pos'.	The	player	whose	turn	it	is	is	found	in	
	 	 	 Spinner	Widget'''	
	 def	behind(self):	
	 	 self.bring_back_color()	
	 	 '''original	text	colour	of	'Behind'	button	is	returned'''	
	 	 gd	=	self.parent.manager.get_screen('Game').children[0]	
	 	 sp	=	self.parent.manager.get_screen('Spinner').children[0]	
	 	 if	sp.player	==	'O'	and	gd.player_number	==	2:	
	 	 	 print("in	behind	first	if")	
	 	 	 if	gd.two_pos>=5:	
	 	 	 	 gd.two_pos	-=	5	
	 	 	 	 gd.check_for_clashes(2)	
	 	 	 	 gd.player_pos(2)	
	 	 	 	 self.parent.manager.current	=	'Game'	
	 	 	 else:	
	 	 	 	 self.grey_out()	
	 	 if	sp.player	==	'O'	and	gd.player_number	==	1:	
	 	 	 if	gd.auto_pos>=5:	
	 	 	 	 gd.auto_pos	-=	5	
	 	 	 	 gd.check_for_clashes('A')	
	 	 	 	 gd.player_pos('A')	
	 	 	 	 self.parent.manager.current	=	'Game'	

35

36	

else:	
self.grey_out()	

if	sp.player	==	'T':	
if	gd.one_pos>=5:	

gd.one_pos	-=	5	
gd.check_for_clashes(1)	
gd.player_pos(1)	
self.parent.manager.current	=	'Game'	

else:	
self.grey_out()	
'''if	player	selects	behind,	the	program	checks	how	

many	players	there	
are	and	which	players	turn	it	is	to	decide	which	

player	position	to	
change.	The	correct	player	is	then	taken	back	5	

spaces,	the	new	position	
checked	for	clashes	with	snakes	and	ladders	then	the	

piece	is	moved.	
If	the	opposing	player	has	not	yet	reached	5	spaces	

along	the	board	
the	button	text	is	greyed	out	and	the	player	is	not	

allowed	to	select	
it.	For	both	this	button	press	and	'ahead'	button,	the	

current	screen	
is	changed	to	the	game	screen	to	continue	with	the	

game'''	
def	show(self):	

sp	=	self.parent.manager.get_screen('Spinner').children[0]	
gd	=	self.parent.manager.get_screen('Game').children[0]	
gr	=	self.ids.Sab	
gr.remove_widget(self.btn)	
'''previous	banner	is	removed	from	grid	layout	ready	for	new	one'''	
if	gd.player_number	==	2:	

if	sp.player	==	'O':	
player	=	"Player	1"	

elif	sp.player	==	'T':	
player	=	"Player	2"	

message	=	str(player)+",	you	spun	a	"+str(sp.spin)	
btn	=	Button(text=message,	font_size=(120),	

pos=(0,Window.height*(3/4)),	size=(Window.width,(Window.height)/4),	
color=(0,0,255,0.5))	

btn.background_normal	=	'images/blank.png'	
gr.add_widget(btn)	

elif	gd.player_number	==	1:	
message	=	"Player	1,	you	spun	a	"+str(sp.spin)	
message2	=	"The	Computer	spun	a	"+str(sp.auto_spin)	
btn	=	Button(text=message,	font_size=(120),	

pos=(0,Window.height*(3/4)),	size=(Window.width,(Window.height)/8),	
color=(0,0,255,0.5))	

36

Emily	Chance-Hill	 150229	

btn2	=	Button(text=message2,	font_size=(120),	
pos=(0,(Window.height*(7/8))),	size=(Window.width,(Window.height)/8),	
color=(0,0,255,0.5))	

gr.add_widget(btn)	
gr.add_widget(btn2)	
btn.background_normal	=	'images/blank.png'	
btn2.background_normal	=	'images/blank.png'	
'''this	function	makes	a	banner	at	the	top	of	the	Sabotage	

Widget	to	
tell	the	player	what	they	and,	is	applicable,	the	computer	

has	spun	
so	hat	they	can	more	easily	keep	track	of	their	positions.	

The	spin	
values	are	retrieved	from	the	spinner	widget'''	

def	grey_out(self):	
self.ids['Behind'].color	=	0,0,0,0.3	

def	bring_back_color(self):	
self.ids['Behind'].color	=	0,0,0,1	
'''called	to	change	the	text	colour	of	Behind	button	depending	on	
whether	it	is	a	valid	option	or	not'''	

class	snakesGrid(Widget):	
one_pos	=	0	
two_pos	=	0	
complete	=	False	
player_number	=	0	
auto_pos	=	0	
level	=	""	
snakes_pos	=	[]	
ladders_pos	=	[]	
max	=	0	
possible	=	[]	
sabotage	=	[]	
loading	=	False	
been_in_game	=	False	
'''all	attributes	made	here	so	they	can	be	referenced	using	self	
throughout	the	whole	class'''	

def	create_buttons(self,dl):	
self.been_in_game	=	True	
self.complete	=	False	
mn	=	self.parent.manager.get_screen('Menu').children[0]	
mn.ids.Save.color	=	0,0,0,1	
colours	=	

[(0,128,128,0.5),(255,0,0,0.4),(255,255,0,0.3),(0,0,255,0.5)]	

'''snakes	and	ladders	lists	only	deleted	in	their	

37

38	

own	functions,	so	shouldn't	have	to	add	them	in'''	
gl	=	self.ids.Grid	
if	dl	==	"easy":	

gl.rows	=	7	
gl.cols	=	5	
ladders	=	3	
snakes	=	1	
sabotage	=	3	
font	=	40	

elif	dl	==	"inter":	
gl.rows	=	9	
gl.cols	=	7	
ladders	=	5	
snakes	=	5	
sabotage	=	6	
font	=	35	

elif	dl	==	"hard":	
gl.rows	=	11	
gl.cols	=	9	
ladders	=	5	
snakes	=	7	
sabotage	=	8	
font	=	30	
'''dl	passed	in	from	Difficult	Widget	class	when	player	

selects	
button	with	difficulty	on.	Used	to	decide	how	many	rows,	
columns	and	obstacles	the	board	should	have'''	

total_btns	=	gl.cols	*	gl.rows	
self.max	=	(gl.cols*gl.rows)-2	
for	space	in	range(1,self.max):	

self.possible.append(space)		
'''possible	attribute	made	for	use	when	positioning	

obstacles,	
based	on	size	of	board	from	st	rows	and	columns'''	

if	self.loading	==	False:	
self.add_snakes(snakes)	
self.add_ladders(ladders)	
self.add_sabotage_spaces(sabotage)	
self.one_pos	=	0	
self.two_pos	=	0	

else:	
pass	
'''self.loading	is	set	to	True	when	the	program	enters	the	
Load	Game	function	in	the	Menu	Widget.	If	the	game	is	

loading	
the	obstacles	do	not	need	to	be	created	because	they	are		
already	set	from	the	saved	game.	The	player	positions	also	

38

Emily	Chance-Hill	 150229	

do	not	need	to	be	set	back	to	zero	because	the	player	
positions	

were	saved'''	
for	i	in	range(1,total_btns-1):	

colour	=	colours[i%4]	
j	=	total_btns	-	1	-	i	
print("Creating	",j)	
btn	=	Button(id=str(j),	text=str(j),	color=(0,0,0,1),	

background_color	=	colour,	font_size=font)	
if	j	in	self.snakes_pos:	

btn.background_normal	=	'images/snake1.png'	
btn.text	=	''	

elif	j	in	self.ladders_pos:	

btn.background_color	=	(0,0,255,0.5)	
btn.background_normal	=	'images/ladder1.png'	
btn.background_down	=	'images/angry.png'	
btn.isLaddder	=	True	
btn.text	=	''	

elif	j	in	self.sabotage:	
btn.text	=	"SABOTAGE"	

else:	
btn.text	=	str(j)	

gl.add_widget(btn)	
'''The	buttons	are	created	based	on	the	total	buttons	based	

on	
the	difficulty	of	the	game.	The	background	colours	are	

decided	
by	looping	through	the	list	of	available	colours	and	the	text	
for	the	number	space	is	made	from	how	far	the	loop	the	

button	
is	made.	If	the	button	position	is	in	either	the	list	of	snakes,		
sabotage	or	the	list	of	ladder	positions,	then	the	background	

image	
is	changed	to	the	corresponding	image	or	text.	If	the	image	

is	a	ladder	
i	manually	set	the	background	colour	to	blue	as	some	of	the	
other	colours	were	not	very	visible.	'''	

colour	=	colours[(i+1)%4]	
btn1	=	

Button(id="Spinner",text="Spin",color=(0,0,0,1),background_color=colour,	
font_size=font)	

btn1.bind(on_press	=	self.spinner)	
gl.add_widget(btn1)	
colour	=	colours[(i+2)%4]	
btn2	=	Button(id="Menu",	

text="Menu",color=(0,0,0,1),background_color=colour,	font_size=font)	
btn2.bind(on_press	=	self.menu)	

39

40	

gl.add_widget(btn2)	
'''the	menu	and	spinner	buttons	are	created	at	the	end	of	
the	loop,	binding	their	corresponding	functions	to	them	
and	deciding	background	colours	from	the	next	two	colours	
from	the	list'''	
if	self.loading	==	True:	

if	self.player_number	==	2:	
self.player_pos(1)	
self.player_pos(2)	

elif	self.player_number	==	1:	
self.player_pos(1)	
self.player_pos('A')	

self.loading	=	False	
'''if	the	game	is	being	loaded	then	it	means	the	program	has	
not	been	in	move_piece,	which	is	called	from	spinner	widget,	
because	the	position	already	exists	without	being	spun.		
Because	of	this,	the	function	to	position	the	player	pieces	
on	the	board	is	called	separately.	Immediately	after,		
self.loading	is	set	to	False	because	the	game	can	now	run	
normally'''	

def	player_pos(self,player):	
gl	=	self.ids.Grid	
max_high	=	gl.rows	
if	player	==	1:	

if	self.one_pos	==	1	or	self.one_pos	==	2:	
high	=	0	

elif	(self.one_pos+2)%gl.cols	==	0:	
high	=	((self.one_pos+2)/gl.cols)-1	

else:	
high	=	(round(((self.one_pos+2)/gl.cols)+0.5))-1	
'''variable	'high'	is	based	on	the	value	of	the	player	

position	
divided	by	the	width	of	the	board'''		

if	self.one_pos	==	0:	
pos	=	10000,	0	

else:	
from_right	=	(self.one_pos+2)%gl.cols	#number	of	

spaces	from	right	
across	=	gl.cols-from_right	#spaces	from	left	
if	across	==	gl.cols:	

across	=	0	
print("HIGH",	high)	
print("ACROSS",	across)	
width	=	Window.width	
height	=	Window.height	
pos	=	width*(across/gl.cols),height*(high/max_high)	

self.ids['p1'].pos	=	pos	

40

Emily	Chance-Hill	 	 150229	

	 	 	 '''if	player	position	is	zero,	position	player	piece	so	it	is	
	 	 	 not	visible	on	board.	If	the	player	has	a	valid	position,		
	 	 	 variable	across	is	based	on	how	many	spaces	are	left	over	
when		
	 	 	 player	position	is	divided	by	width	of	board.	(player	
position		
	 	 	 has	2	added	to	it	because	of	menu	and	spinner	buttons	
taking	up	
	 	 	 space	on	bottom	row.)	The	position	is	then	set	by	
multiplying	
	 	 	 the	window	width	and	height	by	the	fraction	of	the	
variables	high	
	 	 	 and	across	divided	by	the	maximum	high	or	across	the	
board	goes.'''	
	 	 elif	player	==	2:	
	 	 	 	
	 	 	 if	self.two_pos	==	1	or	self.two_pos	==	2:	
	 	 	 	 high	=	0	
	 	 	 elif	(self.two_pos+2)%gl.cols	==	0:	
	 	 	 	 high	=	((self.two_pos+2)/gl.cols)-1	
	 	 	 else:	
	 	 	 	 high	=	(round(((self.two_pos+2)/gl.cols)+0.5))-1	
	 	 	 	
	
	 	 	 if	self.two_pos	==	0:	
	 	 	 	 pos	=	10000,	0	
	 	 	 else:	
	 	 	 	 from_right	=	(self.two_pos+2)%gl.cols	#number	of	
spaces	from	right	
	 	 	 	 across	=	gl.cols-from_right	#spaces	from	left	
	 	 	 	 if	across	==	gl.cols:	
	 	 	 	 	 across	=	0	
	 	 	 	 print("HIGH",	high)	
	 	 	 	 print("ACROSS",	across)	
	 	 	 	 width	=	Window.width	
	 	 	 	 height	=	Window.height	
	 	 	 	 pos	=	width*(across/gl.cols),height*(high/max_high)	
	 	 	 	 	
	 	 	 	 	
	 	 	 self.ids['p2'].pos	=	pos	
	 	 elif	player	==	'A':	
	 	 	 if	self.auto_pos	==	1	or	self.auto_pos	==	2:	
	 	 	 	 high	=	0	
	 	 	 elif	(self.auto_pos+2)%gl.cols	==	0:	
	 	 	 	 high	=	((self.auto_pos+2)/gl.cols)-1	
	 	 	 else:	
	 	 	 	 high	=	(round(((self.auto_pos+2)/gl.cols)+0.5))-1	
	 	 	 if	self.auto_pos	==	0:	
	 	 	 	 pos	=	10000,	0	

41

42	

else:	
from_right	=	(self.auto_pos+2)%gl.cols	#number	of	

spaces	from	right	
across	=	gl.cols-from_right	#spaces	from	left	
if	across	==	gl.cols:	

across	=	0	
print("HIGH",	high)	
print("ACROSS",	across)	
width	=	Window.width	
height	=	Window.height	
pos	=	width*(across/gl.cols),height*(high/max_high)	

self.ids['pA'].pos	=	pos	
'''The	same	process	is	repeated	for	player	two	and	the	auto	
player'''	

def	move_piece(self,spin,player):	
print	("Player	"+str(player)+":")	
print("Spin	is	"+str(spin))	
ww	=	self.parent.manager.get_screen('Win').children[0]	
sp	=	self.parent.manager.get_screen('Spinner').children[0]	
if(player	==	1):	

self.one_pos	+=	spin	
if	self.one_pos	>=self.max:	

self.one_pos	=	self.max	
ww.display_winner(1)	

if	self.player_number	==	2:	
if	self.one_pos	>	0	and	self.two_pos	>	0:	

if	self.one_pos	==	self.two_pos:	
if	self.two_pos	==	(self.max-1):	

self.one_pos	=	self.max	
ww.display_winner(1)	

else:	
self.one_pos	+=	1	

elif	self.player_number	==	1:	
if	self.one_pos	>	0	and	self.auto_pos	>0:	

if	self.one_pos	==	self.auto_pos:	
if	self.auto_pos	==	(self.max-1):	

self.one_pos	=	self.max	
ww.display_winner(1)	

else:	
self.one_pos+=1	

sp.display_spin()	
self.check_for_clashes(1)	
self.player_pos(1)	
print("Position	is	"+str(self.one_pos))	
'''the	current	spin	passed	in	as	a	parameter	from	Spinner	

Widget	
is	added	onto	the	player	position.	Which	player's	position	it	
is	added	to	is	decided	by	the	other	parameter	'player'	also	

42

Emily	Chance-Hill	 	 150229	

	 	 	 passed	from	Spinner	Widget.	If	the	new	addition	means	the		
	 	 	 player's	position	is	now	above	or	equal	to	the	maximum	
	 	 	 position	of	the	board	(found	from	snakesGrid	attribute	
'max')	
	 	 	 then	the	display	winner	function	from	the	winner	widget	is		
	 	 	 called	with	that	player	as	a	parameter.	If	both	of	the	player	
	 	 	 positions	are	valid,	and	if	they	are	the	same	as	each	other,		
	 	 	 if	the	opposing	player	position	is	one	less	than	the	
maximum	
	 	 	 then	when	the	player	skips	over	that	space	(because	two	
	 	 	 players	cannot	be	on	the	same	space)	that	means	the	
current		
	 	 	 player	has	won,	so	the	program	also	calls	'display	winner'	
	 	 	 The	screen	to	tell	the	player	what	they	spun	is	then		
	 	 	 called,	the	new	position	is	checked	for	clashes	with	board	
	 	 	 obstacles	in	function	'check_for_clashes'	and	the	player		
	 	 	 piece	is	then	moved	to	the	correct	position	in	function	
	 	 	 "player	pos"'''	
	 	 elif(player	==	2):	
	 	 	 self.two_pos	+=	spin	
	 	 	 if	self.two_pos	>=	self.max:	
	 	 	 	 self.two_pos	=	self.max	
	 	 	 	 ww.display_winner(2)	
	 	 	 if	self.one_pos	>	0	and	self.two_pos	>	0:	
	 	 	 	 if	self.one_pos	==	self.two_pos:	
	 	 	 	 	 if	self.one_pos	==	(self.max-1):	
	 	 	 	 	 	 self.two_pos	=	self.max	
	 	 	 	 	 	 ww.display_winner(2)	
	 	 	 	 	 else:	
	 	 	 	 	 	 self.two_pos	+=	1	
	 	 	 sp.display_spin()	
	 	 	 self.check_for_clashes(2)	
	 	 	 self.player_pos(2)	
	 	 	 print("Position	is	"+str(self.two_pos))	
	 	 elif	player	==	'A':	
	 	 	 self.auto_pos	+=	spin	
	 	 	 if	self.auto_pos	>=	self.max:	
	 	 	 	 self.auto_pos	=	self.max	
	 	 	 	 ww.display_winner('A')	
	 	 	 if	self.one_pos	>	0	and	self.auto_pos	>	0:	
	 	 	 	 if	self.one_pos	==	self.auto_pos:	
	 	 	 	 	 if	self.one_pos	==	(self.max-1):	
	 	 	 	 	 	 self.auto_pos	=	self.max	
	 	 	 	 	 	 ww.display_winner('A')	
	 	 	 	 	 else:	
	 	 	 	 	 	 self.auto_pos	+=	1	
	 	 	 self.check_for_clashes('A')	
	 	 	 self.player_pos('A')	
	 	 	 print("Position	is	"+str(self.auto_pos))	

43

44	

else:	
pass	
'''the	same	process	is	repeated	for	if	the	current	player	is	
either	player	2	or	the	computer'''	

def	display_obstacle(self,type,player):	
if	player	==	1:	

p	=	'Player	One	'	
elif	player	==	2:	

p	=	'Player	Two	'	
elif	player	==	'a':	

p	=	'The	Computer	'	
if	type	==	'snake':	

t	=	'Oops,	'	
elif	type	==	'ladder':	

t	=	'Lucky,	'	
message	=	t+p+"has	landed	on	a	"+type	
ob	=	self.parent.manager.get_screen('Obstacle').children[0]	
sp	=	self.parent.manager.get_screen('Spinner').children[0]	
message2	=	p+"has	rolled	a	"+str(sp.spin)	
self.parent.manager.current	=	'Obstacle'	
ob.display(message,message2)	

def	check_for_clashes(self,player):	
ww	=	self.parent.manager.get_screen('Win').children[0]	
sb	=	self.parent.manager.get_screen('Sabotage').children[0]	
gl	=	self.ids.Grid	
if	player	==	1:	

for	snake	in	self.snakes_pos:	
if	snake	==	self.one_pos:	

self.one_pos	-=	gl.cols	
self.display_obstacle('snake',1)	

if	self.two_pos	==	self.one_pos:	
self.one_pos	+=	1	

for	ladder	in	self.ladders_pos:	
if	ladder	==	self.one_pos:	

self.one_pos	+=	gl.cols	
self.display_obstacle('ladder',1)	

if	self.one_pos	==	self.two_pos:	
self.one_pos	+=	1	

if	self.one_pos	==	self.max:	
ww.display_winner(1)	

for	space	in	self.sabotage:	
if	space	==	self.one_pos:	

self.parent.manager.current	=	'Sabotage'	
sb.show()	

44

Emily	Chance-Hill	 150229	

if	self.one_pos	>=	self.max:	
ww.display_winner(1)	
'''this	function	is	called	for	when	a	new	player	

position	has		
been	created	to	check	whether	the	player	has	landed	

on	a	space	
containing	an	obstacle.	The	program	loops	through	

each	list	
of	positions	for	each	of	the	types	of	obstacle	and	

changed	the		
player	position	accordingly,	or,	if	it	is	a	sabotage	

space,	calls	
the	function	to	display	the	sabotage	screen.	If	this	

new	position	
lands	the	player	on	the	same	space	as	the	other	

player,	it	is		
moved	one	more	forward,	or	the	final	space	on	the	

board,	then		
the	winner	widget	is	called	to	display	them	as	the	

winner'''	

elif	player	==	2:	

for	snake	in	self.snakes_pos:	
if	snake	==	self.two_pos:	

self.two_pos	-=	gl.cols	
self.display_obstacle('snake',2)	

if	self.two_pos	==	self.one_pos:	
self.two_pos	+=	1	

for	ladder	in	self.ladders_pos:	
if	ladder	==	self.two_pos:	

self.two_pos	+=	gl.cols	
self.display_obstacle('ladder',2)	

if	self.two_pos	==	self.one_pos:	
self.two_pos	+=	1	

if	self.two_pos	==	self.max:	
ww.display_winner(2)	

for	space	in	self.sabotage:	
if	space	==	self.two_pos:	

self.parent.manager.current	=	'Sabotage'	
sb.show()	

if	self.two_pos	>=	self.max:	
ww.display_winner(2)	

elif	player	==	'A':	
for	snake	in	self.snakes_pos:	

45

46	

if	snake	==	self.auto_pos:	
self.auto_pos	-=	gl.cols	
self.display_obstacle('snake','a')	

if	self.auto_pos	==	self.one_pos:	
self.auto_pos	+=	1	

for	ladder	in	self.ladders_pos:	
if	ladder	==	self.auto_pos:	

self.auto_pos	+=	gl.cols	
self.display_obstacle('ladder','a')	

if	self.auto_pos	==	self.one_pos:	
self.auto_pos	+=	1	

if	self.auto_pos	==	self.max:	
ww.display_winner('A')	

if	self.auto_pos	>=	self.max:	
ww.display_winner('A')	

else:	
pass	
'''the	same	process	is	repeated	for	the	other	two	players	
depending	on	whose	turn	it	is,	based	on	the	'player'		
passed	from	move_piece'''	

def	spinner(self,instance):	
self.parent.manager.current	=	'Spinner'	
sp	=	self.parent.manager.get_screen('Spinner').children[0]	
sp.banner()	

def	menu(self,instance):	
self.parent.manager.current	=	'Menu'	
'''these	two	functions	are	bound	to	the	menu	and	spinner	
buttons	created	in	create_buttons	function.	They	have	both	
self	and	the	instance	of	the	button	passed	in	to	be	able	to	
be	attached	to	the	buttons.	They	change	the	current	screen	
the	appropriate	screen	for	the	button,	and	the	banner		
displaying	which	player	needs	to	make	the	spin	is	made	
in	a	function	in	Spinner	Widget'''	

def	add_sabotage_spaces(self,	number):	
for	i	in	range(number):	

space	=	random.choice(self.possible)	
self.sabotage.append(space)	
self.possible.remove(space)	
'''function	that	creates	sabotage	spaces	based	on	which	
spaces	are	still	available,	found	from	snakesGrid	attribute		
'possible',	then	position	is	deleted	from	possible.	"number"	
is	passed	in	from	create_buttons	function	based	on	
difficulty	level	of	game'''	

def	add_snakes(self,	number):	

46

Emily	Chance-Hill	 150229	

self.snakes_pos	=	[]	
gd	=	self.parent.manager.get_screen('Game').children[0]	
gl	=	self.ids.Grid	
max	=	gd.max-1	
for	i	in	range(number):	

pos	=	0	
while	pos	not	in	range	(gl.cols,max)	or	(pos-gl.cols)	not	in	

self.possible	or	(pos+gl.cols)	not	in	self.possible:	
print("POS",	self.possible)	
pos	=	random.choice(self.possible)	

self.possible.remove(pos)	
self.possible.remove(pos-gl.cols)	
if	pos	<(max-gl.cols):	

self.possible.remove(pos+gl.cols)	
self.snakes_pos.append(pos)	
'''snakes	positions	list	is	deleted	as	this	function	is	only		
called	at	the	beginning	of	each	game.	maximum	position		
allowed	is	set	to	one	less	than	snakesGrid	max	because	if	
there	was	a	snake	on	the	end	space	nobody	could	win.	

"number"	
passed	in	from	create_buttons	based	on	difficulty	level.	If	
position	generated	is	not	in	the	correct	range(at	least	one	
row	up	and	not	on	the	final	square)	or	the	spaces	above	it	

and	
below	it	are	not	in	"possible",	the	position	keeps	being	
generated.	Then	all	the	necessary	values	are	removed	from	
self.possible	ready	for	the	next	obstacle	to	be	set.	The	new		
position	is	added	to	the	list	of	snake	positions'''	 	

def	add_ladders(self,	number):	
self.ladders_pos	=	[]	
print("adding	ladders")	
gd	=	self.parent.manager.get_screen('Game').children[0]	
gl	=	self.ids.Grid	
print	(gd.level)	
for	i	in	range(number):	

pos	=	0	
print	(self.possible)	
while	pos	not	in	range(1,(gd.max-gl.cols))	or	(pos-gl.cols)	

not	in	self.possible	or	(pos+gl.cols)	not	in	self.possible:	
print("POS",	self.possible)	
pos	=	random.choice(self.possible)	
print("pos	current",	pos)	

print	(pos)	
self.possible.remove(pos)	
self.possible.remove(pos+gl.cols)	
if	pos	>	gl.cols:	

self.possible.remove(pos-gl.cols)	

47

48	

self.ladders_pos.append(pos)	
'''generating	ladders	is	nearly	identical	to	setting	the	

snakes,	
except	the	acceptable	range	it	can	be	positioned	changes	

from	
having	to	be	at	least	one	row	above	the	minimum,	to	one	

row	below	
the	maximum'''	

class	ObstacleWidget(Widget):	
def	display(self,message,message2):	

btn	=	Button(text=message,	font_size=80,color	=	(0,0,255,0.4),	
size=(Window.width,(Window.height-300)/2),	pos=(0,300))	

btn.background_normal	=	'images/blank.png'	
self.ids.ObGrid.add_widget(btn)	 	
btn2	=	Button(text=message2,	font_size=80,	color	=	(0,0,255,0.4),	

size	=(Window.width,	(Window.height-300)/2),	pos=(0,((Window.height-
300)/2)+300))	

btn2.background_normal	=	'images/blank.png'	
self.ids.ObGrid.add_widget(btn2)	
'''message	is	passed	from	display_obstacle	function	in	snakesGrid	
based	on	the	player	and	the	obstacle	it	involved.	Uses	message	in	
a	separate	screen	with	a	button	to	tell	the	player	when	they	have		
encountered	an	obstacle	and	what	it	was'''	

class	WinnerWidget(Widget):	

def	display_winner(self,player):	
self.parent.manager.current	=	'Win'	
gd	=	self.parent.manager.get_screen('Game').children[0]	
gd.complete	=	True	
if	player	==	'A':	

self.ids.one.text	=	"The	computer	has	won"	
else:	

self.ids.one.text	=	"The	Winner	is	Player	"+str(player)	
'''edits	an	existing	button	in	the	winner	widget	scren	to	tell	

the	player	
who	has	won.	player	is	passed	from	wherever	the	winner	

has	been	
found,	getting	the	current	player	from	the	spinner	widget'''

def	restart(self):	
grid	=	self.parent.manager.get_screen('Game').children[0]	
sab	=	self.parent.manager.get_screen('Sabotage').children[0]	
grid.possible	=	[]	
grid.sabotage	=	[]	
grid.one_pos	=	0	
grid.two_pos	=	0	
grid.auto_pos	=	0	
grid.ids['p1'].pos	=	10000,0	

48

Emily	Chance-Hill	 	 150229	

	 	 grid.ids['p2'].pos	=	10000,0	
	 	 grid.ids['pA'].pos	=	10000,0	
	 	 grid.ids['Grid'].clear_widgets()	
	 	 self.parent.manager.current	=	'Game'	
	 	 '''called	whenever	the	board	restarts-	so	from	when	the	player		
	 	 selects	the	difficulty	from	the	menu.	sets	all	the	player	positions		
	 	 to	be	off	screen	and	not	visible,	zeroes	out	the	possible	and	
	 	 sabotage	space	lists	as	well	as	zeroing	the	player	positions.		
	 	 It	also	clears	all	the	buttons	of	the	game	board	so	that	the	can	
	 	 be	remade	in	the	correct	amount	in	create_buttons.	The	screen	is		
	 	 then	changed	to	the	game	screen	because	it	is	ready	to	play'''	 	
class	SpinnerWidget(Widget):	
	 player	=	'O'	
	 spin	=	0	
	 auto_spin	=	0	
	 btn	=	Button()	
	 	
	 	
	 def	banner(self):	
	 	 self.remove_widget(self.btn)#button	removed	before	remade	
	 	 sg	=	self.ids.SGrid	
	 	 gd	=	self.parent.manager.get_screen("Game").children[0]	
	 	 if	gd.player_number	==	2:	
	 	 	 if	self.player	==	'T':#player	hasn't	been	reset	yet,	done	
on_press	
	 	 	 	 message	=	"Player	1,	Click	to	Spin"	
	 	 	 elif	self.player	==	'O':	
	 	 	 	 message	=	"Player	2,	Click	to	Spin"	
	 	 else:	
	 	 	 message	=	"Player	1,	Click	to	Spin"	
	 	 self.btn	=	Button(text=message,size=((Window.width),	100),pos=	
(0,	(Window.height-100)),background_color=	(0,255,0,0.7),	font_size=100)	
	 	 sg.add_widget(self.btn)	
	 	 '''creates	the	banner	at	the	top	of	the	screen	to	tell	the		
	 	 players	whose	turn	it	is	to	spin.	called	when	the	spinner	
	 	 button	from	the	snkesGrid	board	is	pressed.'''	 	
	 	
	 def	do_spin(self):	
	 	 self.parent.manager.current	=	'Display'	
	 	 self.spin	=	random.randint(1,6)	
	 	 gd	=	self.parent.manager.get_screen('Game').children[0]	
	 	 if	gd.player_number	==	2:	
	 	 	 if	self.player	==	'O':	
	 	 	 	 self.player	=	'T'	
	 	 	 	 gd.move_piece(self.spin,2)	
	 	 	 else:	
	 	 	 	 self.player	=	'O'	
	 	 	 	 gd.move_piece(self.spin,1)	
	 	 elif	gd.player_number	==	1:	

49

50	

self.auto_spin	=	random.randint(1,6)	
gd.move_piece(self.spin,1)	
gd.move_piece(self.auto_spin,'A')	
'''called	when	spinner	image	in	spinner	widget	screen	is	
pressed.	determines	how	many	players	where	are	based	on	
the	snakesGrid	attribute	player_number.	If	it	is	two	player	
the	current	player	is	changed	and	the	function	move_piece	
is	called	to	check	and	position	the	player	with	the	new	
randomly	generated	spin	added	to	it.	If	the	game	is	single	
player,	the	player	is	not	changed	as	the	computer's	turn	is	
automatic,	and	both	player	one	and	the	computer	are		
positioned	with	their	random	spins.	The	current	screen		
is	changed	to	display	to	tell	the	players	what	has	been	

spun'''	

def	display_spin(self):	
ds	=	self.parent.manager.get_screen('Display').children[0]	
ds.show()	
'''called	from	move_piece	after	the	spin	has	been	decided,	
to	show	the	player	what	has	been	spun'''	

class	DisplayWidget(Widget):	
def	show(self):	

self.parent.manager.current	=	'Display'	
sp	=	self.parent.manager.get_screen('Spinner').children[0]	
gd	=	self.parent.manager.get_screen('Game').children[0]	
gr	=	self.ids.Dis	
if	gd.player_number	==	2:	

if	sp.player	==	'O':	
player	=	"Player	1"	

elif	sp.player	==	'T':	
player	=	"Player	2"	

message	=	str(player)+",	you	spun	a	"+str(sp.spin)	
btn	=	Button(text=message,	font_size=(120),	pos=(0,300),	

size=(Window.width,(Window.height-300)),	color=(0,0,255,0.5))	
btn.background_normal	=	'images/blank.png'	
gr.add_widget(btn)	

elif	gd.player_number	==	1:	
message	=	"Player	1,	you	spun	a	"+str(sp.spin)	
message2	=	"The	Computer	spun	a	"+str(sp.auto_spin)	
btn	=	Button(text=message,	font_size=(120),	pos=(0,300),	

size=(Window.width,(Window.height-300)/2),	color=(0,0,255,0.5))	
btn2	=	Button(text=message2,	font_size=(120),	

pos=(0,300+(Window.height-300)/2),	size=(Window.width,(Window.height-
300)/2),	color=(0,0,255,0.5))	

gr.add_widget(btn)	
gr.add_widget(btn2)	
btn.background_normal	=	'images/blank.png'	
btn2.background_normal	=	'images/blank.png'	

50

Emily	Chance-Hill	 	 150229	

	 	 	 '''if	the	number	of	players	from	snakesGrid	attribute	
player_number	
	 	 	 is	two,	the	button	is	made	with	either	"player	one"	or	
"player	two"	
	 	 	 with	a	blank	background	from	a	png	image	and	the	current	
spin	found	
	 	 	 from	the	spinner	widget.	If	it	is	single	player,	two	buttons	
are		
	 	 	 made	to	display	what	the	computer	and	player	1	spun,	
using	"spin"	
	 	 	 and	"auto_spin"	attributes	from	the	winner	widget'''	 	
	 	 	
class	WorkingVersionCApp(App):	
									
	 def	build(self):	
	 	 sm	=	ScreenManager(transition	=		FadeTransition())	
	 	 	
	 	 mscreen	=	Screen(name='Menu')	
	 	 mscreen.add_widget(MenuWidget())	
	 	 wscreen	=	Screen(name='Win')	
	 	 wscreen.add_widget(WinnerWidget())	
	 	 sscreen	=	Screen(name='Spinner')	
	 	 sscreen.add_widget(SpinnerWidget())	
	 	 gscreen	=	Screen(name='Game')	
	 	 gscreen.add_widget(snakesGrid())	
	 	 oscreen	=	Screen(name='Options')	
	 	 oscreen.add_widget(GameOptionsWidget())	
	 	 dscreen	=	Screen(name='Difficulty')	
	 	 dscreen.add_widget(DifficultyLevel())	
	 	 bscreen	=	Screen(name	=	'Sabotage')	
	 	 bscreen.add_widget(SabotageWidget())	
	 	 pscreen	=	Screen(name	=	'Display')	
	 	 pscreen.add_widget(DisplayWidget())	
	 	 vscreen	=	Screen(name	=	'Save')	
	 	 vscreen.add_widget(SaveWidget())	
	 	 lscreen	=	Screen(name	=	'Load')	
	 	 lscreen.add_widget(LoadWidget())	
	 	 obscreen	=	Screen(name	=	'Obstacle')	
	 	 obscreen.add_widget(ObstacleWidget())	
	 	 	
	 	 sm.add_widget(wscreen)	
	 	 sm.add_widget(mscreen)	
	 	 sm.add_widget(sscreen)	
	 	 sm.add_widget(gscreen)	
	 	 sm.add_widget(oscreen)	
	 	 sm.add_widget(dscreen)	
	 	 sm.add_widget(bscreen)	
	 	 sm.add_widget(pscreen)	
	 	 sm.add_widget(vscreen)	

51

52	

sm.add_widget(lscreen)	
sm.add_widget(obscreen)	
sm.current='Menu'	

return	sm	
'''the	widgets	made	in	the	kv	file	are	turned	into	screens	and	
the	classes	of	widgets	in	the	py	file	are	added	to	them	so	that	
when	referencing	a	particular	widget	the	program	doesn't	make	
separate	instances.	all	of	these	screens	are	then	added	to	the		
screen	manager	'''	

WorkingVersionCApp().run()	

<<Kivy	File>>	

<snakesGrid>:	
				name:'Game'	

GridLayout:	
id:	Grid	
size:root.width,root.height	

Button:	
id:	p1	
background_normal:	'images/player1.png'	
size:	100,100	

Button:	
id:	p2	
background_normal:	'images/player2.png'	
size:	100,100	

Button:	
id:	pA	
background_normal:	'images/player3.png'	
size:	100,100	

<DifficultyLevel>:	
name:	'Difficulty'	
Button:	

size:	(root.width)/2,(root.height)/2	
text:	'Easy'	
on_press:	root.easy()	
pos:	0,0	
background_color:	0,255,255,0.3	
color:	0,0,0,1	
font_size:	40	

Button:	
size:	(root.width)/2,(root.height)/2	
text:	'Intermediate'	
on_press:	root.inter()	
pos:	0,	(root.height)/2	

52

Emily	Chance-Hill	 	 150229	

	 	 background_color:	255,255,0,0.3	
	 	 color:	0,0,0,1	
	 	 font_size:	40	
	 Button:	
	 	 size:	(root.width)/2,(root.height)/2	
	 	 text:	'Hard'	
	 	 on_press:	root.hard()	
	 	 pos:	(root.width)/2,	(root.height)/2	
	 	 background_color:	0,0,255,0.5	
	 	 color:	0,0,0,1	
	 	 font_size:	40	
	 Button:	
	 	 text:	"Back"	
	 	 on_press:	root.parent.manager.current	=	'Options'	
	 	 size:	(root.width)/2,(root.height)/2	
	 	 pos:	(root.width)/2,0	
	 	 background_color:	255,0,0,0.4	
	 	 color:	0,0,0,1	
	 	 font_size:	40	
	 	 	
	
<MenuWidget>:	
	 name:	'Menu'	
	 GridLayout:	
	 	 Button:	
	 	 	 background_color:	255,0,0,0.4	
	 	 	 size:(root.width)/2,(root.height)/2	
	 	 	 pos:	0,(root.height)/2	
	 	 	 text:"Play	Game"	
	 	 	 color:	0,0,0,1	
	 	 	 font_size:	40	
	 	 	 on_press:	
	 	 	 	 root.parent.manager.current	=	'Options'	
	 	 	 	 	
	 	 Button:	
	 	 	 id:	Save	
	 	 	 background_color:	0,0,255,0.5	
	 	 	 size:(root.width)/2,(root.height)/2	
	 	 	 pos:	0,0	
	 	 	 text:"Save	Game"	
	 	 	 color:	0,0,0,1	
	 	 	 on_press:root.check()	
	 	 	 font_size:	40	
	 	 Button:	
	 	 	 background_color:	0,255,255,0.3	
	 	 	 size:(root.width)/2,(root.height)/2	
	 	 	 pos:(root.width)/2,(root.height)/2	
	 	 	 text:"Open	Saved	Game"	
	 	 	 color:	0,0,0,1	

53

54	

on_press:	root.parent.manager.current	=	'Load'	
on_press:	root.remove()	
font_size:	40	

Button:	
background_color:	255,255,0,0.3	
size:(root.width)/2,(root.height)/2	
pos:(root.width)/2,0	
text:"Quit"	
color:	0,0,0,1	
on_press:	app.stop()	
font_size:	40	

<GameOptionsWidget>:	
name:	'Options'	
GridLayout:	

Button:	
text:	"Single	Player"	
on_press:	root.single_player()	
on_release:	root.parent.manager.current	=	'Difficulty'	
size:	(root.width)/2,(root.height)/3	
pos:	0,0	
background_color:	255,255,0,0.3	
color:	0,0,0,1	
font_size:	40	

Button:	
text:	"Two-Player"	
size:	(root.width),(root.height)/3	
pos:	0,(root.height)*(2/3)	
on_press:	root.two_player()	
on_press:	root.parent.manager.current	=	'Difficulty'	
background_color:	0,0,255,0.5	
color:	0,0,0,1	
font_size:	40	

Button:	
text:	"Back	to	Main	Menu"	
size:	(root.width)/2,(root.height)/3	
pos:	(root.width)/2,	0	
font_size:	40	
on_press:		

root.parent.manager.current	=	'Menu'	

background_color:	0,255,255,0.3	
color:	0,0,0,1	

Button:	
text:	"Player	1"	
color:	255,0,0,1	
background_normal:	'images/player1.png'	
size:	(root.width)/3,	(root.height)/3	

54

Emily	Chance-Hill	 	 150229	

	 	 	 pos:	0,(root.height)*(1/3)	
	 	 	 font_size:	60	
	 	 	 bold:	True	
	 	 Button:	
	 	 	 text:	"Player	2"	
	 	 	 color:	255,0,0,1	
	 	 	 background_normal:	'images/player2.png'	
	 	 	 size:	(root.width)/3,	(root.height)/3	
	 	 	 pos:	(root.width)*(1/3),	(root.height)*(1/3)	
	 	 	 font_size:	60	
	 	 	 bold:	True	
	 	 Button:	
	 	 	 text:	"Computer"	
	 	 	 color:	255,0,0,1	
	 	 	 background_normal:	'images/player3.png'	
	 	 	 size:	(root.width)/3,	(root.height)/3	
	 	 	 pos:	(root.width)*(2/3),	(root.height)*(1/3)	
	 	 	 font_size:	60	
	 	 	 bold:	True	
	 	 	 	
<WinnerWidget>:	
	 name:	'Win'	
	 GridLayout:	
	 	 Button:	
	 	 	 pos:	0,0	
	 	 	 size:	(root.width)/2,(root.height)/2	
	 	 	 background_color:	255,255,0,0.3	
	 	 	 id:one	
	 	 	 text:''	
	 	 	 color:	0,0,0,1	
	 	 	 font_size:	40	
	 	 Button:	
	 	 	 pos:	0,	(root.height)/2	
	 	 	 size:	(root.width)/2,(root.height)/2	
	 	 	 id:back	
	 	 	 text:'Play	again'	
	 	 	 color:	0,0,0,1	
	 	 	 on_press:	root.parent.manager.current	=	'Options'	
	 	 	 background_color:	255,0,0,0.4	
	 	 	 font_size:	40	
	 	 Button:	
	 	 	 id:	quit	
	 	 	 background_color:	255,0,0,0.4	
	 	 	 text:	"Quit"	
	 	 	 color:	0,0,0,1	
	 	 	 on_press:	app.stop()	
	 	 	 size:	(root.width)/2,(root.height)/2	
	 	 	 pos:	(root.width)/2,0	
	 	 	 font_size:	40	

55

56	

Button:	
text:	"Back	to	Main	Menu"	
on_press:	root.parent.manager.current	=	'Menu'	
background_color:	255,0,0,0.4	
color:	0,0,0,1	
size:	(root.width)/2,(root.height)/2	
pos:	(root.width)/2,(root.height)/2	
font_size:	40	

<SpinnerWidget>:	
				name:'Spinner'	
				GridLayout:	

id:	SGrid	
								Button:	

size:(root.height-200),	(root.height-200)	
												pos:(root.width-root.height)/2+100,100	
												on_press:root.do_spin()	

												background_normal:	'images/spinner1.png'	

<DisplayWidget>:	
name:	'Display'	
GridLayout:	

id:Dis	
Button:	

size:	300,300	
pos:	(root.width)-300,	0	
background_normal:	'images/next.png'	
on_press:	root.parent.manager.current	=	'Game'	

<SabotageWidget>:	
name:	'Sabotage'	
GridLayout:	

id:Sab	
Button:	

text:	"SABOTAGE	SPACE"	
size:	root.width,	root.height/4	
pos:	0,root.height*(2/4)	
background_color:	255,0,0,0.4	
color:	0,0,0,1	
font_size:	50	

Button:	
id:	Ahead	
text:		

"Move	yourself	5	spaces	ahead"	
on_press:	root.ahead()	
size:	(root.width),(root.height)/4	
pos:	0,	(root.height)*(1/4)	

56

Emily	Chance-Hill	 	 150229	

	 	 	 background_color:	0,0,255,0.5	
	 	 	 color:	0,0,0,1	
	 	 	 font_size:	40	
	 	 	 	
	 	 Button:	
	 	 	 id:	Behind	
	 	 	 text:	"Move	your	opponent	5	spaces	behind"	
	 	 	 on_press:	root.behind()	
	 	 	 size:	(root.width),(root.height)/4	
	 	 	 pos:	0,0	
	 	 	 background_color:	255,255,0,0.3	
	 	 	 color:	0,0,0,1	
	 	 	 font_size:	40	
	 	 	 	
<SaveWidget>:	
	 name:	'Save'	
	 filename:	file	
	 GridLayout:	
	 	 id:	SaveGrid	
	 	 Button:	
	 	 	 text:	'Enter	file	name:'	
	 	 	 size:	root.width/2,	root.height/2	
	 	 	 pos:	0,	root.height/2	
	 	 	 background_color:	0,128,128,0.5	
	 	 	 color:	0,0,0,1	
	 	 TextInput:	
	 	 	 id:	file	
	 	 	 size:	root.width/2,	root.height/2	
	 	 	 	
	 	 Button:	
	 	 	 text:	'Submit'	
	 	 	 size:	root.width/2,	root.height/5	
	 	 	 pos:	root.width/2,0	
	 	 	 on_press:		
	 	 	 	 root.check_input()	
	 	 	 background_color:	255,0,0,0.4	
	 	 	 color:	0,0,0,1	
	 	 Button:	
	 	 	 text:	'Back'	
	 	 	 size:	root.width/2,	root.height/5	
	 	 	 on_press:		
	 	 	 	 root.parent.manager.current	=	'Menu'	
	 	 	 	 root.reset()	
	 	 	 background_color:	255,0,0,0.4	
	 	 	 color:	0,0,0,1	
	 	 	 pos:	root.width/2,	root.height*(1/5)	
	 	 	 	 	
<LoadWidget>:	
	 name:	'Load'	

57

58	

loadname:	name	
GridLayout:	

id:	LoadGrid	
Button:	

text:	"Enter	file	name"	
size:	root.width/2,	root.height/2	
pos:	0,root.height/2	
background_color:	255,0,0,0.4	
color:	0,0,0,1	

TextInput:	
id:name	
size:	root.width/2,	root.height/2	
pos:0,0	

Button:	
text:	"Submit"	
size:	root.width/2,	root.height/4	
pos:	root.width/2,0	
on_press:	root.load_game()	
background_color:	255,255,0,0.3	
color:	0,0,0,1	

Button:	
text:	"Back"	
size:	root.width/2,root.height/4	
pos:	root.width/2,	root.height*(1/4)	
on_press:		

root.parent.manager.current	=	'Menu'	
root.reset()	

background_color:	0,128,128,0.5	
color:	0,0,0,1	

<ObstacleWidget>:	
name:	'Obstacle'	
GridLayout:	

id:	ObGrid	
Button:	

size:	300,300	
background_normal:	'images/next.png'	
on_press:	root.parent.manager.current	=	'Game'	
pos:	root.width-300,0	

58

Emily	Chance-Hill	 150229	

Testing	-	Test	Strategy	

My	game	will	need	to	be	tested	thoroughly	from	a	user’s	point	of	view,	and	from	
a	programming	point	of	view	to	make	sure	that	everything	works	as	it	should,	
but	also	logically	so	that	the	user	can	play	the	game	without	any	confusion.	I	will	
do	most	of	the	testing	by	playing	the	game	in	as	many	different	modes	and	ways	
that	I	can	to	try	and	come	across	any	errors	that	I	can	and	correcting	them	once	
they	are	found.	For	some	of	the	more	intricate	testing	such	as	the	mathematical	
algorithms	that	position	the	player	pieces,	I	will	print	the	background	data	in	
Terminal	to	see	what	is	happening	behind	the	UI,	as	errors	will	be	hard	to	trace	
simply	by	observing	the	game.		

For	testing	the	UI,	I	will	need	to	alpha	test	all	of	my	games	functionality	including	
each	screen,	the	screen	transitions,	the	player	piece	and	obstacle	positions,	the	
saved	and	loaded	files	accuracy,	the	responses	to	the	user	based	on	actions	of	the	
game,	whether	a	player	can	win,	the	single	player	mode	of	the	game,	whether	the	
obstacles	move	the	pieces	like	they	are	supposed	to	and	the	game’s	quality	of	
play,	such	as	how	difficult	it	is	to	win	and	how	long	it	takes	for	each	level	of	
difficulty.		

I	will	begin	by	testing	the	menu	screens	and	how	they	link	to	one	another,	to	
make	sure	that	each	button	has	the	correct	function	bound	to	it	to	create	the	
correct	screen	transition.	I	will	also	inspect	the	logical	structure	of	each	screen,	
including	whether	the	board	screen	is	generated	correctly	for	the	current	
difficulty	mode	it	is	in,	and	their	order	to	make	the	game	as	user	friendly	as	
possible.	I	will	also	need	to	inspect	the	clarity	of	the	text	on	each	button	on	each	
screen	to	ensure	the	user	knows	what	it	does	and	how	to	use	it.		

The	next	thing	to	test	will	be	that	the	player	and	obstacle	pieces	are	generated	in	
the	correct	place.	The	obstacles	are	generated	within	the	buttons	so	should	be	
easier	to	test	as	I	can	simply	loop	through	the	button	attributes	so	see	where	the	
obstacles	have	landed,	where	as	the	player	positions	are	based	off	my	own	logic	
so	errors	could	be	more	unpredictable.	I	will	have	to	print	what	the	program	
thinks	the	positions	should	be	through	the	Terminal,	and	then	compare	that	to	
where	they	appear	to	be	on	the	UI	screen.	

The	save	and	load	file	options	should	be	able	to	be	tested	form	the	UI	by	simply	
checking	whether	all	of	the	pieces,	obstacles	and	number	of	board	spaces	are	the	
same	and	nothing	is	generated	too	many	times	or	anything	like	that.	If	there	is	an	
error,	however,	the	testing	could	be	complicated	as	I	will	need	to	look	into	the	
structure	of	the	text	file	and	the	order	things	are	loaded	by	hand	tracing	the	
code,	which	would	be	time	consuming.	When	entering	the	file	name	to	save	or	
load	a	game,	there	should	either	be	no	existing	file	with	that	name	when	saving,	
and	there	should	be	a	file	with	that	name	when	loading.	I	can	test	this	with	
normal,	boundary	and	erroneous	data	to	make	sure	that	no	possibilities	are	
allowed	which	shouldn’t	be.	

59

60	

Things	such	as	the	outputs	to	the	user	after	a	roll	and	the	quality	of	game	play	
can	be	tested	through	the	UI,	and	should	be	easily	fixed	if	the	wrong	thing	is	
being	outputted,	or	something	is	not	user-friendly	by	just	changing	the	text	
output	or	checking	the	value	of	the	variable	being	used	in	the	message.	If	
something	is	drastically	wrong	with	the	game	play,	however,	it	could	take	more	
work	to	solve.		

The	single	player	mode	can	be	tested	by	playing	the	game	and	tracing	where	the	
piece	should	be	and	how	it	should	react	in	comparison	to	how	it	does.	In	theory,	
it	should	not	be	overcomplicated	to	test	as	it	is	not	dissimilar	to	the	two-player	
mode,	only	with	an	automatically	generated	dice	roll	and	the	computer	should	
not	respond	to	the	sabotage	spaces.	Therefore,	if	there	is	an	error,	it	should	be	
fixable	by	looking	at	the	other	player	modes,	assuming	those	are	working.	The	
only	real	issue	would	be	if	there	was	a	logic	error	in	how	I	implemented	the	
single	player	mode,	in	which	case	I	would	have	to	re-evaluate	the	structure	of	the	
game.	

To	test	the	obstacles	effect	on	the	pieces	if	they	land	on	them	could	be	time	
consuming,	as	I	would	have	to	play	the	game	for	a	long	time	to	get	a	piece	to	
randomly	land	on	an	obstacle	in	different	positions	on	the	board.	If	I	do	find	any	
errors	such	as	the	players	being	moved	ahead	or	behind	the	wrong	amount	of	
spaces,	hopefully	it	should	be	relatively	simple	to	correct	by	looking	at	the	
instructions	inside	the	functions	where	the	program	checks	for	clashes	between	
player	and	obstacle	positions.		

Testing	if	a	player	can	win	will	also	be	time	consuming	because	I	will	have	to	
play	through	each	difficulty	level	in	both	single	and	two	player	mode	to	ensure	
all	of	the	different	combinations	of	players	in	different	modes	can	all	win	the	
game.	If	there	is	an	error	somewhere,	it	will	likely	have	to	do	with	what	the	
maximum	number	of	spaces	is	set	to,	or	an	error	in	my	logic	in	when	to	check	
whether	a	player	has	won.	I	will	have	to	debug	by	inspection	in	that	case.		

Testing	-	Test	Plan	

Test	No.	 Purpose	of	
the	test	

Test	Data	 Expected	
Outcome	

Actual	
Outcome	

Changes	
Needed	

Screen
shot	
Proof	

1.1	 To	see	
whether	the	
Menu	
Screen	
“Save”	
button	links	
to	the	
correct	
screen	

Click	
“Save”	
when	
game	
screen	has	
been	
entered	

The	screen	
should	
transition	to	
the	save	
widget	screen	
with	an	
instruction	
button,	a	text	
input	box	and	
a	clickable	

The	screen	
transitions	
to	the	save	
widget	
screen	and	
has	only	the	
correct	
boxes.	

None.	 Fig	1.1	

60

Emily	Chance-Hill	 	 150229	

submit	button	
and	nothing	
else.	

1.2	 To	see	
whether	
save	screen	
is	blocked	
when	it	
should	be	

Click	
“Save”	
when	
game	
screen	has	
not	been	
entered	

The	save	
option	text	
should	grey	
out	once	it	has	
been	clicked	
and	the	screen	
should	not	
change.	

The	button	
does	grey	
out	when	
selected	
without	
entering	a	
game.	

None.	 Fig	1.2	

1.3	 To	see	
whether	the	
Menu	
Screen	
“Load”	
button	links	
to	the	
correct	
screen	

Click	
“Load”	

The	screen	
should	
transition	to	
the	load	
widget	screen	
with	an	
instruction	
button,	a	text	
input	box	and	
a	clickable	
submit	button	
and	nothing	
else.	

The	screen	
transitions	
to	the	load	
widget	
screen	with	
only	the	
correct	
boxes.	

None.	 Fig	1.3	

1.4	 To	see	
whether	the	
Menu	
Screen	
“Play	Game”	
button	links	
to	the	
correct	
screen	

Click	“Play	
Game”	

The	screen	
should	
transition	to	
the	Game	
Options	widget	
where	the	user	
can	choose	to	
either	play	
single	player,	
two	player	or	
go	back	to	the	
main	menu.	
The	screen	
should	also	
have	images	in	
the	middle	of	
the	page	of	the	
player	pieces	
and	who	they	
belong	to.	

Screen	
transitions	
to	the	game	
options	
screen	with	
the	correct	
options	
available,	
with	the	
player	piece	
images	and	
labels.	

None.	 Fig	1.4	

1.5	 To	see	
whether	the	
Menu	
Screen	
“Quit”	

Click	“Quit”	 The	entire	
window	
should	shut	
down.	

The	window	
shuts	down.	

None.	 Fig	1.5	

61

62	

button	
makes	the	
game	quit	

1.6	 Check	that	
the	correct	
dimension	
board	with	
the	correct	
number	of	
obstacles	of	
each	type	
are	
generated	
in	mode	
Easy.	

Load	game	
in	mode	
“easy”	

The	board	
should	be	7x5,	
with	3	ladders,	
1	snake	and	3	
sabotage	
spaces.		
Inspect	to	
check	this	is	
logical	for	
gameplay.	

The	board	
appears	with	
the	correct	
amount	of	
spaces,	in	
the	correct	
format,	with	
the	correct	
obstacles,	
and	seems	
logical	for	
gameplay.	

None.	 Fig	1.6	

1.7	 Check	that	
the	correct	
dimension	
board	with	
the	correct	
number	of	
obstacles	of	
each	type	
are	
generated	
in	mode	
Intermediat
e.	

Load	game	
in	mode	
“intermedi
ate”	

The	board	
should	be	9x7,	
with	5	snakes,	
5	ladders	and	
6	sabotage	
spaces.		
Inspect	to	
check	this	is	
logical	for	
gameplay.	

The	board	
appears	with	
the	correct	
amount	of	
spaces,	in	
the	correct	
format,	with	
the	correct	
obstacles,	
and	seems	
logical	for	
gameplay.	

None.	 Fig	1.7	

1.8	 Check	that	
the	correct	
dimension	
board	with	
the	correct	
number	of	
obstacles	of	
each	type	
are	
generated	
in	mode	
Hard.	

Load	game	
in	mode	
“hard”	

The	board	
should	be	
11x9,	with	5	
ladders,	7	
snakes	and	8	
sabotage	
spaces.	Inspect	
to	check	this	is	
logical	for	
gameplay.	

The	board	
appears	with	
the	correct	
amount	of	
spaces,	in	
the	correct	
format,	with	
the	correct	
obstacles,	
and	seems	
logical	for	
gameplay.	

None.	 Fig	1.8	

2.1	 Make	sure	
the	
obstacles	
are	
generated	
in	the	
correct	
places.	

Generate	
board,	
print	in	
Terminal	
values	of	
obstacle	
positions.	

The	obstacles	
should	appear	
on	the	board	in	
the	correct	
places	
compared	to	
the	intended	
positions	
printed	in	the	

The	obstacle	
positions	
match	what	
they	should	
be	based	on	
the	variable	
values.	

None.	 Fig	2.1	

62

Emily	Chance-Hill	 	 150229	

Terminal.	
2.2	 Make	sure	

the	player	
pieces	land	
correctly	
throughout	
the	board.	

Press	
spinner	on	
spinner	
screen,	
print	the	
previous	
player	
position,	
the	current	
spin	then	
the	current	
player	
positions	
at	the	end	
of	each	
turn	in	the	
Terminal.	

The	numbers	
should	match	
up	(test	by	
inspection)	
and	the	correct	
player	pieces	
should	appear	
over	the	space	
on	the	board	
with	the	same	
value	as	the	
current	player	
positions	
printed	in	the	
terminal.	

They	player	
pieces	move	
in	
coordination	
with	what	
the	players	
roll.	

None.	 Fig	2.2	

3.1	 To	make	
sure	the	
error	
message	
buttons	
appear	on	
the	save	
widget	
screen	
when	an	
existing	file	
name	is	
entered.	

Type	
existing	
file	name	
“1”	into	
text	input	
box	on	
save	
widget	
screen.	
	
Erroneous	
data	

Three	error	
message	
buttons	should	
appear	on	the	
right	side	of	
the	screen	
telling	the	user	
what	is	wrong,	
then	giving	
them	the	
option	to	
either	write	
over	the	file	or	
re-type	their	
file	name	to	try	
again.	

The	correct	
error	
messages	
appear	in	
the	correct	
places.	

None.	 Fig	3.1	

3.2	 Make	sure	
the	error	
message	
buttons	
only	appear	
when	data	
is	
erroneous.	

Type	“1.”	
Into	text	
input	box	
on	save	
widget	
screen	and	
click	
submit.	
	
Boundary	
data.	

The	error	
message	
buttons	should	
not	appear,	
and	the	file	
should	be	
saved.	

The	error	
messages	do	
not	appear,	
and	when	
looking	
through	the	
computer’s	
files,	the	
save	files	
were	
created.	

None.	 Fig	3.2	

3.3	 See	
whether	the	
file	is	saved	
under	the	

Type	
“New”	into	
text	input	
box	on	

The	file	names	
in	documents	
should	have	
“New”	in	the	

The	
filenames	
are	correct	
in	my	saved	

None.	 Fig	3.3	

63

64	

correct	
name	based	
on	what	is	
entered	in	
the	text	
input	box.	

save	
widget	
screen	and	
click	
submit.	

Normal	
data.	

middle	of	each	
filename.	

files.	

3.4	 To	see	
whether	the	
overwrite	
file	button	
on	the	save	
widget	
screen	
works.	

Type	“1”	
into	text	
input	box	
and	click	
submit,	
then	click	
“overwrite	
file”	when	
the	error	
messages	
appear	

The	text	file	
when	opened	
in	documents	
should	now	
contain	the	
values	of	the	
new	game,	and	
when	opened	
should	look	
like	the	most	
recently	saved	
game.	

The	contents	
of	the	file	
changed	
when	the	
game	was	
overwritten	
and	the	new	
contents	
match	the	
obstacle	and	
player	
positions	of	
the	
overwriting	
game.	

None.	 Fig	3.4	

3.5	 To	see	
whether	the	
error	
message	
buttons	
disappear	
when	going	
back	to	the	
save	widget	
screen.	

Type	“1”	
into	text	
input	box	
and	
submit.	Go	
back	to	
main	menu	
screen	and	
then	
return	to	
save	
widget	
screen.	

The	error	
message	
buttons	should	
no	longer	be	
there.	

If	there	was	
only	one	set	
of	buttons	
generated	
from	an	
incorrect	
input,	it	
worked	fine.	
I	found,	
however,	
that	if	an	
incorrect	
name	was	
submitted	
more	than	
once,	more	
error	
message	
buttons	
were	
generated	
on	top	of	the	
existing	ones	
so	not	all	of	
them	were	
deleted	

I	will	
need	to	
add	some	
error	
handling	
so	that	
once	the	
error	
message	
buttons	
are	
generated
,	no	more	
can	be	
made	
until	the	
screen	is	
changed.	

Fig	3.5	

64

Emily	Chance-Hill	 150229	

when	going	
back	to	the	
save	page.	

3.5	
correcte
d	

To	stop	
buttons	
from	being	
generated	
on	top	of	
each	other	
when	more	
than	one	
incorrect	
filename	is	
submitted	
in	the	save	
screen.	

Type	“1”	
into	the	
text	input	
box	of	the	
save	
screen	
several	
times.	

Inspect	to	see	
if	more	
buttons	are	
generated	on	
top	of	each	
other.	If	the	
buttons	are	
generated	
again,	the	
colour	will	go	
darker.	This	
should	not	
happen.	

The	error	
buttons	are	
not	
generated	
over	each	
other,	and	
disappear	
when	I	leave	
the	screen	
and	go	back	
to	it.	

None.	 Fig	3.6	

4.1	 To	see	
whether	the	
error	
messages	
appear	
when	a	non-
existing	file	
name	is	
entered	into	
the	text	
input	of	the	
load	screen.	

Type	
“wrong”	
into	load	
text	input	
and	click	
submit.	

Erroneous	
data.	

The	error	
message	
buttons	should	
appear	in	the	
far	right	of	the	
screen.	

The	error	
boxes	
appear	
correctly,	in	
the	right	
places.	

None.	 Fig	4.1	

4.2	 To	make	
sure	the	
error	
message	
buttons	
always	
appear	if	a	
file	name	
doesn’t	
exist,	even	if	
the	name	is	
similar.	

Save	a	file	
name	
called	
“test”,	then	
try	and	
load	a	
game	
called	
“test.”.	

Boundary	
data.	

The	error	
messages	
should	appear	
and	the	“test”	
game	should	
not	be	loaded.	

The	error	
messaged	do	
appear	
correctly,	
and	no	game	
is	loaded.	

None.	 Fig	4.2	

4.3	 To	make	
sure	the	
error	
message	
buttons	
disappear	
when	re-
entering	the	
load	screen.	

Type	
“incorrect”	
into	text	
input	box,	
return	to	
menu	
screen,	
then	go	
back	into	

The	error	
messages	
should	appear	
when	
“incorrect”	is	
typed,	but	
should	
disappear	
when	the	

If	there	was	
only	one	set	
of	buttons	
generated	
from	an	
incorrect	
input,	it	
worked	fine.	
I	found,	

I	will	
need	to	
add	some	
error	
handling	
so	that	
once	the	
error	
message	

Fig	4.3	

65

66	

load	
screen.	

screen	is	
returned	to.	

however,	
that	if	an	
incorrect	
name	was	
submitted	
more	than	
once,	more	
error	
message	
buttons	
were	
generated	
on	top	of	the	
existing	ones	
so	not	all	of	
them	were	
deleted	
when	going	
back	to	the	
load	page.	

buttons	
are	
generated
,	no	more	
can	be	
made	
until	the	
screen	is	
changed.	

4.3	
correcte
d	

To	stop	
buttons	
from	being	
generated	
on	top	of	
each	other	
when	more	
than	one	
incorrect	
filename	is	
submitted	
in	the	load	
screen.	

Type	
“Wrong”	
into	the	
text	input	
box	of	the	
load	
screen	
several	
times.	

Inspect	to	see	
if	more	
buttons	are	
generated	on	
top	of	each	
other.	If	the	
buttons	are	
generated	
again,	the	
colour	will	go	
darker.	This	
should	not	
happen.	

The	error	
buttons	are	
not	
generated	
over	each	
other,	and	
disappear	
when	I	leave	
the	screen	
and	go	back	
to	it.	

None.	 Fig	4.4	

4.4	 To	make	
sure	the	
error	
message	
buttons	
don’t	
appear	
when	an	
existing	file	
name	is	
entered.	

Type	“1”	
into	text	
input	box,	
click	
submit.	

Normal	
data.	

No	error	
messages	
should	appear,	
the	screen	
should	skip	
straight	to	the	
game	screen	
with	the	
existing	game	
loaded	onto	it.	

No	error	
messages	
appear	and	
the	correct	
game	is	
loaded.	

None.	 Fig	4.5	

5.1	 Test	
accuracy	of	
loaded	
game.	

Save	game	
and	make	
note	of	
player	and	
obstacle	

There	should	
be	the	same	
number	of	
players,	all	the	
pieces	should	

All	of	the	
positions	
and	game	
modes	
remain	the	

None.	 Fig	5.1	

66

Emily	Chance-Hill	 	 150229	

positions.	 be	in	the	
correct	place,	
and	the	game	
should	be	in	
the	correct	
difficulty	
mode.	

same.	

5.2	 To	make	
sure	
gameplay	in	
continuous	
from	loaded	
game.	

Let	game	
finish	with	
player	1	
having	a	
turn,	save	
game.		

Player	2	
should	have	
first	turn	when	
game	is	
loaded.	

The	turn	
does	go	to	
player	2	
when	the	
game	is	
opened.	

None.	 Fig	5.2	

5.3		 “”	 Repeat	
vice	versa;	
finish	with	
player	2,	
save.	

Player	1	
should	have	
first	turn	when	
game	is	
loaded.	

The	turn	
does	go	to	
player	1	
when	the	
game	is	
opened.	

None.	 Fig	5.3	

6.1	 To	test	
quality	of	
outputs	to	
the	user	in	
the	display	
screen.	

Play	until	
player	
lands	on	
an	
unoccupie
d	space.	

Display	screen	
should	appear	
with	correct	
player	and	
correct	value	
of	roll.	Check	
value	of	roll	by	
returning	to	
game	screen	
and	tracking	
movement.	

The	display	
screen	
appears	with	
the	correct	
value	of	roll	
based	on	
value	in	
terminal	and	
on	game	
screen.	

None.	 Fig	6.1	

6.2	 To	test	
quality	of	
outputs	to	
the	user	in	
the	
sabotage	
screen.	

Play	until	
player	
lands	on	a	
sabotage	
space.	

Sabotage	
screen	should	
appear,	telling	
the	user	that	
they	have	
landed	on	a	
sabotage	space	
and	what	they	
rolled,	and	
give	them	the	
option	to	
either	move	
ahead	or	move	
their	opponent	
behind.	The	
screen	should	
also	address	
the	correct	
player.	

Sabotage	
screen	
appears	with	
the	correct	
information,	
addressing	
the	correct	
player.	

None.	 Fig	6.2	

67

68	

6.3	 To	test	
quality	of	
outputs	to	
the	user	in	
the	obstacle	
screen.	

Play	until	a	
player	
lands	on	a	
snake	or	
ladder.	

The	user	
should	be	
made	aware	of	
what	they	
rolled,	what	
they	have	
landed	on	and	
the	correct	
player	should	
be	addressed.	

Everything	
went	as	
planned	
except	that	
the	roll	was	
not	
displayed	to	
the	user,	as	
the	display	
screen	was	
skipped.	

Add	in	
message	
button	to	
tell	the	
player	
what	the	
rolled	on	
the	
obstacle	
screen.	

Fig	6.3	

6.3	
correcte
d	

Test	
implementa
tion	of	a	
button	in	
the	obstacle	
display	
screen	to	
tell	the	user	
what	they	
rolled.	

Play	until	a	
player	
lands	on	a	
snake	or	
ladder.	

The	user	
should	be	told	
what	they	have	
rolled	and	
what	they	have	
landed	on.	

The	obstacle	
display	
screen	
appears	with	
the	correct	
information.	

None.	 Fig	6.4	

7.1	 To	test	the	
single	
player	
mode	to	
make	sure	
that	the	
computer’s	
roll	is	
generated	
at	the	same	
time	as	the	
user	rolls,	
and	moves	
at	the	same	
time	on	the	
board.	

Make	spin	
in	single	
player	
mode.	

The	
Computer’s	
piece	should	
move	the	same	
amount	of	
spaces	that	is	
displayed	in	
the	display	
screen,	at	the	
same	time	as	
the	player’s	
piece	moves.	

The	
computer’s	
piece	moves	
correctly	
and	at	the	
same	time	as	
the	player	
piece.	

None.	 Fig	7.1	

7.2	 To	make	
sure	the	
computer	
landing	
does	not	
have	all	the	
same	
functionalit
y	as	the	
player.	

Play	in	
single	
player	
mode	until	
the	
computer	
lands	on	a	
sabotage	
space.	

The	sabotage	
screen	should	
not	appear,	
and	the	game	
should	
continue	on	as	
normal.	

The	game	
continues	as	
normal.	

None.	 Fig	7.2	

7.3	 To	make	
sure	the	

Play	in	
single	

The	
computer’s	

The	
computer’s	

None.	 Fig	7.3	

68

Emily	Chance-Hill	 150229	

computer	is	
still	affected	
by	the	
obstacles.	

player	
mode	until	
the	
computer	
lands	on	a	
snake.	

piece	should	
be	moved	a	
row	down.	

piece	is	
moved	
correctly,	a	
row	down.	

7.4	 “”	 Play	in	
single	
player	
mode	until	
the	
computer	
lands	on	a	
ladder.	

The	
computer’s	
piece	should	
be	moved	up	a	
row.	

The	
computer’s	
piece	is	
moved	
correctly,	a	
row	up.	

None.	 Fig	7.4	

8.1	 Test	if	the	
basic	
obstacles	
work	
effectively	
for	user-
controlled	
players.	

Play	until	
player	1	
lands	on	a	
ladder.	

Player	1’s	
piece	should	
move	one	row	
up	on	the	
board.	

Player	1’s	
piece	moves	
correctly,	
one	row	up.	

None.	 Fig	8.1	

8.2	 “”	 Play	until	
player	1	
lands	on	a	
snake	

Player	1’s	
piece	should	
move	down	
one	row.	

Player	1’s	
piece	moves	
correctly,	
one	row	
down.	

None.	 Fig	8.2	

8.3	 “”	 Play	until	
player	2	
lands	on	a	
ladder	

Player	2’s	
piece	should	
move	one	row	
up	on	the	
board.	

Player	2’s	
piece	moves	
correctly,	
one	row	up.	

None.	 Fig	8.3	

8.4	 “”	 Play	until	
player	2	
lands	on	a	
snake	

Player	2’s	
piece	should	
move	one	row	
down	on	the	
board.	

Player	2’s	
piece	moves	
correctly,	
one	row	
down.	

None.	 Fig	8.4	

9.1	 Test	that,	
after	
already	
testing	that	
the	
sabotage	
screen	
appears,	
that	the	
sabotage	
functionalit
y	works	

Play	until	
player	1	
lands	on	a	
sabotage	
space.	
Select	
“move	
yourself	
ahead”	

Player	1’s	
pieces	should	
be	moved	5	
spaces	ahead	
on	the	board.		

Player	1’s	
piece	moves	
correctly,	5	
spaces	
ahead.	

None.	 Fig	9.1	

69

70	

correctly	
for	player	1.	

9.2	 “”	 Play	until	
player	1	
lands	on	a	
sabotage	
space,	
while	
player	2	is	
more	than	
5	spaces	
from	the	
start.	
Select	
“move	
your	
opponent	
5	spaces	
behind”	

Player	2’s	
piece	should	
be	moved	5	
spaces	behind	
on	the	board	
while	player	
1’s	piece	
remained	in	
the	same	
space.	

Player	1’s	
piece	stays	
the	same,	
and	player	
2’s	piece	is	
moved	
correctly,	5	
spaces	
behind.	

None.	 Fig	9.2	

9.3	 “”	 Play	until	
player	1	
lands	on	a	
sabotage	
space,	and	
player	2	is	
less	than	5	
spaces	
from	the	
start.	
Select	
“move	
your	
opponent	
5	spaces	
behind”	

The	option’s	
text	should	be	
greyed	out	
once	it	has	
been	clicked	
and	the	screen	
should	remain	
on	the	
sabotage	
screen	until	
the	“move	
ahead”	option	
has	been	
selected,	when	
player	1’s	
piece	should	
be	moved	5	
spaces	ahead.	

The	‘move	
behind’	
option	is	
behind	is	
greyed	out	
and	the	
screen	
remains	the	
same.	When	
the	‘move	
ahead’	
button	is	
selected,	
Player	1’s	
piece	is	
moved	
correctly,	5	
spaces	
ahead.	

None.	 Fig	9.3	

9.4	 Test	that,	
after	
already	
testing	that	
the	
sabotage	
screen	
appears,	
that	the	
sabotage	
functionalit

Play	until	
player	2	
lands	on	a	
sabotage	
space.	
Select	
“move	
yourself	
ahead”.	

Player	2’s	
piece	should	
move	5	spaces	
ahead	on	the	
board.	

Player	2’s	
piece	moves	
correctly,	5	
spaces	
ahead.	

None.	 Fig	9.4	

70

Emily	Chance-Hill	 	 150229	

y	works	
correctly	
for	player	2.	

9.5	 “”	 Play	until	
player	2	
lands	on	a	
sabotage	
space,	
while	
player	1	is	
more	than	
5	spaces	
from	the	
start.	
Select	
“move	
your	
opponent	
5	spaces	
behind”	

Player	1’s	
piece	should	
be	moved	5	
spaces	behind	
on	the	board	
while	player	
2’s	piece	
remained	in	
the	same	
space.	

Player	2’s	
piece	stays	
the	same,	
and	player	
1’s	piece	is	
moved	
correctly,	5	
spaces	
behind.	

None.	 Fig	9.5	

9.6	 “”	 Play	until	
player	2	
lands	on	a	
sabotage	
space,	and	
player	1	is	
lss	than	5	
spaces	
from	the	
start.	
Select	
“move	
your	
opponent	
5	spaces	
behind”	

The	option’s	
text	should	be	
greyed	out	
once	it	has	
been	clicked	
and	the	screen	
should	remain	
on	the	
sabotage	
screen	until	
the	“move	
ahead”	option	
has	been	
selected,	when	
player	2’s	
piece	should	
be	moved	5	
spaces	ahead.	

The	‘move	
behind’	
option	is	
behind	is	
greyed	out	
and	the	
screen	
remains	the	
same.	When	
the	‘move	
ahead’	
button	is	
selected,	
Player	2’s	
piece	is	
moved	
correctly,	5	
spaces	
ahead.	

None.	 Fig	9.6	

10.1	 See	if	
players	can	
win	in	all	
modes:	
single	
player	in	
easy.	

Load	game	
in	single	
player	in	
easy.	

Whichever	
piece	reached	
the	end	of	the	
board	first,	
either	spinning	
a	value	exactly	
to	the	end	
space	or	above	
it,	should	win	
and	the	winner	

A	player	
wins	and	the	
winner	
screen	
appears	with	
the	correct	
information.	

None.	 Fig	
10.1	

71

72	

screen	should	
appear	with	
that	character	
or	computer’s	
name	in	the	
message	box	
telling	the	user	
who	won.	

10.2	 See	if	
players	can	
win	in	all	
modes:	
Single	
player	in	
intermediat
e.	

Load	game	
in	Single	
player	in	
intermedia
te.	

“”	 A	player	
wins	and	the	
winner	
screen	
appears	with	
the	correct	
information.	

None.	 Fig	
10.2	

10.3	 See	if	
players	can	
win	in	all	
modes:	
Single	
player	in	
hard.	

Load	game	
in	Single	
player	in	
hard.	

“”	 A	player	
wins	and	the	
winner	
screen	
appears	with	
the	correct	
information.	

None.	 Fig	
10.3	

10.4	 See	if	
players	can	
win	in	all	
modes:	Two	
player	in	
easy.	

Load	game	
in	Two	
player	in	
easy.	

“”	 A	player	
wins	and	the	
winner	
screen	
appears	with	
the	correct	
information.	

None.	 Fig	
10.4	

10.5	 See	if	
players	can	
win	in	all	
modes:	Two	
player	in	
intermediat
e.	

Load	game	
in	Two	
player	in	
intermedia
te.	

“”	 A	player	
wins	and	the	
winner	
screen	
appears	with	
the	correct	
information.	

None.	 Fig	
10.5	

10.6	 See	if	
players	can	
win	in	all	
modes:	Two	
player	in	
hard.	

Load	game	
in	Two	
player	in	
hard.	

“”	 A	player	
wins	and	the	
winner	
screen	
appears	with	
the	correct	
information.	

None.	 Fig	
10.6	

10.7	 Test	
buttons	
from	
winner	
screen	to	

Once	a	
game	is	
won,	select	
“play	
again”	

The	screen	
should	go	to	
the	game	
options	screen	
so	that	the	

The	screen	
changed	to	
the	game	
options	
screen	with	

None.	 Fig	
10.7	

72

Emily	Chance-Hill	 	 150229	

	
	

make	sure	
that	they	
connect	to	
the	correct	
screens.		

user	can	select	
and	start	a	
new	game.	

the	correct	
options.	

10.8	 “”	 Once	a	
game	is	
won,	select	
“Main	
Menu”	

The	screen	
should	go	to	
the	main	menu	
so	that	the	
user	has	the	
full	range	of	
choices,	except	
for	save	game	
as	the	game	is	
completed.	

The	user	
was	allowed	
to	save	the	
game,	and	
when	this	
was	loaded,	
the	screen	
game	loaded	
but	one	of	
the	player	
positions	
was	on	the	
last	space	or	
off	of	the	
screen	based	
on	their	last	
position	
value	from	
winning.	
This	then	
creates	a	
continuous	
loop	where	a	
player	has	a	
turn	and	
wins.	

The	save	
game	
option	
should	
grey	out	
when	it	is	
selected	
and	the	
game	
should	
remain	on	
the	main	
menu	
screen.	

Fig	
10.8	

10.8	
(correct
ed)	

Make	sure	
the	user	
cannot	
attempt	to	
save	a	
completed	
game.	

Finish	a	
game,	
select	to	go	
back	to	
main	menu	
then	try	to	
select	‘Save	
game’.	

The	save	game	
option	should	
grey	out	when	
it	is	selected	
and	the	screen	
should	stay	on	
the	main	
menu.	

The	save	
option	
greyed	out	
and	the	
screen	
remained	
the	same.	

None.	 Fig	
10.9	

10.9	 “”	 Once	a	
game	is	
won,	select	
“Quit”	

The	window	
should	shut	
down.	

The	window	
shuts	down.	

None.	 Fig	
10.10	

73

74	

Testing	Screenshots	

Fig	1.1	

Fig	1.2	

The	menu	screen	transitioned	to	the	save	screen	when	‘Save	Game’	was	selected.	Success.	

The	save	button	was	greyed	out	when	it	was	selected	without	entering	a	game	first.	Success.	

74

Emily	Chance-Hill	 150229	

Fig	1.3	

Fig	1.4	

The	menu	screen	transitioned	to	the	load	screen	when	‘Open	Saved	Game’	was	selected	

The	menu	screen	transitioned	to	the	game	options	screen	when	‘Play	Game’	was	selected	

75

76	

Fig	1.5	

Fig	1.6	

The	entire	window	shut	down	when	‘Quit’	was	selected.	Success.	

The	board	when	‘easy’	level	is	selected	is	7x5,	with	3	ladders,	1	snake	and	3	sabotage	spaces.		
Success.	

76

Emily	Chance-Hill	 	 150229	

	
	

Fig	1.8	

Fig	1.7	

The	board	when	‘hard’	level	is	selected	is	11x9,	with	5	ladders,	7	snakes	and	8	sabotage	spaces.		
Success.	

The	board	when	‘intermediate’	level	is	selected	is	9x7,	with	5	snakes,	5	ladders	and	6	sabotage	
spaces.		Success.	

77

78	

Fig	2.1	

Fig	2.2	

All	of	the	generated	values	for	the	obstacles	match	up	to	what	can	be	seen	on	the	image	positions	on	
the	board.		Success.	

The	player	pieces	
on	the	board	move	
accurately	
compared	to	the	
randomly	
generated	roll	for	
each	turn.	Success.	

78

Emily	Chance-Hill	 150229	

Fig	3.2	

Fig	3.1	

When	‘1’	was	entered	into	the	text	box	and	submitted,	the	error	messages	appeared.		Successful,	
because	that	file	name	already	exists.	

When	‘1.’	was	entered	into	the	text	box	and	submitted,	the	error	messages	did	not	appear.	
Successful,	because	that	file	did	not	exist	at	that	time.	

79

80	

Fig	3.3	

Fig	3.4	

When	‘New’	was	entered	into	the	text	box	and	submitted,	the	error	messages	did	not	appear.	
Successful,	because	that	file	name	does	not	exist.	

When	the	‘replace	existing	
file’	button	is	pressed,	new	
files	are	created	over	the	
existing	files	with	the	unique	
file	name	appended	correctly.	
These	files	contain	the	correct	
information	for	the	new	game	
that	was	saved.	Successful.	

80

Emily	Chance-Hill	 	 150229	

	
	

Fig	3.5	

Fig	3.6	

The	error	messages	do	not	disappear	when	going	back	to	the	save	screen	after	going	back	to	
the	main	menu	when	more	than	1	invalid	file	name	is	submitted,	because	buttons	are	
regenerated	over	existing	ones	and	when	going	back	to	the	main	menu	only	the	most	recently	
generated	buttons	are	cleared.	Unsuccessful.	

The	error	messages	now	clear	when	going	back	to	the	save	screen	from	the	main	menu	screen	
because	I	added	in	error	handling	to	make	sure	no	more	than	1	set	of	error	buttons	can	be	
generated.	Successful.	

81

82	

Fig	4.1	

Fig	4.2	

When	the	file	name	‘wrong’	is	entered,	the	error	messages	appear.	Successful,	because	there	
is	no	existing	file	with	the	name	‘wrong’.	

After	saving	a	file	with	name	‘test’,	and	trying	to	load	a	file	with	name	‘test.’,	the	error	
messages	appear.	Successful,	because	name	is	not	the	same	as	‘test’,	and	no	file	exists	with	
name	‘test.’.	

82

Emily	Chance-Hill	 	 150229	

	
	

Fig	4.3	

Fig	4.4	

The	error	messages	do	not	disappear	when	going	back	to	the	load	screen	after	going	back	to	
the	main	menu	when	more	than	1	invalid	file	name	is	submitted,	because	buttons	are	
regenerated	over	existing	ones	and	when	going	back	to	the	main	menu	only	the	most	recently	
generated	buttons	are	cleared.	Unsuccessful.	
	

The	error	messages	now	clear	when	going	back	to	the	load	screen	from	the	main	menu	screen	
because	I	added	in	error	handling	to	make	sure	no	more	than	1	set	of	error	buttons	can	be	
generated.	Successful.	

83

	
84	

Fig	4.5	

Fig	5.1		 Played	game,	saved	and	printed	values	in	terminal.	Loaded	same	game	and	the	
reproduction	was	the	same.	Successful.	

No	error	messages	appear	when	loading	file	with	name	‘1’	because	there	is	an	existing	file	
with	this	name.	The	game	then	loads	accurately	compared	to	the	file	that	was	saved.	
Successful.	

84

Emily	Chance-Hill	 	 150229	

	
	

Fig	5.2		 	final	player	in	game	was	player	1,	so	next	game	started	with	player	2	

Fig	5.3		 Final	player	in	game	was	player	2,	so	next	game	started	with	player	1	

85

86	

Fig	6.1		 First	roll	for	player	1,	display	screen	says	they	rolled	a	1	and	they	moved	
1	space	on	the	board.	Successful.	

Fig	6.2		 First	turn	for	player	two,	landed	on	sabotage	space	and	told	they	rolled	a	four.	
Chose	to	move	5	spaces	ahead,	player	piece	is	now	on	space	9.	Successful.	

86

Emily	Chance-Hill	 	 150229	

	
	

Fig	6.3	

Fig	6.4	

When	player	2	landed	on	a	ladder,	the	notification	screen	appeared	to	tell	them	what	
happened,	but	not	what	they	rolled	to	land	on	that	space.	Unsuccessful	

When	player	2	landed	on	a	snake,	the	notification	screen	appeared	to	tell	them	what	they	
rolled	and	what	happened.	Successful	

87

88	

Fig	7.1	

Fig	7.2	

The	pieces	for	player	1	and	the	computer	moved	simultaneously,	as	demonstrated	by	the	
positions	of	the	pieces	from	the	start	position	after	1	spin.	Successful.	

The	computer	landed	on	a	sabotage	space	but	no	sabotage	screen	appeared	and	the	game	
continued	as	normal.	Successful.	

88

Emily	Chance-Hill	 	 150229	

	
	

Fig	7.4	

Fig	7.3	

The	computer	landed	on	a	ladder	and	was	moved	1	row	up,	as	demonstrated.	Successful.	

The	computer	landed	on	a	snake	and	was	moved	1	row	down,	as	demonstrated.	Successful.	

89

90	

Fig	8.2	

Fig	8.1	

Player	1	landed	on	a	ladder	and	was	moved	1	row	up,	as	demonstrated.	Successful.	

Player	1	landed	on	a	snake	and	was	moved	1	row	down,	as	demonstrated.	Successful.	

90

Emily	Chance-Hill	 	 150229	

	
	

Fig	8.3	

Fig	8.4	

Player	2	landed	on	a	ladder	and	was	moved	1	row	up,	as	demonstrated.	Successful.	

Player	2	landed	on	a	snake	and	was	moved	1	row	down,	as	demonstrated.	Successful.	

91

92	

Fig	9.2		 Player	1	landed	on	the	sabotage	space	at	position	32,	while	player	2	was	at	
position	40.	Player	1	chose	to	send	P2	5	spaces	behind,	which	landed	them	on	space	35,	which	
was	a	ladder,	so	P2	ended	up	on	space	42,	one	row	above.	Fully	successful.	

Fig	9.1		 Player	1	spun	a	4	from	space	4,	which	
landed	them	on	space	8.	They	ten	chose	to	move	
themselves	five	spaces	forward,	which	landed	them	on	
a	ladder,	which	moved	them	one	row	up,	which	is	why	
they	are	now	on	space	20.	Successful,	plus	tested	
functionality	of	obstacles	appearing	after	each	other,	
which	was	also	successful.	

92

Emily	Chance-Hill	 150229	

Fig	9.4		 Player	spun	a	six	and	land	on	a	sabotage	space	at	11,	chose	to	move	five	spaces	ahead	
and	now	appears	on	space	16.	Successful.	

Fig	9.3		 Player	1	landed	on	the	sabotage	space	at	
position	2,	while	P2	was	at	position	4.	P1	tried	to	move	
P2	5	spaces	behind	but	could	not	because	P2	was	not	5	
spaces	into	the	board.	P1	then	chose	to	move	5	spaces	
ahead,	landing	them	on	space	7.	Fully	successful.	

93

94	

Fig	9.5		 Player	2	landed	on	the	sabotage	space	on	
space	19,	and	player	1	was	on	space	25.	Player	2	chose	
to	move	player	1	back	five,	and	player	one’s	piece	is	
now	on	space	20.	Successful.	

Fig	9.6		 Player	2	landed	on	the	sabotage	space	at	
position	6,	while	player	1	was	at	position	2.	Player	2	
tried	to	send	P1	5	spaces	but	the	option	was	greyed	out	
as	they	were	not	5	spaces	into	the	game.	Instead,	P2	
moved	5	spaces	ahead	onto	space	11,	which	was	a	snake,	
so	P2	ended	up	on	space	4,	one	row	below.	Fully	
successful.

94

Emily	Chance-Hill	 	 150229	

	
	

Fig	10.1	 	 single	player	in	easy	

Fig	10.2	 	 single	player	in	intermediate,	computer	was	able	to	win.	Successful.	

Fig	10.3	 	 single	player	in	hard,	Player	1	was	able	to	win.	Successful.	
	

95

96	

Fig	10.4	 2	player	in	easy,	Player	2	was	able	to	win.	Successful.	

Fig	10.6	 2	player	in	hard,	Player	1	was	able	to	win.	Successful.	

Fig	10.5	 2	player	in	intermediate,	Player	2	was	able	to	win.	Successful.	

96

Emily	Chance-Hill	 	 150229	

	
	

Fig	10.7	 Transitioned	from	winner	screen	to	game	options	screen.	Successful.	

Fig	10.8	 Transitioned	from	winner	screen	to	main	menu	screen,	but	game	can	be	saved	when	it	
shouldn’t	be	able	to-	game	is	completed.	

97

98	

Fig	10.10	 Window	shut	down	when	winner	
screen	option	‘Quit’	was	clicked.	Successful.	

Fig	10.9	 Once	a	game	is	won,	‘save	game’	can	not	be	selected	and	the	menu	screen	stays	until	
another	option	is	selected.	Successful.	

98

Emily	Chance-Hill	 	 150229	

NEA	Evaluation	
	
Evaluation	Vs.	Objectives	
	
On	a	whole,	I	feel	like	I	have	met	and	in	some	places	surpassed	the	objectives	I	
set	for	myself	in	this	project.	I	have	created	a	functioning	game	with	a	colourful	
and	interactive	board	with	randomly	generated	obstacles	(see	test	2.1)	such	as	
snakes	(see	tests	7.3,	8.2,	8.4),	ladders	(see	tests	7.4,	8.1,	8.3)	and	sabotage	
spaces	(see	tests	7.2,	9.1,	9.2,	9.3,	9.4,	9.5,	9.6)	that	can	affect	a	player’s	piece.	
I	have	made	a	menu	screen	(see	tests	1.1	through	1.5)	and	a	game	board	(see	
tests	1.6,	1.7,	1.8,	2.2),	which	all	players	can	win	on	(see	tests	10.1	through	
10.6).	I	have	surpassed	my	objectives	by	making	separate	screens	for	the	game,	
spinner,	menus,	winner	screen,	save	and	load	screens,	and	display	screens	(see	
tests	6.1	through	6.3,	10.7	through	10.9),	which	all	link	to	each	other	and	back	to	
the	main	menu	so	the	app	is	fully	traversable.		
	
The	spinner	(see	test	2.2)	is	graphical,	colourful	and	interactive	so	that	the	
players	can	click	on	it	to	produce	the	effect	of	generating	the	spin	themselves,	
instead	of	it	being	randomly	generated	in	the	code,	which	it	is.	The	different	
players	have	fun	and	individual	pieces	(see	test	2.2,	1.4),	which	are	shown	in	
one	of	the	menu	screens	so	that	the	players	can	see	which	belongs	to	whom.	The	
save	(see	tests	3.1	through	3.5)	and	load	game	(see	tests	4.1	through	4.4,	
5.1	through	5.3)	functionality	works	well	and	consistently,	and	the	users	can	
save	an	unlimited	amount	of	games	and	can	access	them	all	whenever	they	
please.		
	
The	single	player	mode	(see	tests	7.1	through	7.4)	also	works	sufficiently,	and	
the	computer	acts	like	a	manual	player	in	every	way	except	for	making	decisions,	
such	as	on	sabotage	screen.	I	have	managed	to	include	all	of	my	additional	
gameplay	features	including	the	sabotage	spaces	(see	tests	7.2,	9.1,	9.2,	9.3,	9.4,	
9.5,	9.6),	where	a	player	can	choose	to	either	progress	their	own	piece	or	
sabotage	their	opponent,	the	different	difficulty	levels	(see	tests	1.6,	1.7,	1.8)	
which	affects	the	size	of	the	board	as	well	as	the	total	number	of	obstacles	and	
their	proportions	to	each	other.		
	
Feedback	From	Users	
	
Just	after	the	analysis	stage	of	my	project,	I	produced	a	basic	questionnaire	(see	
questionnaire	doc)	asking	for	advice	about	the	gameplay	of	my	app,	which	I	
distributed	to	about	ten	people.	My	main	objective	for	this	exercise	was	to	find	
out	the	general	opinion	of	whether	I	should	keep	my	game	traditional	or	mix	it	
up	into	a	new	kind	of	game.		
	
For	this,	I	asked	people	to	play	2	of	the	games	that	I	found	in	my	research,	one	of	
which	was	a	very	basic	online	game	of	snakes	and	ladders	where	there	were	no	
real	additional	features,	and	the	other	an	app	loosely	based	around	snakes	and	
ladders	which	had	extra	features	such	as	a	slot	machine	where	you	had	to	get	a	
certain	amount	of	images	matched	up	before	you	could	take	a	turn.	I	then	

99

100	

proposed	three	questions;	which	did	you	enjoy	more,	which	was	more	intuitive	
to	play	and	which	felt	more	like	snakes	and	ladders.		

The	results	were	about	60/40	for	enjoying	the	game	in	favour	of	the	slots	game,	
but	every	single	person	said	the	basic	game	was	easier	and	more	intuitive	to	
play,	as	well	as	feeling	more	like	snakes	and	ladders.	Since	my	game	was	to	be	
aimed	at	children	and	families,	the	more	intuitive	the	better,	so	I	knew	I	had	to	
make	my	game	simpler	than	the	slots	game,	with	less	radical	changes.	I	also	
knew	I	wanted	the	game	to	be	somewhat	traditional,	so	being	recognisable	as	a	
snakes	and	ladders	game	was	imperative.		

Based	on	this,	and	considering	that	how	much	the	games	were	enjoyed	was	
nearly	equal,	I	decided	to	keep	my	game	to	a	more	traditional	style,	keeping	the	
basic	game	and	only	adding	features	on	top,	rather	than	changing	anything	vital	
in	the	gameplay.	I	feel	like	I	have	done	this,	as	the	basic	game	is	very	essentially	
snakes	and	ladders,	only	with	extra	board	options	and	sabotage	spaces	added	in,	
which	I	like	to	think	only	add	to	the	quality	of	gameplay.	I	have	kept	some	
features	as	close	as	I	can	to	what	playing	the	real	life	game	would	be	like,	such	as	
having	to	manually	make	your	own	spin,	and	decide	from	the	display	screen	
when	they	want	to	move	their	piece	and	continue	with	the	game.		

To	check	that	I	had	implemented	the	different	features	of	my	game	in	a	user-
friendly	way,	consistent	with	the	style	of	game	suggested	in	the	preliminary	
questionnaire,	I	had	three	people	play	my	game	when	it	was	near	completion	to	
get	some	verbal	feedback.	The	conclusion	from	this	was	that	the	styling	and	
approach	to	my	game	was	good,	and	they	enjoyed	the	gameplay,	but	the	game	
was	not	easy	to	follow	in	some	places,	so	any	strategic	playing	was	made	difficult	
because	it	was	difficult	to	track	the	different	player’s	moves	due	to	the	relevant	
information	not	being	provided	all	of	the	time.	In	response	to	this,	I	added	in	
more	display	screens	between	turns	and	for	each	type	of	obstacle	or	interference	
to	explain	to	the	user	what	had	happened,	and	most	importantly	making	sure	the	
user	was	always	aware	of	what	they	rolled	for	this	to	come	about.	

Future	Improvements	

If	I	had	had	more	time	for	the	project,	I	would	have	liked	to	network	the	game	so	
that	two	different	users	from	different	locations	could	have	played	against	each	
other	from	different	devices.	As	the	project	was	nearing	completion,	however,	I	
was	still	finishing	my	original	functionality,	which	needed	my	attention.	I	would	
also	have	liked	to	create	a	better	interface	for	the	single	player	mode,	by	letting	
the	player	have	their	turn	separately,	then	switching	to	the	spinner	screen	and	
automatically	generating	a	spin	for	the	computer	and	displaying	it	to	the	user	
before	continuing	the	game,	as	I	think	this	would	make	the	same	easier	to	follow	
for	the	user.	However,	the	way	I	created	my	app	was	through	buttons,	which	
require	a	user	to	click	them	to	generate	an	action,	so	the	only	way	to	accomplish	
a	separate	turn	for	the	computer	would	be	to	get	the	player	to	click	through	the	
screens	for	their	opponent,	which	seemed	counterintuitive.		

100

Emily	Chance-Hill	 	 150229	

Conclusion	
	
Therefore,	overall	I	am	pleased	with	the	style	and	approach	of	my	application	
based	on	third	party	feedback	from	the	analysis	stage	from	existing	systems,	and	
I	am	confident	that	my	game	works	sufficiently.	I	am	also	satisfied	that	I	met	all	
of	my	objectives	when	creating	this	game,	and	I	have	not	strayed	from	my	
original	path	of	design	too	much.	The	final	set	of	third	party	feedback,	and	my	
response	to	it,	has	assured	me	that	my	game	is	now	user-friendly	and	enjoyable	
to	play.	Although	I	would	have	developed	and	improved	the	application	if	the	
project	was	extended,	I	am	happy	with	the	results	of	what	I	have	achieved.	
	
	

NEA	Questionnaire		
	

1. Which	of	the	two	games,	the	online	board	game	or	the	phone	app	slots	
game,	did	you	enjoy	most?	(Please	tick)	

	
	
	
	
	

2. Which	of	the	two	games,	the	online	board	game	or	the	phone	app	slots	
game,	was	the	most	intuitive	to	play?	(Please	tick)	

	
	
	

	
	
	
	

3. Which	of	the	two	games,	the	online	board	game	or	the	phone	app	slots	
game,	did	you	feel	was	the	best	representation	of	the	original	snakes	and	
ladders	game?	(Please	tick)	
	

Online	board	game	 Phone	application	
	 	

Online	board	game	 Phone	application	
	 	

Online	board	game	 Phone	application	
	 	

101

102	

Filled	Questionnaires	

102

Emily	Chance-Hill	 	 150229	

	
	
	
	 	

103

104	
104

