[bookmark: _GoBack]Contents Page
Introduction	2
Research	2
Analysis	5
IPSO Diagram	11
Data Dictionary	12
Class Diagram	13
Requirements	15
Design	17	
IPSO Diagram	17
Pseudo Code	18
Class Diagram	22
Interface Design	23
Data Definition Diagram	24
Testing	25
Boiler Plates	27
Forms	28
Menu	28
Simulation	28
Results	29
Erase Warning	29
Evaluation of Objectives	30
Description of improved algorithm	37
Description of Control algorithm	37
Finite state machine of improved algorithm	38
Possible improvements	37
Results	39
Conclusion	42
Appendix	43
Introduction:
My investigation is to see if there is a more efficient algorithm for a robotic vacuum cleaner to clean a floor in an unknown room. I will create a simulation to test a more efficient algorithm for covering the area in random rooms. Tests will be carried out to conclude if I have succeeded in creating a more efficient algorithm and I will evaluate the drawbacks and benefits of my system and how it could be implemented and possibly developed

Research:
Samuel Percival	Godalming College
The research was conducted to discover how current automated robotic vacuum cleaners cover the floor of the room they are placed in and possible alternative algorithms for sweeping out an area.
90
64395		154115
	Type of Source
	Source
	Date Accessed
	Summary of Source
	Used
Y/N
	Reliability

	Web
	http://electronics.howstuffworks.com/gadgets/home/robotic-vacuum2.htm
	14/9/16
	A description of how Roomba robotic vacuums follow a route and how the algorithm appears to work. Starting in a spiral and moving to the outer perimeter of the room avoiding obstacles. Then moving seemingly without a planned path until stopped. This is the algorithm I will try to improve.
	Y
	This article is old, from November 2003, but it is from a reliable website and the algorithm will not have changed too drastically.

	Book
	AQA A-Level Computer Science By Bob Reeves Page 93
	15/9/16
	An explanation of different ways to traverse graphs in discrete maths.
	Y
	This textbook has been approved by the AQA exam board so must be reliable

	Web
	http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
	15/9/16
	How A* path finding is a composite of Dijkstra’s algorithm and Greedy Best Fit First algorithm, and how the ratio of the 2 affects the outcome.
	N
	This is from the Stanford University website so will be reliable as it is from an educational source

	Web
	http://www.ucl.ac.uk/~ucahbtw/docs/d1lesson2/primswithtable_notes.pdf
	17/9/16
	Notes with the definition of Prims algorithm and how it is used on a distance matrix
	Y
	From the university College London website which is highly regarded academic source which means it will be reliable

	Web
	http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/GraphAlgor/kruskalAlgor.htm
	17/9/16
	In depth explanation of Krushkal’s algorithm but it does not seem as useful or optimized as Prim’s algorithm due to edges having to be rejected if they create loops
	N
	I am unable to validate the reliability of the source as the website seems to be someone’s personal website

	Web
	http://mathworld.wolfram.com/AdjacencyMatrix.html

	17/9/16
	A description of how graphs in discrete maths can be represented in matrices which will make programming a solution for this problem easier.

	Y
	This information is from a well-regarded scientist Stephen Wolfram so will be regarded as reliable.

	Forum
	http://robotics.stackexchange.com/questions/628/what-algorithm-should-i-implement-to-program-a-room-cleaning-robot
	18/9/16
	A forum post discussing algorithms for robots to cover an area. It contains currently used algorithms for known and unknown areas, with and without obstacles. Also provides pictures of how current robots path.
	Y
	Due to the source being a forum the reliability cannot be determined as it is open to anyone but some posts have presented sources of their information so will most likely be reliable

	Magazine
	Which: September 2016
Page 60
	19/9/16
	Article describing the algorithms of different robotic vacuums and how the more sophisticated ones have more efficient patching by minimising the area repeated. The more sophisticated algorithm took quarter of the time the less sophisticated robot took.
	Y
	The source is from a company trying to encourage consumers to buy products so it could be bias but the information is also recent so should be reliable.

	Book
	Edexcel Decision 1 Textbook
	19/9/16
	A chapter about the Chinese post man problem and whether a graph is traversable by only crossing each arc once, this makes it eulerian. A graph can be semi eulerian if some arcs have to be crossed twice. This information will help me optimise the path of a known room by factoring in this problem into the code
	Y
	This is a reliable source because it is a published textbook from a reputable educational exam board.

	Web
	http://www.explainthatstuff.com/how-roomba-works.html
	21/9/16
	Facts about how the Roomba robot vacuum works with each component
	Y
	This source should be reliable as it was created recently on 29/1/16

Analysis:
I am investigating how a robot vacuum can most efficiently sweep out a room with obstacles. This is the analysis of my research where describe what each piece of research has told me and decide which features are beneficial and which ones are not.
[image: Roomba Red's "cleaning algorithm"]

This is the algorithms for some robots, normally the cheaper ones. It involves spiralling outwards to cover as much area as possible and then randomly changing directions when an obstacle blocks its path. It is very inefficient due to the random reactions to obstacles. This will be what I will be using as a basis for my control algorithm.

“Depth first is a method that explores as far in to the graph as possible before back tracking to the unvisited nodes. It is often implemented using a recursive algorithm”
“Breadth first is a method for traversing a graph that visits the nodes close to the starting point first. A queue is used to keep track of nodes to visit.
These are different logical methods of traversing a whole graph and I will have to choose which of these methods my algorithm approaches the problem if I use a graph based system to travel around the room.

[image: http://theory.stanford.edu/~amitp/game-programming/a-star/a-star.png]Greedy Best-First-Search: This algorithm is efficient in the fact it is simple and requires less processing but often produces longer paths if there are obstacles in the way

Dijkstra’s algorithm: This requires more processing to reach a destination but can deal with obstacles better leading to more efficient paths being found.
[image: http://theory.stanford.edu/~amitp/game-programming/a-star/best-first-search-trap.png]

These two algorithms combine to form a* path finding which will be useful for finding the shortest path and can be programmed to help me reduce the amount of unnecessarily repeated floor space and locate the charger but the problem is that the path is only able to be taken through known areas so will not be useful for the initial sweep
[image: http://theory.stanford.edu/~amitp/game-programming/a-star/a-star-trap.png]
[image:]
Knowing how prims algorithm works and how it can be applied to a distance matrix will be incredibly useful for applying to an algorithm for navigating a known room if the room is stored as a distance matrix.

Distance graphs on a matrix could allow me to map out an area in the form the computer can read. But this requires particular nodes to be chosen in the room so might not provide enough detail to represent an accurate room.
[image:]

These images were created by using a long exposure on a camera and attaching led’s to a robot vacuum. As you can see they spiral allot and re-cover a lot of area that has already been cleaned.
[image: http://www.petapixel.com/assets/uploads/2011/06/r4.jpg]A visualisation of the current algorithm shows how inefficient current algorithms are and gives me a better idea how to program the control along with a reference to the type of path the control algorithm will take
[image: https://artstormer.files.wordpress.com/2012/04/roomba-5-600x600.jpg?w=620]
The picture below shows two extremes of algorithm based pathing where the left is very efficient and the right looks completely random.
[image: C:\Users\Sam\Desktop\IMG_20160919_124152.jpg]The left image gives the impression that traveling in straight lines and turning right angles is the most efficient path for covering the most area efficiently. Whereas the right side has a chaotic path produced uneven coverage.

[image: C:\Users\Sam\Desktop\IMG_20160919_123325.jpg]This page is about calculating the most efficient minimum spanning tree by only repeating the shortest arcs and only if necessary, demonstrating that shortest paths are achieved by repeating as little area as possible.

Input, Process, Stored, Output Diagram of the current system
This shows the different aspects of a robot vacuum system broken down in to different categories.

Processes:
Leave charging station when on button is pressed
Continue forward until obstacle is reached
If there is an obstacle in front: turn until there is not an obstacle.
If floor is particularly dirty turn on the spot over area until clean or a certain number of times.
When battery level becomes low return to charger
Inputs:
Proximity to a wall/ obstacle
Level of Dirt
Proximity of drops/ steps
Battery level
Charging station location

Outputs:
Turn
Forward
Repeat area
Return to charger

Stored:
Level of dirt
Presence of an object
Number of times area is repeated
‘Cliff’ detected

This shows me that the current algorithm relies heavily on processing and does not make use of storage as much which could be a point where it can be improved by storing more data and processing less information. The inputs and outputs should stay the same for my system to keep the simulation realistic

	Data Dictionary

	Ref
	Name
	Data Type
	Regex
	Occurrence
	Source of data / description

	
	Level of dirt
	Decimal
	
	A maximum of area of the room divided by the area of the robot
	Changed to true when over an area of dirt

	
	Proximity to an object in front
	Decimal
	
	Once changing as the distance changes
	The distance to an obstacle in front of it

	
	Proximity to an object to the left
	Decimal
	
	Once changing as the distance changes
	The distance to an obstacle to the left of it

	
	Proximity to an object to the right
	Decimal
	
	Once changing as the distance changes
	The distance to an obstacle to the right of it

	
	Number of times area has be repeated
	Integer
	
	As many times as the dirt sensor it triggered
	This is a counted number of times the vacuum has cleaned an area of dirt

	
	Shortest path to charger
	Vector
	
	Once
	The calculated shortest known path to the charger so the amount of battery required to reach the charger can be calculated

	
	Cliff detected
	Boolean
	
	Once changing between true and false
	A Boolean for if there is a drop in front of vacuum then it will be set to true and stop

The data currently stored in the system is not stored for a long period of time due to the environment of the vacuum changing constantly and the area being unknown. If the vacuum could store the values for longer it could find a more efficient path to cover the area. Also if the robot knew what it had cleaned it would be able to avoid those areas minimising the repeated area.

The data flow diagram makes it easier to visualise how the data is passed through the current system and shows the relations between processes.
My analysis has shown me the current problems with robot vacuum path finding and the general lack of efficiency that is inherent of random wall bouncing but also the efficient aspects of using spirals. If the path previously travelled is recorded and the algorithm attempts to avoid repeating areas that have been cleaned I think the area can be swept out more efficiently despite not knowing the room.
My investigation to see if the current method of sweeping an area can be improved will be compared by creating a new algorithm for a simulated robot to follow and a control algorithm to compare it to. The area of the room covered by each robot in a time will be compared.

Requirements:
These are the requirements that my simulation will achieve when complete.
1. There will be a virtual room that will have two copies, in each copy a simulated robot programmed with different algorithms are placed.
a. One robot will have my own algorithm and will have improved coverage of the floor compared to the control
b. The other will have the control algorithm which will be what I am comparing to
i. The two areas covered will be outputted on screen after each simulation completes
ii. The amount of repeated area will be outputted by the program
iii. The two algorithms will finish at the same time to keep the test fair

2. Each robot will have the same properties except the algorithm they run
a. They will have a battery of limited capacity that will drain as time progresses
b. They will be able to travel in any direction without having to turn
c. they will be able to sense obstacles on any side of them within a certain
d. Both will have a set travel speed.

3. Perfect efficiency is (100% area coverage subtract inaccessible areas) with no area crossed twice.
a. My simulated robot will have as few repeated areas as possible.
b. The program will calculate the area that is accessible to the robots and compare it to what my algorithm covers.
c. The percentage difference of the areas covered will be calculated and shown on screen
d. The results will be stored to a text document so they can be referred to later
e. The room will not be known by either robot to keep the comparison fair

4. The simulated vacuum will always return to the charger when it reaches a certain amount of battery
a. It will take the shortest path possible to the charger
b. This path will not count towards the efficiency and number of repeated areas as it is necessary to get to the charger
c. But the timer will not be stopped
d. If the “robot” returns to the charger mid-way through a clean then it will continue to clean the rest of the room starting from where it stopped.

5. The room will be randomly generated for each simulation test
a. The size of the room will be random but will always be a quadrilateral
b. Using a general structure for an object it will place a random amount in the room
i. Objects will not intersect each other
c. Floor will have a value for dirt level
i. The level of dirt will be set randomly
d. The room will be given to both “robots” to traverse
i. It will be two separate instances of the same room
e. Drops can also be generated within the room to simulate steps
i. Drops in the simulated room will be identified and the algorithm will not allow the robot to fall down them

6. The simulation will display the “robot” moving through the “room”
a. The speed of the simulation will be able to be user controlled
i. Using a slider
b. The simulation will be able to be skipped
i. Using a button
c. Colours will be used to display different aspects of the simulation

7. My algorithm will store a map of what it has scanned in the room and use it to decide where to move next
a. This will store the information of where objects and walls are and also where the robot has previously been. This will be to avoid repeating areas.
b. The map will be updated with what the sensors on the bot find in the room

Design

IPSO For my simulation program with my algorithm
This diagram represents the aspects that my algorithm will require to fulfil my requirements
Input
Sensors
Battery level
Charging
Speed of simulation
Skip simulation
Process
Locate object
Change direction
Decide whether to go to charger
Find Charger
Recognise empty space
Return to location left off at
Calculate shortest path
Calculate shortest path with minimal repeated areas
Render image

Storage
Area previously covered
Objects discovered
Battery level
Location left off at
Output
Robot on screen
Average values
Percentage difference of values

Process design
My investigation focuses on improving the current, commonly used, area sweeping algorithms for robot vacuums. The algorithm I create will produce improved coverage in the same amount of time as the control algorithm. To achieve this it will avoid covering areas that it has already covered unless necessary.

Pseudo code for a possible algorithm
Below is some pseudo code for a possible control system for the robot, by following edges of objects There is not yet an overall method for deciding where to go in this code.
IfObjectInFront
Dim PossibleShortest as decimal
Dim NearestPoint(3) as decimal
	If Sweep(Object) <> 0 then
		Direction = mod(sweep(object),4) + 1
	Else
For every Column in Columns		//Finds Empty area
	For every Row in Rows
		If Floor(Column, Row) = 0 then
PossibleShortest = CalculateShortestDistance(Row, Column)
If PossibleShortest < Nearest then
				NearestPoint(1) = Column
				NearestPoint(2) = Row
NearestPoint(3) = PossibleShortest		
			Endif
		Endif
Next
		Next
MoveDirectlyTo	(NearestPoint(1), NearestPoint(2)

CalculateShortest(x,y)
(x,y)=CurrentLocation(,)-(x,y)
	Return x^2 + y^2

Coverarea
Dim lastobsticle as integer		//Follows the edge of an object
Do Until Sweep(Unclean, 1) = 1
LastObsticle = Sweep(Obsticle)
If LastObsticle = 0 then
Move(Direction)
Else
Move(Mod(LastObsticle,4) + 1
Endif
	If Sweep(Obsticle) = 0 then
		Move(LastObsticle)
		If Mod(Sweep(Obsticle),4) + 1 = LastObsticle Then //left turn made
			Move(Direction)
		ElseIf Mod(Sweep(Obsticle,Direction),4) – 1 = LastObsticle Then //Right turn made
			Move(Direction)
		EndIf
	 Endif
 Loop
	

SavePerviousPath(GetLocation(Y,X), FloorInfo)
	If Floor(x,0) Doesn’t Exist Then
		Create Floor(x,0)
If Floor(x,y) = Column(NumberOfItemsInList) then
Add item to all lists
Floor(x,y) = FloorInfo

Move(Direction)
	If Direction = 1 then
		SetLocation(0,Speed) //Speed is the number the location is changed by
	ElseIf Direction = 2 then
		Setlocation(Speed,0)
Elseif Direction = 3 then
		Setlocation(0,-Speed)
Elseif Direction = 4 then
	Setlocation(-Speed,0)

NextLocation(Direction)
	If Direction = 1 then
	Return CurrentLocation + (0,1)
	ElseIf Direction = 2 then
	Return CurrentLocation + (1,0)
	ElseIf Direction = 3 then
	Return Currentlocation – (0,1)
	ElseIf Direction = 4 then
	Return CurrentLocation – (1,0)

Sensor(Direction)
	If Direction = 1 then
		Return Floor(Currentlocation + (0,1))
Elseif Direction = 2 then
		Return Floor(Currentlocation + (1,0))
Elseif Direction = 3 then
		Return Floor(Currentlocation - (0,1))
Elseif Direction = 4 then
		Return Floor(Currentlocation - (1,0))
Endif

Sweep(Object to search for)
For x = 1 to 4
If Sensor(x) = Object to search for Then
	Return x
Else Return 0
	Endif

Floor(X,Y)
	Retun Column(X(Y))

MoveDirectlyTo(X,Y)
Dim XStep, YStep as Integer = 1
	If X > Y then
		YStep = Y/X
		Steps = X
	ElseIf Y > X
		XStep = X/y
		Steps = Y
	Else
		Steps = X
	Endif
	For Count = 1 to Steps or Obsticle = True
		SetLocation(XStep, YStep)
	Next

Pseudo Code for Control Algorithm
Some pseudo code for a moving the robot with the control algorithm
Avoid(Direction)
	If Sensor(Object) = Direction then
		Turn Left
	Endif

Forward
	If Direction = 1 then
		Location = CurrentLocation(,) + (0,1)
ElseIf Direction = 2 then
		Location = CurrentLocation(,) + (1,0)
ElseIf Direction = 3 then
		Location = CurrentLocation(,) - (0,1)
ElseIf Direction = 4 then
		Location = CurrentLocation(,) - (1,0)

Spiral(MinimumDist)
Dim Obstacle as Boolean = False
For n = 1 to 2
For x = 1 to MinimumDist
If Sensor(Object) = Direction then
Obstacle = True
Break
	Else
	Forward
	
Next
If Obstacle = True then
	Break
Else
	Turn Left
Endif
Next
Spiral(MinimumDist + 1)
If Obstacle = True then
Break
Endif

All my pseudo code uses a 2 dimensional array for locations but it might be more efficient to save them as a custom data type or as vectors. In the actual solution I will decide based on ease of use of the data and efficiency.

[image: F:\Downloads\NEA Class diagram.png]This is a class diagram of the system. Some small changes to the properties and procedures can be made.

Interface DesignDisplay of a simulation

Name of window

[image:]
[image:]Which algorithm the value applies to
Type of value
Values will be outputted here
Name of window
Skip Button - To skip straight to results
Speed of simulation control

	Name of data
	Type Of Data
	Length (Characters)
	Source
	Occurrences

	Direction
	Interger Between 1 and 4
	1
	Robot
	Movement procedure

	Location
	Custom data type
	1
	Robot
	Movement, graphics and starting location

	FloorInfo
	Integer
	1
	Robot
	Each object in room

	Speed
	Integer
	1
	Robot
	Robot, movement

	Distance
	Decimal
	4
	Robot
	Sensors

	SpeedOfSimulation
	Integer
	2
	User Specified
	Menu, Simulation

	NumberOfSimulations
	Integer
	2
	User Specified
	Menu, Simulation

Testing

	Test
	Success/ Fail
	Evidence
	Actual result

	Two Copies of the room are created
	Success
	00:12 in evidence video
	

	Each robot will be programmed with a different algorithm
	Success
	00:12 - 29:42 in evidence video
	

	My algorithm will have improved floor coverage
	Success
	Results from multiple runs below
	

	The two algorithms will end at the same time
	Success
	11:33 in evidence video
	

	The two robots will have the same properties
	Success
	Robot class in main code is inherited by both bots
	

	Limited battery capacity
	Success
	11:26 in evidence video
	

	Travel in any direction
	Fail
	00:12 - 29:42 in evidence video
	The robots travel in one of 4 directions

	The robots can sense an objects with in a distance of them
	Success
	Map file generated and V
	

	Set travel speed
	Success
	SpeedofBot property in Robot class and 00:12 - 29:42 in evidence video

	

	Robot has as few repeated areas as possible

	Success
	01:09-2:19, 04:50-5:46, 20:36- 28:28 in evidence video
	

	Areas covered are compared and percentage difference displayed
	Success
	29:45 in the evidence video
	

	Results stored in a text document
	Success
	30:54 in the evidence video
	

	Robot will return to charger at low battery and other charger related objectives
	Fail
	
	It attempts to find its way back but never succeeds

	The room is randomly generated
	Success
	00:12, 04:27, 11:36 in the evidence video
	

	The room is a random size each time
	Fail
	
	Room is always 200 by 200 as it caused too many performance issues

	Objects are randomly placed in the room
	Success
	00:12, 04:27, 11:36 in the evidence video
	

	Objects do not intersect
	Fail
	
	The code to prevent intersecting did not work for object so they are able to generate on top of each other

	Simulation is shown
	Success
	00:12 - 29:42 in evidence video
	

	Speed of simulation can be controlled
	Success
	00:14 in evidence video
	

	Simulation can be skipped

	Success
	04:24 in evidence video
	

	Colours are accurately representing obstacles
	Success
	00:35 in evidence video
	

	Graphics can be skipped
	Success
	30:02 in evidence video
	

	Results button opens results file
	Success
	30:54 in evidence video
	

	Multiple simulations
	Success
	04:24, 11:34 in evidence video
	

	Erase warning screen displays
	Success
	29:50 in evidence video
	

Evidence video located at: https://www.youtube.com/watch?v=sFKYkjgB6eo&feature=youtu.be

Map boiler plate: This is what the robot has stored as a map in its memory
[image:]Area bot can/ has seen in room
Bot location/ Charger
Unknown area

Room boiler plate: This is the room lain out using the map key numbers
[image:]Unclean floor
Objects
Wall
Cleaned floor

MenuNumber box to accept input

[image:]Start button
Tick boxes to accept inputs

SimulationUncleaned floor (blue)

[image:]Cleaned floor
Objects in blue
Robot

Wall
Simulation speed control
Next button
End button

Improved algorithm on the left
Progress bar

Control algorithm on the right
Battery bars

Results
[image:]Navigationbuttons
Data from most recent run

Erase warningMessage text, can be clicked to open results

[image:]Exit the program
Continue to menu

Evaluation of objectives
In this section there will be a short paragraph about how I have met my objectives and an explanation for why others where not achieved
1. There will be a virtual room that will have two copies, in each copy a simulated robot programmed with different algorithms are placed.

This has been met very well as the robots do not affect each other’s rooms as ThisRoom2 is a copy of ThisRoom. (Line 34.11)

a. One robot will have my own algorithm and will have improved coverage of the floor compared to the control

The robot on the left of the simulation has my algorithm (described below). Generally covers more area than the control (results below). The class containing my algorithm can be found on line 105 in my code and the control can be found on line 145.

b. The other will have the control algorithm which will be what I am comparing to

The control algorithm is on the right of the simulation and the control can be found on line 145 of the code. The control algorithm simply changes to a random direction every time it collides with an object.

i. The two areas covered will be outputted on screen after each simulation completes

The two areas are compared and calculated as a percentage difference. The results from each run are output to a text document and at the end of all simulations the results are displayed. The displaying of results is found from line 310 in my code to 319. And the writing to file is on line 52. To improve this, an average of all the runs could be output.

ii. The amount of repeated area will be outputted by the program

There was not enough time to implement a system to record the repeated area and it would compromise the performance of the program

iii. The two algorithms will finish at the same time to keep the test fair

Both algorithms complete the same number of cycles of each algorithm so the simulation time is the same, on line 40 there is there is the procedure to run both the improved algorithm and the control algorithm together so they complete the same number of cycles.

2. Each robot will have the same properties except the algorithm they run

Both robots inherit a robot class line 71 to keep the constant properties the same but the improved algorithm and the control algorithm required a few more properties to operate as desired. These have been implemented from 105 to 113 and 145 to 151 respectively

a. They will have a battery of limited capacity that will drain as time progresses.

Both robots have a battery class which drains an amount every time a the related robot moves The class is located at line 170 and implemented in robot at line 77 and the battery is drained within the movement procedure at line 86.7

b. They will be able to travel in any direction without having to turn

Each robot can travel in any of 4 directions (North South East and West) and they do not turn to change direction. This was done to simplify the range of movement the robots have due to the room being built on a vector system and restricting the robot to one axis of movement at a time fixed many problems. The movement procedure can be found on line 86 and from this we can see the robot moves along the horizontal and vertical vectors x and y.

c. they will be able to sense obstacles on any side of them within a certain distance

The improved algorithm has sensors that allow what it can see to be mapped to an array, they have a scan range of 10 units, and the control algorithm can detect objects right next to it so it does not collide with them. The boiler plate for the sensors can be seen here

[image:]Empty uncleaned area
Cleaned area
Obstacle
Unknown area

As you can see from this the robot does not know the room before hand and only knows of what has been scanned. The scanners scan each side of the robot in turn moving from the robot outwards and stopping if it finds and obstacle as it cannot see through objects. To scan the room the room is passed to the sensors on line 159 where the room is then scanned 10 units away from each side of the bot

d. Both will have a set travel speed.

SpeedOfBot is a property in the robot class on line 74 used to dictate how far the bot will move on each movement command therefore giving them same speed.

3. Perfect efficiency is (100% area coverage subtract inaccessible areas) with no area crossed twice.
a. My simulated robot will have as few repeated areas as possible.

My algorithm avoids repeating areas by attempting to travel in each direction without re-covering areas at first and if it unable it repeats an area meaning this objective has been met as best as possible for this algorithm, only improving the algorithm further can reduce repeated areas

b. The program will calculate the area that is accessible to the robots and compare it to what my algorithm covers.

The amount of clean and dirty floor there is tallied from 40.6 to 40.9 and the percentage of the accessible area the robot has covered is calculated on line 40.10 and the difference between the improved and control algorithm is calculated on line 311.5

c. The percentage difference of the areas covered will be calculated and shown on screen

On line 311.5 the value is displayed

d. The results will be stored to a text document so they can be referred to later

From lines 52 to 53 the result of the run are written to a file named Results located in the room folder where the program is run if write to file is selected by the user. These results are erased if the user returns to the main menu

e. The room will not be known by either robot to keep the comparison fair

The room and the robots are kept separated except for the sensors where they scan the room and the cleaner which cleans the room directly as accurate to real life. As seen in the boiler plate for the sensors, the room is unknown until scanned and saved in the improved algorithm and the control does not create a map. The only thing known to the improved algorithm is the size of the room so it knows how big to create its map.

4. The simulated vacuum will always return to the charger when it reaches a certain amount of battery

An attempt was made to implement returning to charger from line 142 but was not completed and therefore this objective has been left unfulfilled.

a. It will take the shortest path possible to the charger

b. This path will not count towards the efficiency and number of repeated areas as it is necessary to get to the charger
c. But the timer will not be stopped
d. If the “robot” returns to the charger mid-way through a clean then it will continue to clean the rest of the room starting from where it stopped.

Instead of returning to the charger the simulation ends when the battery level reaches 0

5. The room will be randomly generated for each simulation test
a. The size of the room will be random but will always be a quadrilateral

This objective presented too many issues with the robots going out of bound or not reaching the edges so the room is always 200 by 200 units

b. Using a general structure for an object it will place a random amount in the room

Both walls and objects are randomly generated (the number of them, their dimensions and their position.)
Walls are generated from lines 224 where a wall is added to the list of walls and in the constructor for wall from line 254 each wall is give 2 ends and they are set to random locations in the room. After that the gradient and intercept are calculated and assigned to the properties of the wall so it can then be set in the room.
Furniture is generated within 226 there the furniture constructor on 278 assigns the piece or furniture or object a size and randomly decides if it has 4 individual legs or is a solid “box” it then assigns the furniture a random location in the room and sets the 4 corners the correct distance away depending on the dimensions. If appropriate a leg is generate on each corner of the furniture and the leg constructor starting at line 291 creates a leg of dimensions 5 x 5 at the position passed. Back in 226 the area inside the solid “boxes” is filled in the room and the “legs” are also filled in.

i. Objects will not intersect each other

Objects do intersect with each other, an attempt to stop this was made but would not work and there was not enough time to implement this. But overall it does not affect the overall purpose of the program

c. Floor will have a value for dirt level

The floor in the room is set a dirt level at line 232.8.2.1

i. The level of dirt will be set randomly
ii.
Due to repeating areas not being included a random dirt level would not contribute to the simulation.

d. The room will be given to both “robots” to traverse

Both robots are placed in their own room on line 34.7 where it finds the bots a starting position in their respective rooms.

i. It will be two separate instances of the same room

In the room constructor on line 214.1 a parameter called clone is passed which tells the code whether to create a copy of the room. In createroom on line 216.2.1 the size of the room is copied and on line 34.11 a procedure is called to clone the room. The procedure is found from lines 244 to 245. It copies each location in one room to the other.

e. Drops can also be generated within the room to simulate steps
i. Drops in the simulated room will be identified and the algorithm will not allow the robot to fall down them.

The pursuit of drops was abandoned as they are almost identical to obstacles

6. The simulation will display the “robot” moving through the “room”
The simulation accurately depicts where each robot is in each room. This is verified by the boiler plates of the room matching the room the simulation draws and the robot map having the robot located in the same place as the simulation when the simulation is ended at any point. I use open gl to do this using vectors to decide what do draw.

a. The speed of the simulation will be able to be user controlled

The simulation speed can be user controlled but because the simulation does not run as smoothly as I initially thought it would the speed adjustment is not immediately responsive to changes

b. The simulation will be able to be skipped

A single simulation is able to be ended prematurely in the form of the next button, this is found on line 66 of the code where a procedure ends the simulation and starts the next one. Also the graphics of the robots can be turned off from the main menu which makes the program run a bit faster

c. Colours will be used to display different aspects of the simulation

The room is presented in different colours. This is achieved on lines 38.1.17 and 38.1.29 where the different aspects of the room are drawn in different distinct colours. To do this areas on the vector system used to map the room that have different “keys” are presented in different colours.

7. 	My algorithm will store a map of what it has scanned in the room and use it to decide where to move next
a. This will store the information of where objects and walls are and also where the robot has previously been. This will be to avoid repeating areas.

From line 159 the robot sweeps each side of the bot using the sensors on the room. Whatever is scanned is written to a map stored in a list of lists to represent a dynamically sizable grid system. On lines 159.2.3.2, 159.4.3.2, 159.6.3.4 and 159.8.3.2 the values at a location on the floor are mapped to the locations of a map in the robots “memory”.

b. The map will be updated with what the sensors on the bot find in the room

In the class sensor on line 157 the procedure called sweep record on line 159 scans outward from the robot 10 units and record what it finds at that location.

Evaluation
Description of algorithms
Improved
My algorithm involved systematically making right hand turns every time is collided with an object, avoiding repeating areas it had already covered at first and then ignoring them if it is unable to move. I know what it has and haven’t covered by recording a map to its memory and marking where it had gone and where obstacles had been found. This means the robot can be placed in any unknown room and still cover most the area assuming it doesn’t get stuck. To avoid getting stuck the robot count how long it is in an area that has already covered and randomly changes direction every 100 cycles of movement until free. The location of the charger it starts at is also stored so it has the possibility of finding its way back which could lead to the robot continuing forever.

On the next page there is a finite state machine that describes my algorithm

The algorithm could have a less crude method of preventing getting stuck be searching the map for possible uncleaned areas and traveling to them. Also a more reliable charger locating algorithm could be implemented. Another improvement would be adapting the system to work in any direction rather than the limited 4 and also a system to locate itself in the room based on something other than its own movement in case it was knocked off course. Finally a feature could be added where a room is recognised whilst the robot travels around the room so it can take a more efficient path than before due to the whole room being known.
The fact the algorithms can be improved has implications such as having the batteries in physical units lasting longer due to the greater efficiency and therefore less battery drain.

Control
The algorithm involves moving in a random direction every time it cannot pass an object in the direction it is currently moving. Every 100 cycles it will change direction randomly to firstly cover more area and secondly prevent it getting stuck in loops. This bot does not differentiate between clean and unclean floor

[image: D:\Course Work\Robot algorithm.png]

These are the results from a few runs:
Simulation Number 5
Area Covered By Improved Algorithm: 87%
Area Covered By Control Algorithm: 49%
Percentage Difference between the two: 38%
Simulation Time: 441.6

Simulation Number 4
Area Covered By Improved Algorithm: 91%
Area Covered By Control Algorithm: 48%
Percentage Difference between the two: 43%
Simulation Time: 361.4

Simulation Number 3
Area Covered By Improved Algorithm: 83%
Area Covered By Control Algorithm: 47%
Percentage Difference between the two: 36%
Simulation Time: 668.1

Simulation Number 2
Area Covered By Improved Algorithm: 91%
Area Covered By Control Algorithm: 62%
Percentage Difference between the two: 29%
Simulation Time: 608.5

Simulation Number 1
Area Covered By Improved Algorithm: 71%
Area Covered By Control Algorithm: 58%
Percentage Difference between the two: 13%
Simulation Time: 739.7

Simulation Number 5
Area Covered By Improved Algorithm: 79%
Area Covered By Control Algorithm: 62%
Percentage Difference between the two: 17%
Simulation Time: 708.1

Simulation Number 4
Area Covered By Improved Algorithm: 77%
Area Covered By Control Algorithm: 45%
Percentage Difference between the two: 32%
Simulation Time: 716.8

Simulation Number 3
Area Covered By Improved Algorithm: 31%
Area Covered By Control Algorithm: 62%
Percentage Difference between the two: -31%
Simulation Time: 874.9

Simulation Number 2
Area Covered By Improved Algorithm: 91%
Area Covered By Control Algorithm: 60%
Percentage Difference between the two: 31%
Simulation Time: 665.4

Simulation Number 1
Area Covered By Improved Algorithm: 41%
Area Covered By Control Algorithm: 61%
Percentage Difference between the two: -20%
Simulation Time: 659.4

Conclusion
As you can see from the values above my algorithm almost always covered a significant amount more of the floor than the control algorithm 8/10.
Despite the size of the room being small this concept could be adapted to fit any size of room. If there were several robots that sent the areas that they had each discovered to a central system that combined it in to one map that was sent back to each robot, the system should still hold up.
My simulation could be improved with speed optimisation and unrestricted directions of movement.
In conclusion, yes, the current standard sweeping algorithm of changing direction randomly can be improved fairly easily but the drawback is that more processing power will be required to make the system run as quickly as the basic algorithm does.

Appendix

Main Menu
1. Public Class Form1
2. Private WriteToFile As Boolean 'options selected
3. Private SkipGraphics As Boolean
4. Private NumberOfSimulations As Integer
5. Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click 'loads main program
5.1. Dim MainProg As New MainCode(NumberOfSimulations, SkipGraphics, WriteToFile)
5.2. MainProg.Activate()
5.3. Try
5.3.1. MainProg.Show()
5.4. Catch
5.5. End Try
5.6. Me.Close()

6. End Sub

7. Private Sub NumberOfSimulationsNumericUpDown_ValueChanged(sender As Object, e As EventArgs) Handles NumberOfSimulationsNumericUpDown.ValueChanged 'number of simulation
7.1. NumberOfSimulations = NumberOfSimulationsNumericUpDown.Value
8. End Sub

9. Private Sub SkipGraphicsBox_CheckedChanged(sender As Object, e As EventArgs) Handles SkipGraphicsBox.CheckedChanged 'skip graphics option
9.1. If SkipGraphicsBox.Checked = True Then
9.1.1. SkipGraphics = True
9.2. ElseIf SkipGraphicsBox.Checked = False Then
9.2.1. SkipGraphics = False
9.3. End If
10. End Sub

11. Private Sub WriteToFileBox_CheckedChanged(sender As Object, e As EventArgs) Handles WriteToFileBox.CheckedChanged 'Write file
11.1. If WriteToFileBox.Checked = True Then
11.1.1. WriteToFile = True
11.2. ElseIf WriteToFileBox.Checked = False Then
11.2.1. WriteToFile = False
11.3. End If
12. End Sub

13. Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load 'erases previous results in doc
13.1. Dim FILE_NAME As String = IO.Path.Combine(My.Application.Info.DirectoryPath, "Rooms\Results.txt")
13.2. System.IO.File.WriteAllText(FILE_NAME, "")
14. End Sub
15. End Class

MainCode

16. Imports OpenTK
17. Imports OpenTK.Graphics
18. Imports OpenTK.Graphics.OpenGL

19. Public Class MainCode
20. Private ThisRoom As New Room(False, 0, 0)
21. Private ThisRoom2 As New Room(True, ThisRoom.GetRoomSize(0) - 1, ThisRoom.GetRoomSize(1) - 1)
22. Private MyAlgo As New ImprovedAlgo(ThisRoom.GetRoomSize(0), ThisRoom.GetRoomSize(1))
23. Private ControlAlgo As New Control(ThisRoom2.GetRoomSize(0), ThisRoom2.GetRoomSize(1))
24. Private NumberOfSimulations As Integer
25. Private SkipGraphics As Boolean
26. Private WriteToFile As Boolean
27. Private FirstRun As Boolean = True
28. Private GroundTexture As Integer = 0
29. Private GroundData(ThisRoom.GetRoomSize(0), ThisRoom.GetRoomSize(1)) As Byte
30. Private GroundCovered, GroundCoveredControl As Integer
31. Private SimTime As ULong
32. Private Clean, Dirty As Double
33. Private TotalSimulations As Integer
34. Sub New(NumberOfSimulations, SkipGraphics, WriteToFile)
34.1. InitializeComponent()
34.2. ControlAlgo.GetBattery.SetBatteryLevel(MyAlgo.GetBattery.GetBatteryLevel) 'sets battery level
34.3. SetNumberOfSimulations(NumberOfSimulations) 'number of simulations to run
34.4. SetSkipGraphics(SkipGraphics) 'skip graphics
34.5. SetWriteToFile(WriteToFile) 'write results to file
34.6. Dim Start(1) As Integer
34.7. Start = ThisRoom.RobotStartingPosition(MyAlgo.GetSizeOfBot) 'finds starting position for bots
34.8. If Start(0) = 0 And Start(1) = 0 Then 'if no position found simulation is restarted
34.8.1. Restart(NumberOfSimulations)
34.9. Else
34.9.1. MyAlgo.SetLocation(Start(0), Start(1)) 'sets starting locations
34.9.2. ControlAlgo.SetLocation(Start(0), Start(1))
34.9.3. ThisRoom.GetChargerObj.SetChargerLocation(Start(0), Start(1)) 'sets charger location
34.9.4. ThisRoom.FillArea(ThisRoom.GetChargerObj.GetCorners.GetCorners(0, 0), ThisRoom.GetChargerObj.GetCorners.GetCorners(0, 1), ThisRoom.GetChargerObj.GetCorners.GetCorners(2, 0), ThisRoom.GetChargerObj.GetCorners.GetCorners(2, 1), ThisRoom.GetChargerObj.GetMapKey)
34.10. End If
34.11. ThisRoom.CopyRoom(ThisRoom, ThisRoom2) 'clones thisroom to thisroom2
35. End Sub

36. Private Sub GlControl1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles GlControl1.Load
36.1. GL.ClearColor(Color.White) 'draws white background
37. End Sub

38. Private Sub GlControl1_Paint(ByVal sender As Object, ByVal e As System.Windows.Forms.PaintEventArgs) Handles GlControl1.Paint 'paints stuff
38.1. If SkipGraphics <> True Then

38.1.1. GL.Clear(ClearBufferMask.ColorBufferBit)
38.1.2. GL.Clear(ClearBufferMask.DepthBufferBit)

38.1.3. 'Basic Setup for viewing
38.1.4. Dim perspective As Matrix4 = Matrix4.CreateOrthographic(ThisRoom.GetRoomSize(0) + ThisRoom2.GetRoomSize(0) + 10, ThisRoom.GetRoomSize(1), 0, 1000) 'Setup Perspective
38.1.5. Dim lookat As Matrix4 = Matrix4.LookAt(ThisRoom.GetRoomSize(0) + 5, ThisRoom.GetRoomSize(1) / 2, 150, ThisRoom.GetRoomSize(0) + 5, ThisRoom.GetRoomSize(1) / 2, 0, 0, 1, 0) 'Setup camera
38.1.6. GL.MatrixMode(MatrixMode.Projection) 'Load Perspective
38.1.7. GL.LoadIdentity()
38.1.8. GL.LoadMatrix(perspective)
38.1.9. GL.MatrixMode(MatrixMode.Modelview) 'Load Camera
38.1.10. GL.LoadIdentity()
38.1.11. GL.LoadMatrix(lookat)
38.1.12. GL.Viewport(0, 0, GlControl1.Width, GlControl1.Height) 'Size of window
38.1.13. GL.Enable(EnableCap.DepthTest) 'Enable correct Z Drawings
38.1.14. GL.DepthFunc(DepthFunction.Less) 'Enable correct Z Drawings

38.1.15. GL.Begin(BeginMode.Points)
38.1.16. For Y = 0 To ThisRoom.GetRoomSize(1) - 1
38.1.17. For X = 0 To ThisRoom.GetRoomSize(0) - 1
38.1.17.1. If ThisRoom.FloorAt(X, Y) = 1 Then
38.1.17.2. ElseIf ThisRoom.FloorAt(X, Y) = 8 Then
38.1.17.3. GL.Color3(Color.Red)
38.1.17.4. GL.Vertex2(X, Y)
38.1.17.5. ElseIf ThisRoom.FloorAt(X, Y) = ThisRoom.GetFurniture(0).GetMapKey Then
38.1.17.6. GL.Color3(Color.Blue)
38.1.17.7. GL.Vertex2(X, Y)
38.1.17.8. ElseIf ThisRoom.FloorAt(X, Y) = ThisRoom.GetWalls(0).GetMapKey Then
38.1.17.9. GL.Color3(Color.Black)
38.1.17.10. GL.Vertex2(X, Y)
38.1.17.11. ElseIf ThisRoom.FloorAt(X, Y) = ThisRoom.GetChargerObj.GetMapKey Then
38.1.17.12. GL.Color3(Color.Green)
38.1.17.13. GL.Vertex2(X, Y)
38.1.17.14. End If
38.1.18. Next
38.1.19. Next
38.1.20. GL.End()
38.1.21. GL.Begin(BeginMode.Quads)
38.1.22. GL.Color3(Color.Red) 'draws myalgo
38.1.23. For index = 0 To 3
38.1.24. GL.Vertex2(MyAlgo.GetBotCorners(index, 0), MyAlgo.GetBotCorners(index, 1))
38.1.25. Next
38.1.26. GL.End()

38.1.27. GL.Begin(BeginMode.Points) 'draws the elements in room
38.1.28. For Y = 0 To ThisRoom2.GetRoomSize(1) - 1
38.1.29. For X = 0 To ThisRoom2.GetRoomSize(0) - 1
38.1.29.1. If ThisRoom2.FloorAt(X, Y) = 1 Then
38.1.29.2. ElseIf ThisRoom2.FloorAt(X, Y) = 8 Then
38.1.29.3. GL.Color3(Color.Red)
38.1.29.4. GL.Vertex2(X + ThisRoom2.GetRoomSize(0) + 10, Y)
38.1.29.5. ElseIf ThisRoom2.FloorAt(X, Y) = ThisRoom2.GetFurniture(0).GetMapKey Then
38.1.29.6. GL.Color3(Color.Blue)
38.1.29.7. GL.Vertex2(X + ThisRoom.GetRoomSize(0) + 10, Y)
38.1.29.8. ElseIf ThisRoom2.FloorAt(X, Y) = ThisRoom2.GetWalls(0).GetMapKey Then
38.1.29.9. GL.Color3(Color.Black)
38.1.29.10. GL.Vertex2(X + ThisRoom2.GetRoomSize(0) + 10, Y)
38.1.29.11. ElseIf ThisRoom2.FloorAt(X, Y) = ThisRoom2.GetChargerObj.GetMapKey Then
38.1.29.12. GL.Color3(Color.Green)
38.1.29.13. GL.Vertex2(X + ThisRoom2.GetRoomSize(0) + 10, Y)
38.1.29.14. End If
38.1.30. Next
38.1.31. Next
38.1.32. GL.End()

38.1.33. GL.Begin(BeginMode.Quads)
38.1.34. 'Draws controlalgo
38.1.35. GL.Color3(Color.Red)
38.1.36. For index = 0 To 3
38.1.37. GL.Vertex2(ControlAlgo.GetBotCorners(index, 0) + ThisRoom.GetRoomSize(0) + 10, ControlAlgo.GetBotCorners(index, 1))
38.1.38. Next
38.1.39. 'Finish the begin mode with "end"
38.1.40. GL.End()
38.1.41. GraphicsContext.CurrentContext.VSync = False 'Caps frame rate
38.1.42. GlControl1.SwapBuffers()
38.2. End If
38.3. RunImprovedAndControl()
39. End Sub

40. Public Sub RunImprovedAndControl()
40.1. For index = 1 To SimulationSpeed.Value 'number of cycles of simulation to run before graphical refresh
40.1.1. If MyAlgo.GetBattery.GetBatteryLevel > 0 Then 'if no battery left, end
40.1.2. If MyAlgo.Move(ThisRoom, MyAlgo.GetLastDirection) = False Then
40.1.2.1. EndOrRestart()
40.1.3. End If
40.1.4. RunControl()
40.1.5. SimTime = SimTime + 1
40.1.6. End If
40.2. Next
40.3. If FirstRun <> False Then 'fixes no graphics bug
40.3.1. GlControl1.Invalidate() 'refresh graphics
40.4. End If
40.5. FirstRun = True
40.6. Clean = 0
40.7. Dirty = 0
40.8. For Y = 0 To ThisRoom.GetRoomSize(1) - 1
40.8.1. For X = 0 To ThisRoom.GetRoomSize(0) - 1
40.8.2. If ThisRoom.FloorAt(X, Y) = 8 Then
40.8.2.1. Clean = Clean + 1
40.8.3. ElseIf ThisRoom.FloorAt(X, Y) = 1 Then
40.8.3.1. Dirty = Dirty + 1
40.8.4. End If
40.8.5. Next
40.9. Next
40.10. GroundCovered = (Clean / (Clean + Dirty)) * 100 'percentage of area cleaned
40.11. MyAlgo.WriteMapToFIle() 'write map
40.12. Progress.Value = GroundCovered 'progress bar
40.13. BatteryBarImproved.Value = MyAlgo.GetBattery.GetBatteryLevel 'battery bars
40.14. BatteryBarControl.Value = MyAlgo.GetBattery.GetbatteryLevel
40.15. If GroundCovered > 90 Or MyAlgo.GetBattery.GetBatteryLevel <= 0 Then 'if most of ground covered end or restart
40.15.1. EndOrRestart()
40.16. ElseIf MyAlgo.GetBattery.GetBatteryLevel < 10 Then 'go to charger at 10% battery or less
40.16.1. Do Until MyAlgo.GetBattery.GetBatteryLevel <= 0 Or MyAlgo.GetBattery.GetBatteryLevel = 100
40.16.2. MyAlgo.GoToCharger(ThisRoom.GetChargerObj.GetChargerLocation(0), ThisRoom.GetChargerObj.GetChargerlocation(1))
40.16.3. Loop
40.17. End If
41. End Sub

42. Public Sub RunControl() 'runs control algorithm
42.1. ControlAlgo.Move(ThisRoom2)
42.2. 'ControlAlgo.GoToCharger(ThisRoom2.GetChargerObj.GetChargerLocation(0), ThisRoom2.GetChargerObj.getchargerlocation(1))
42.3. Clean = 0
42.4. Dirty = 0
42.5. For Y = 0 To ThisRoom2.GetRoomSize(1) - 1
42.5.1. For X = 0 To ThisRoom2.GetRoomSize(0) - 1
42.5.2. If ThisRoom2.FloorAt(X, Y) = 8 Then
42.5.2.1. Clean = Clean + 1
42.5.3. ElseIf ThisRoom2.FloorAt(X, Y) = 1 Then
42.5.3.1. Dirty = Dirty + 1
42.5.4. End If
42.5.5. Next
42.6. Next
42.7. GroundCoveredControl = (Clean / (Clean + Dirty)) * 100 'percentage of ground covered
43. End Sub
44. Public Sub EndOrRestart() 'decides weather to end simulation or restart
44.1. WriteResultsToFile(GroundCovered, GroundCoveredControl, SimTime, NumberOfSimulations)
44.2. If NumberOfSimulations = 1 Then
44.2.1. ShutDown()
44.3. Else
44.3.1. Restart(NumberOfSimulations - 1)
44.4. End If
45. End Sub

46. Private Sub ExitButton(sender As Object, e As EventArgs) Handles Button1.Click
46.1. ShutDown()
47. End Sub

48. Public Sub ShutDown() 'closes simulation
48.1. Dim Results As New ResultsScreen(GroundCovered, SimTime, GroundCoveredControl)
48.2. Results.Activate()
48.3. Results.Show()
48.4. Me.Close()
49. End Sub

50. Public Sub Restart(NumberOfSimulationsLeft As Integer) 'restarts the simulation
50.1. Dim MainProg As New MainCode(NumberOfSimulationsLeft, SkipGraphics, WriteToFile)
50.2. MainProg.Activate()
50.3. MainProg.Show()
50.4. Me.Close()
51. End Sub

52. Public Sub WriteResultsToFile(AreaCoveredImproved, AreaCoveredControl, TimeTaken, SimNumber) 'writes results to a text document
52.1. If WriteToFile = True Then
52.1.1. Dim PercentageDiff As Integer
52.1.2. PercentageDiff = AreaCoveredImproved - AreaCoveredControl
52.1.3. Dim FILE_NAME As String = IO.Path.Combine(My.Application.Info.DirectoryPath, "Rooms\Results.txt")
52.1.4. If System.IO.File.Exists(FILE_NAME) = True Then
52.1.5. Dim objWriter As New System.IO.StreamWriter(FILE_NAME, True)
52.1.6. objWriter.WriteLine("Simulation Number " & SimNumber)
52.1.7. objWriter.WriteLine("Area Covered By Improved Algorithm: " & AreaCoveredImproved & "%")
52.1.8. objWriter.WriteLine("Area Covered By Control Algorithm: " & AreaCoveredControl & "%")
52.1.9. objWriter.WriteLine("Percentage Difference between the two: " & PercentageDiff & "%")
52.1.10. objWriter.WriteLine("Simulation Time: " & SimTime / 10)
52.1.11. objWriter.WriteLine("")
52.1.12. objWriter.Close()
52.1.13. Else
52.1.14. 'MsgBox("File Not found")
52.1.15. End If
52.2. End If
53. End Sub

54. Public Sub SetNumberOfSimulations(Value As Integer)
54.1. NumberOfSimulations = Value
55. End Sub

56. Public Sub SetSkipGraphics(Value As Boolean)
56.1. SkipGraphics = Value
57. End Sub

58. Public Sub SetWriteToFile(Value As Boolean)
58.1. WriteToFile = Value
59. End Sub

60. Public Sub SetWriteToFile(Value As Boolean)
60.1. WriteToFile = Value
61. End Sub

62. Public Function GetNumberOfSimulations()
62.1. Return NumberOfSimulations
63. End Function

64. Public Function GetSkipGraphics()
64.1. Return SkipGraphics
65. End Function

66. Private Sub NextButton_Click(sender As Object, e As EventArgs) Handles NextButton.Click
66.1. EndOrRestart()
67. End Sub

68. Public Function GetWriteToFile()
68.1. Return WriteToFile
69. End Function
70. End Class
71. Class Robot
72. Inherits GenRandomNum
73. Private SizeOfBot As Integer = 10 'Dimensions in cm
74. Private SpeedOfBot As Integer = 1 'cm's to move at once
75. Private CurrentLocation As New Location
76. Private BotCorners As New CornerData
77. Private Battery As New Battery

78. Public Structure Location
78.1. Dim XAxis As Integer
78.2. Dim YAxis As Integer
79. End Structure

80. Sub New(RoomsizeX As Integer, RoomSizeY As Integer)
80.1. SetupCorners()
81. End Sub

82. Public Sub SetupCorners()
82.1. For x = 0 To (3)
82.1.1. BotCorners.AddCorners()
82.2. Next
83. End Sub

84. Public Sub SetLocation(X As Integer, Y As Integer) 'directly sets location and corners to x and y
84.1. CurrentLocation.XAxis = X
84.2. CurrentLocation.YAxis = Y
84.3. BotCorners.SetCorners((CurrentLocation.XAxis + SizeOfBot / 2), (CurrentLocation.YAxis + SizeOfBot / 2), 0) 'TopLeft
84.4. BotCorners.SetCorners((CurrentLocation.XAxis + SizeOfBot / 2), (CurrentLocation.YAxis - SizeOfBot / 2), 1) 'Bottom Left
84.5. BotCorners.SetCorners((CurrentLocation.XAxis - SizeOfBot / 2), (CurrentLocation.YAxis - SizeOfBot / 2), 2) 'Bottom right
84.6. BotCorners.SetCorners((CurrentLocation.XAxis - SizeOfBot / 2), (CurrentLocation.YAxis + SizeOfBot / 2), 3) 'Top right
85. End Sub

86. Public Overridable Sub ChangeLocation(X As Integer, Y As Integer) 'changes location and corners by x and y
86.1. CurrentLocation.XAxis = CurrentLocation.XAxis + X
86.2. CurrentLocation.YAxis = CurrentLocation.YAxis + Y
86.3. BotCorners.SetCorners((CurrentLocation.XAxis + SizeOfBot / 2), (CurrentLocation.YAxis + SizeOfBot / 2), 0) 'TopLeft
86.4. BotCorners.SetCorners((CurrentLocation.XAxis + SizeOfBot / 2), (CurrentLocation.YAxis - SizeOfBot / 2), 1) 'Bottom Left
86.5. BotCorners.SetCorners((CurrentLocation.XAxis - SizeOfBot / 2), (CurrentLocation.YAxis - SizeOfBot / 2), 2) 'Bottom right
86.6. BotCorners.SetCorners((CurrentLocation.XAxis - SizeOfBot / 2), (CurrentLocation.YAxis + SizeOfBot / 2), 3) 'Top right
86.7. Battery.DecreaseBattery()
87. End Sub

88. Public Function GetSizeOfBot()
88.1. Return SizeOfBot
89. End Function

90. Public Function GetLocation(XY As Integer)
90.1. If XY = 0 Then
90.1.1. Return CurrentLocation.XAxis
90.2. Else
90.2.1. Return CurrentLocation.YAxis
90.3. End If
91. End Function

92. Public Function GetBotCorners(WhichCorner As Integer, XY As Integer)
92.1. Return BotCorners.GetCorners(WhichCorner, XY)
93. End Function

94. Public Function GetSpeedOfBot()
94.1. Return SpeedOfBot
95. End Function

96. Public Function GetCurrentlocation()
96.1. Return CurrentLocation
97. End Function

98. Public Function GetBattery()
98.1. Return Battery
99. End Function

100. Public Overridable Sub GoToCharger(ChargerLocationX As Integer, ChargerLocactionY As Integer)
101. End Sub

102. Public Sub Charge(ThisRoom As Room) 'charges battery if robot is on the charger
102.1. If ThisRoom.FloorAt(CurrentLocation.XAxis, CurrentLocation.YAxis) = ThisRoom.GetChargerObj.GetMapKey Then
102.1.1. Battery.SetBatteryLevel(100)
102.2. End If
103. End Sub
104. End Class
105. Class ImprovedAlgo 'Improved algorithm info
106. Inherits Robot
107. Private FloorMap As New List(Of Rows)
108. Private RobotSens As New Sensor
109. Private LastDirection As New Direction
110. Private RoboCleaner As New Cleaner
111. Private StartingOfEdge As Location
112. Private ScanRecordCount As Integer = 1
113. Private LastCleanedTimer As Integer = 0

114. Public Sub WriteMapToFIle() 'writes robot room map to text document for debugging
114.1. Dim FILE_NAME As String = IO.Path.Combine(My.Application.Info.DirectoryPath, "Rooms\Map.txt")
114.2. System.IO.File.WriteAllText(FILE_NAME, "")
114.3. If System.IO.File.Exists(FILE_NAME) = True Then

114.3.1. Dim objWriter As New System.IO.StreamWriter(FILE_NAME)
114.3.2. For Y = GetFloorMapSize(1) - 1 To 0 Step -1
114.3.3. For X = 0 To GetFloorMapSize(0) - 1
114.3.3.1. objWriter.Write(FloorMap(Y).ItemAt(X))
114.3.4. Next
114.3.5. objWriter.WriteLine("")
114.3.6. Next
114.3.7. objWriter.Close()
114.4. Else

114.4.1. MessageBox.Show("File Does Not Exist")

114.5. End If
115. End Sub

116. Class Direction
116.1. Private PlusMinus As Integer
116.2. Private YAxis As Boolean
116.3. Sub New()
116.3.1. PlusMinus = 1
116.3.2. YAxis = False
116.4. End Sub

116.5. Public Sub SetPlusMinus(Value)
116.5.1. PlusMinus = Value
116.6. End Sub

116.7. Public Sub SetYaxis(Value)
116.7.1. YAxis = Value
116.8. End Sub

116.9. Public Function GetPlusMinus()
116.9.1. Return PlusMinus
116.10. End Function

116.11. Public Function GetYaxis()
116.11.1. Return YAxis
116.12. End Function

117. End Class

118. Sub New(RoomSizeX As Integer, RoomSizeY As Integer)
118.1. MyBase.New(RoomSizeX, RoomSizeY)
118.2. AddToMapColumns(RoomSizeX)
118.3. AddToMapRows(RoomSizeY)
119. End Sub
120. Public Overrides Sub ChangeLocation(X As Integer, Y As Integer)
120.1. MyBase.ChangeLocation(X, Y)
120.2. If X > 0 Or Y > 0 Then
120.2.1. LastDirection.SetPlusMinus(1)
120.3. Else
120.3.1. LastDirection.SetPlusMinus(-1)
120.4. End If
120.5. If Math.Abs(X) > Math.Abs(Y) Then
120.5.1. LastDirection.SetYaxis(False)
120.6. Else
120.6.1. LastDirection.SetYaxis(True)
120.7. End If
121. End Sub

122. Public Sub AddToMapColumns(ToAdd As Integer)
122.1. For Y = 1 To ToAdd
122.1.1. FloorMap.Add(New Rows)
122.2. Next
123. End Sub

124. Public Sub AddToMapRows(ToAdd As Integer)
124.1. For index = 0 To FloorMap.Count - 1
124.1.1. For X = 0 To ToAdd
124.1.2. FloorMap(index).AddItems()
124.1.3. Next
124.2. Next
125. End Sub

126. Public Sub SetFloorMap(X As Integer, Y As Integer, WhatToSet As Integer)
126.1. If FloorMap.Count - 1 < Y Then
126.1.1. AddToMapColumns((Y + 1) - FloorMap.Count)
126.2. End If
126.3. If FloorMap(Y).CountItems - 1 < X Then
126.3.1. AddToMapRows((X + 1) - FloorMap(Y).CountItems)
126.4. End If
126.5. FloorMap(Y).SetItems(X, WhatToSet)
127. End Sub
128. Public Function Move(ThisRoom As Room, LastDirection As Direction)
128.1. If ScanRecordCount = RobotSens.GetScanRange / 2 Then
128.1.1. RobotSens.SweepRecord(Me, ThisRoom)
128.1.2. ScanRecordCount = 0
128.2. End If
128.3. If LastCleanedTimer > 100 Then
128.3.1. Dim num As Integer = MyBase.CreateRandInt(0, 1)
128.3.2. If num = 0 Then
128.3.3. LastDirection.SetYaxis(False)
128.3.4. Else
128.3.5. LastDirection.SetYaxis(True)
128.3.6. End If
128.3.7. num = MyBase.CreateRandInt(0, 1)
128.3.8. If num = 0 Then
128.3.9. LastDirection.SetPlusMinus(-1)
128.3.10. Else
128.3.11. LastDirection.SetPlusMinus(1)
128.3.12. End If
128.3.13. LastCleanedTimer = 0
128.4. Else
128.4.1. If LastDirection.GetPlusMinus = 1 And LastDirection.GetYaxis = True Then 'if the robot last moved forward
128.4.2. If TryForward(False) = False Then 'Trys to move forward
128.4.2.1. If TryLeft(False) = False Then 'Left
128.4.2.2. If TryRight(False) = False Then 'Right
128.4.2.2.1. If TryBackWards(False) = False Then 'Backwards
128.4.2.2.1.1. If TryForward(True) = False Then 'Forward ignoring cleaned floor
128.4.2.2.1.2. If TryLeft(True) = False Then 'Left ignoring Cleaned floor
128.4.2.2.1.2.1. If TryRight(True) = False Then 'Right
128.4.2.2.1.2.2. If TryBackWards(True) = False Then 'Back
128.4.2.2.1.2.2.1. Return False
128.4.2.2.1.2.3. End If
128.4.2.2.1.2.4. End If
128.4.2.2.1.3. End If
128.4.2.2.1.4. End If
128.4.2.2.2. End If
128.4.2.3. End If
128.4.2.4. End If
128.4.3. End If

128.4.4. ElseIf LastDirection.GetPlusMinus = 1 And LastDirection.GetYaxis = False Then
128.4.5. If TryRight(False) = False Then
128.4.5.1. If TryForward(False) = False Then
128.4.5.2. If TryBackWards(False) = False Then
128.4.5.2.1. If TryLeft(False) = False Then
128.4.5.2.1.1. If TryRight(True) = False Then
128.4.5.2.1.2. If TryForward(True) = False Then
128.4.5.2.1.2.1. If TryBackWards(True) = False Then
128.4.5.2.1.2.2. If TryLeft(True) = False Then
128.4.5.2.1.2.2.1. Return False
128.4.5.2.1.2.3. End If
128.4.5.2.1.2.4. End If
128.4.5.2.1.3. End If
128.4.5.2.1.4. End If
128.4.5.2.2. End If
128.4.5.3. End If
128.4.5.4. End If
128.4.6. End If
128.4.7. ElseIf LastDirection.GetPlusMinus = -1 And LastDirection.GetYaxis = False Then
128.4.8. If TryLeft(False) = False Then
128.4.8.1. If TryBackWards(False) = False Then
128.4.8.2. If TryForward(False) = False Then
128.4.8.2.1. If TryRight(False) = False Then
128.4.8.2.1.1. If TryLeft(True) = False Then
128.4.8.2.1.2. If TryBackWards(True) = False Then
128.4.8.2.1.2.1. If TryForward(True) = False Then
128.4.8.2.1.2.2. If TryRight(True) = False Then
128.4.8.2.1.2.2.1. Return False
128.4.8.2.1.2.3. End If
128.4.8.2.1.2.4. End If
128.4.8.2.1.3. End If
128.4.8.2.1.4. End If
128.4.8.2.2. End If
128.4.8.3. End If
128.4.8.4. End If
128.4.9. End If
128.4.10. ElseIf LastDirection.GetPlusMinus = -1 And LastDirection.GetYaxis = True Then
128.4.11. If TryBackWards(False) = False Then
128.4.11.1. If TryRight(False) = False Then
128.4.11.2. If TryLeft(False) = False Then
128.4.11.2.1. If TryForward(False) = False Then
128.4.11.2.1.1. If TryBackWards(True) = False Then
128.4.11.2.1.2. If TryRight(True) = False Then
128.4.11.2.1.2.1. If TryLeft(True) = False Then
128.4.11.2.1.2.2. If TryForward(True) = False Then
128.4.11.2.1.2.2.1. Return False
128.4.11.2.1.2.3. End If
128.4.11.2.1.2.4. End If
128.4.11.2.1.3. End If
128.4.11.2.1.4. End If
128.4.11.2.2. End If
128.4.11.3. End If
128.4.11.4. End If
128.4.12. End If
128.4.13. End If
128.5. End If
128.6. ScanRecordCount = ScanRecordCount + 1
128.7. Dim Cleaned As Boolean
128.8. Cleaned = RoboCleaner.Clean(ThisRoom, GetCurrentlocation, GetSizeOfBot)
128.9. If Cleaned = False Then
128.9.1. LastCleanedTimer = LastCleanedTimer + 1
128.10. Else
128.10.1. LastCleanedTimer = True
128.11. End If
128.12. ThisRoom.WriteRoomToFIle()
128.13. Return True
129. End Function

130. Public Function GetLastDirection()
130.1. Return LastDirection
131. End Function

132. Public Function TryForward(IgnoreCleaned As Boolean) 'tries to move "up"
132.1. Dim Passable As Boolean = True
132.2. Dim Count As Integer = 0 'counter to check how much floor is clean along the edge
132.3. Dim Limit As Integer 'how much clean floor has to be found before returns false
132.4. Dim StoredSizeOfBot As Integer = GetSizeOfBot()
132.5. Dim GetLocationX As Integer = GetLocation(0)
132.6. Dim GetLocationY As Integer = GetLocation(1)
132.7. If IgnoreCleaned = True Then
132.7.1. Limit = StoredSizeOfBot * 2 'limit set too large to be relevent in the scan
132.8. Else
132.8.1. Limit = StoredSizeOfBot - 2 'limit set so that if 2 units of area in front is not cleaned area is cleaned
132.9. End If
132.10. Dim X As Integer = -StoredSizeOfBot / 2
132.11. Do Until X = StoredSizeOfBot / 2 Or Count >= Limit
132.11.1. If GetFloorMapSize(1) - 1 >= GetLocationY + StoredSizeOfBot / 2 + 1 Then 'check for edge of room
132.11.2. If FloorMap(GetLocationY + (StoredSizeOfBot / 2) + 1).ItemAt(GetLocationX + X) > 5 Then 'checks for obsticles
132.11.2.1. If FloorMap(GetLocationY + (StoredSizeOfBot / 2) + 1).ItemAt(GetLocationX + X) = 8 Then 'checks for cleaned floor
132.11.2.2. Count = Count + 1
132.11.2.3. Else
132.11.2.4. Return False
132.11.2.5. End If
132.11.3. End If
132.11.4. Else
132.11.5. Return False
132.11.6. End If
132.11.7. X = X + 1
132.12. Loop
132.13. If Count >= Limit Then
132.13.1. Return False
132.14. End If
132.15. If Passable = True Then
132.15.1. ChangeLocation(0, GetSpeedOfBot) 'move
132.16. Else
132.16.1. Passable = False
132.17. End If
132.18. Return Passable
133. End Function

134. Public Function TryLeft(IgnoreCleaned As Boolean) 'tries to move left
134.1. Dim Passable As Boolean = True
134.2. Dim Count As Integer = 0
134.3. Dim Limit As Integer
134.4. Dim StoredSizeOfBot As Integer = GetSizeOfBot()
134.5. Dim GetLocationX As Integer = GetLocation(0)
134.6. Dim GetLocationY As Integer = GetLocation(1)
134.7. If IgnoreCleaned = True Then
134.7.1. Limit = StoredSizeOfBot * 2
134.8. Else
134.8.1. Limit = StoredSizeOfBot - 2
134.9. End If
134.10. Dim Y As Integer = -StoredSizeOfBot / 2
134.11. Do Until Y = StoredSizeOfBot / 2 Or Count >= Limit Or Passable = False
134.11.1. If 0 <= GetLocationX - StoredSizeOfBot / 2 - 1 Then
134.11.2. If FloorMap(GetLocationY + Y).ItemAt(GetLocationX - (StoredSizeOfBot / 2) - 1) > 5 Then
134.11.2.1. If FloorMap(GetLocationY + Y).ItemAt(GetLocationX - (StoredSizeOfBot / 2) - 1) = 8 Then
134.11.2.2. Count = Count + 1
134.11.2.3. Else
134.11.2.4. Return False
134.11.2.5. End If

134.11.3. End If
134.11.4. Else
134.11.5. Return False
134.11.6. End If
134.11.7. Y = Y + 1
134.12. Loop
134.13. If Count >= Limit Then
134.13.1. Return False
134.14. End If
134.15. If Passable = True Then
134.15.1. ChangeLocation(-GetSpeedOfBot(), 0)
134.16. Else
134.16.1. Passable = False
134.17. End If
134.18. Return Passable
135. End Function
136. Public Function TryRight(IgnoreCleaned As Boolean) 'tries to move right
136.1. Dim Passable As Boolean = True
136.2. Dim Count As Integer = 0
136.3. Dim Limit As Integer
136.4. Dim StoredSizeOfBot As Integer = GetSizeOfBot()
136.5. Dim GetLocationX As Integer = GetLocation(0)
136.6. Dim GetLocationY As Integer = GetLocation(1)
136.7. If IgnoreCleaned = True Then
136.7.1. Limit = GetSizeOfBot() * 2
136.8. Else
136.8.1. Limit = GetSizeOfBot() - 2
136.9. End If
136.10. Dim Y As Integer = -StoredSizeOfBot / 2
136.11. Do Until Y = StoredSizeOfBot / 2 Or Count >= Limit Or Passable = False
136.11.1. If GetFloorMapSize(0) - 1 >= GetLocationX + StoredSizeOfBot / 2 + 1 Then
136.11.2. If FloorMap(GetLocationY + Y).ItemAt(GetLocationX + (StoredSizeOfBot / 2) + 1) > 5 Then
136.11.2.1. If FloorMap(GetLocationY + Y).ItemAt(GetLocationX + (StoredSizeOfBot / 2) + 1) = 8 Then
136.11.2.2. Count = Count + 1
136.11.2.3. Else
136.11.2.4. Return False
136.11.2.5. End If

136.11.3. End If
136.11.4. Else
136.11.5. Return False
136.11.6. End If
136.11.7. Y = Y + 1
136.12. Loop
136.13. If Count >= Limit Then
136.13.1. Return False
136.14. End If
136.15. If Passable = True Then
136.15.1. ChangeLocation(GetSpeedOfBot(), 0)
136.16. Else
136.16.1. Passable = False
136.17. End If
136.18. Return Passable
137. End Function

138. Public Function TryBackWards(IgnoreCleaned As Boolean) 'tries to move "down"
138.1. Dim Passable As Boolean = True
138.2. Dim Count As Integer = 0
138.3. Dim Limit As Integer
138.4. Dim StoredSizeOfBot As Integer = GetSizeOfBot()
138.5. Dim GetLocationX As Integer = GetLocation(0)
138.6. Dim GetLocationY As Integer = GetLocation(1)
138.7. If IgnoreCleaned = True Then
138.7.1. Limit = GetSizeOfBot() * 2
138.8. Else
138.8.1. Limit = GetSizeOfBot() - 2
138.9. End If
138.10. Dim X As Integer = -StoredSizeOfBot / 2
138.11. Do Until X = StoredSizeOfBot / 2 Or Count >= Limit Or Passable = False
138.11.1. If 0 <= GetLocationY - (StoredSizeOfBot / 2) - 1 Then
138.11.2. If FloorMap(GetLocationY - (StoredSizeOfBot / 2) - 1).ItemAt(GetLocationX + X) > 5 Then
138.11.2.1. If FloorMap(GetLocationY - (StoredSizeOfBot / 2) - 1).ItemAt(GetLocationX + X) = 8 Then
138.11.2.2. Count = Count + 1
138.11.2.3. Else
138.11.2.4. Return False
138.11.2.5. End If
138.11.3. End If
138.11.4. Else
138.11.5. Return False
138.11.6. End If
138.11.7. X = X + 1
138.12. Loop
138.13. If Count >= Limit Then
138.13.1. Return False
138.14. End If
138.15. If Passable = True Then
138.15.1. ChangeLocation(0, -GetSpeedOfBot())
138.16. Else
138.16.1. Passable = False
138.17. End If
138.18. Return Passable
139. End Function

140. Public Function GetFloorMapSize(XY As Integer)
140.1. If XY = 0 Then
140.1.1. Return FloorMap(0).CountItems()
140.2. Else
140.2.1. Return FloorMap.Count
140.3. End If
141. End Function

142. Public Overrides Sub GoToCharger(ChargerLocationX As Integer, ChargerLocactionY As Integer) 'tries to return to charger
142.1. If ChargerLocactionY < GetLocation(1) Then 'if charger is below go down
142.1.1. If TryBackWards(True) = False Then
142.1.2. TryForward(True)
142.1.3. End If
142.2. ElseIf ChargerLocactionY > GetLocation(1) Then 'if charger is above go up
142.2.1. If TryForward(True) = False Then
142.2.2. TryBackWards(True)
142.2.3. End If
142.3. End If
142.4. If ChargerLocationX > GetLocation(0) Then 'if charger is to the right go right
142.4.1. If TryRight(True) = False Then
142.4.2. TryLeft(True)
142.4.3. End If
142.5. ElseIf ChargerLocationX < GetLocation(0) Then 'if charger is to the left go left
142.5.1. If TryLeft(True) Then
142.5.2. TryRight(True)
142.5.3. End If
142.6. End If
143. End Sub
144. End Class
145. Class Control 'control robot
146. Inherits Robot
147. Private DirectionFacing As Integer '1 to 4 represents N,E,S,W
148. Private RobotSens As New Sensor
149. Private RoboCleaner As New Cleaner
150. Private Count As Integer = 0 'if bot changes to random direction every 100 moves to reduce getting stuck
151. Private Count2 As Integer = 0 'bot only cleans when it needs to
152. Sub New(RoomsizeX As Integer, RoomSizeY As Integer)
152.1. MyBase.New(RoomsizeX, RoomSizeY)
152.2. DirectionFacing = CreateRandInt(1, 4)
153. End Sub

154. Public Sub Move(ThisRoom2 As Room) 'moves bot if it can
154.1. Do While RobotSens.CheckInFront(DirectionFacing, Me, ThisRoom2) = False Or Count > 100
154.1.1. DirectionFacing = CreateRandInt(1, 4)
154.1.2. If Count <= 100 Then
154.1.3. Count = Count + 1
154.1.4. Else
154.1.5. Count = 0
154.1.6. End If
154.2. Loop
154.3. If DirectionFacing = 1 Then
154.3.1. ChangeLocation(0, 1)
154.4. ElseIf DirectionFacing = 2 Then
154.4.1. ChangeLocation(1, 0)
154.5. ElseIf DirectionFacing = 3 Then
154.5.1. ChangeLocation(0, -1)
154.6. ElseIf DirectionFacing = 4 Then
154.6.1. ChangeLocation(-1, 0)
154.7. End If
154.8. If Count2 <= GetSizeOfBot() Then
154.8.1. RoboCleaner.Clean(ThisRoom2, GetCurrentlocation, GetSizeOfBot)
154.8.2. Count = Count + 1
154.9. Else
154.9.1. Count = 0
154.10. End If
155. End Sub
156. End Class
157. Class Sensor 'scans room
158. Private ScanRange As Integer = 10

159. Public Sub SweepRecord(MyAlgo As ImprovedAlgo, ThisRoom As Room) 'Records the surrounding area on the map
159.1. Dim EndScanOfStrip As Boolean = False 'if scanner finds an object in the room it stops scanning past thats for efficiency
159.2. For Y = MyAlgo.GetSizeOfBot / 2 To -MyAlgo.GetSizeOfBot / 2 Step -1 'Scans left side of bot
159.2.1. For X = -(MyAlgo.GetSizeOfBot / 2) - 1 To -MyAlgo.GetSizeOfBot / 2 - ScanRange Step -1 And EndScanOfStrip = False 'from the bot to the max range of the scanner
159.2.2. If ThisRoom.GetRoomSize(0) - 1 < MyAlgo.GetLocation(0) + X Or ThisRoom.GetRoomSize(1) - 1 < MyAlgo.GetLocation(1) + Y Or MyAlgo.GetLocation(0) + X < 0 Or MyAlgo.GetLocation(1) + Y < 0 Then
159.2.2.1. EndScanOfStrip = True
159.2.3. Else
159.2.3.1. If ThisRoom.FloorAt(MyAlgo.GetLocation(0) + X, MyAlgo.GetLocation(1) + Y) <= 5 Then
159.2.3.2. MyAlgo.SetFloorMap(MyAlgo.GetLocation(0) + X, MyAlgo.GetLocation(1) + Y, ThisRoom.FloorAt(MyAlgo.GetLocation(0) + X, MyAlgo.GetLocation(1) + Y)) 'record what is found to the map
159.2.3.3. ElseIf ThisRoom.FloorAt(MyAlgo.GetLocation(0) + X, MyAlgo.GetLocation(1) + Y) > 5 Then
159.2.3.4. MyAlgo.SetFloorMap(MyAlgo.GetLocation(0) + X, MyAlgo.GetLocation(1) + Y, ThisRoom.FloorAt(MyAlgo.GetLocation(0) + X, MyAlgo.GetLocation(1) + Y))
159.2.3.5. EndScanOfStrip = True
159.2.3.6. End If
159.2.4. End If
159.2.5. Next
159.2.6. EndScanOfStrip = False
159.3. Next
159.4. For Y = MyAlgo.GetSizeOfBot / 2 To -MyAlgo.GetSizeOfBot / 2 Step -1 'Scans right side of bot
159.4.1. For X = MyAlgo.GetSizeOfBot / 2 + 1 To MyAlgo.GetSizeOfBot / 2 + ScanRange Step 1 And EndScanOfStrip = False
159.4.2. If ThisRoom.GetRoomSize(0) - 1 < MyAlgo.GetLocation(0) + X Or ThisRoom.GetRoomSize(1) - 1 < MyAlgo.GetLocation(1) + Y Or MyAlgo.GetLocation(0) + X < 0 Or MyAlgo.GetLocation(1) + Y < 0 Then
159.4.2.1. EndScanOfStrip = True
159.4.3. Else
159.4.3.1. If ThisRoom.FloorAt(MyAlgo.GetLocation(0) + X, MyAlgo.GetLocation(1) + Y) <= 5 Then
159.4.3.2. MyAlgo.SetFloorMap(MyAlgo.GetLocation(0) + X, MyAlgo.GetLocation(1) + Y, ThisRoom.FloorAt(MyAlgo.GetLocation(0) + X, MyAlgo.GetLocation(1) + Y))
159.4.3.3. ElseIf ThisRoom.FloorAt(MyAlgo.GetLocation(0) + X, MyAlgo.GetLocation(1) + Y) > 5 Then
159.4.3.4. MyAlgo.SetFloorMap(MyAlgo.GetLocation(0) + X, MyAlgo.GetLocation(1) + Y, ThisRoom.FloorAt(MyAlgo.GetLocation(0) + X, MyAlgo.GetLocation(1) + Y))
159.4.3.5. EndScanOfStrip = True
159.4.3.6. End If
159.4.4. End If
159.4.5. Next
159.4.6. EndScanOfStrip = False
159.5. Next
159.6. For X = -MyAlgo.GetSizeOfBot / 2 To MyAlgo.GetSizeOfBot / 2 'Scans forward
159.6.1. For Y = (MyAlgo.GetSizeOfBot / 2) + 1 To MyAlgo.GetSizeOfBot / 2 - ScanRange Step -1 And EndScanOfStrip = False
159.6.2. If ThisRoom.GetRoomSize(0) - 1 < MyAlgo.GetLocation(0) + X Or ThisRoom.GetRoomSize(1) - 1 < MyAlgo.GetLocation(1) + Y Or MyAlgo.GetLocation(0) + X < 0 Or MyAlgo.GetLocation(1) + Y < 0 Then
159.6.2.1. EndScanOfStrip = True
159.6.3. Else
159.6.3.1. If ThisRoom.FloorAt(MyAlgo.GetLocation(0) + X, MyAlgo.GetLocation(1) + Y) <= 5 Then
159.6.3.2. MyAlgo.SetFloorMap(MyAlgo.GetLocation(0) + X, MyAlgo.GetLocation(1) + Y, ThisRoom.FloorAt(MyAlgo.GetLocation(0) + X, MyAlgo.GetLocation(1) + Y))
159.6.3.3. ElseIf ThisRoom.FloorAt(MyAlgo.GetLocation(0) + X, MyAlgo.GetLocation(1) + Y) > 5 Then
159.6.3.4. MyAlgo.SetFloorMap(MyAlgo.GetLocation(0) + X, MyAlgo.GetLocation(1) + Y, ThisRoom.FloorAt(MyAlgo.GetLocation(0) + X, MyAlgo.GetLocation(1) + Y))
159.6.3.5. EndScanOfStrip = True
159.6.3.6. End If
159.6.4. End If
159.6.5. Next
159.6.6. EndScanOfStrip = False
159.7. Next
159.8. For X = -MyAlgo.GetSizeOfBot / 2 To MyAlgo.GetSizeOfBot / 2 'scans Backward
159.8.1. For Y = -(MyAlgo.GetSizeOfBot / 2) - 1 To -MyAlgo.GetSizeOfBot / 2 - ScanRange Step -1 And EndScanOfStrip = False
159.8.2. If ThisRoom.GetRoomSize(0) - 1 < MyAlgo.GetLocation(0) + X Or ThisRoom.GetRoomSize(1) - 1 < MyAlgo.GetLocation(1) + Y Or MyAlgo.GetLocation(0) + X < 0 Or MyAlgo.GetLocation(1) + Y < 0 Then
159.8.2.1. EndScanOfStrip = True
159.8.3. Else
159.8.3.1. If ThisRoom.FloorAt(MyAlgo.GetLocation(0) + X, MyAlgo.GetLocation(1) + Y) <= 5 Then
159.8.3.2. MyAlgo.SetFloorMap(MyAlgo.GetLocation(0) + X, MyAlgo.GetLocation(1) + Y, ThisRoom.FloorAt(MyAlgo.GetLocation(0) + X, MyAlgo.GetLocation(1) + Y))
159.8.3.3. ElseIf ThisRoom.FloorAt(MyAlgo.GetLocation(0) + X, MyAlgo.GetLocation(1) + Y) > 5 Then
159.8.3.4. MyAlgo.SetFloorMap(MyAlgo.GetLocation(0) + X, MyAlgo.GetLocation(1) + Y, ThisRoom.FloorAt(MyAlgo.GetLocation(0) + X, MyAlgo.GetLocation(1) + Y))
159.8.3.5. EndScanOfStrip = True
159.8.3.6. End If
159.8.4. End If
159.8.5. Next
159.8.6. EndScanOfStrip = False
159.9. Next

160. End Sub

161. Public Function GetScanRange()
161.1. Return ScanRange
162. End Function

163. Public Function CheckInFront(NESW As Integer, ControlAlgo As Control, ThisRoom2 As Room) 'Returns True if no obsticals, Checks if there is an obstical in a direction
163.1. If NESW = 1 Then 'checks forward
163.1.1. If ControlAlgo.GetLocation(1) + ControlAlgo.GetSizeOfBot / 2 + 1 > ThisRoom2.GetRoomSize(1) - 1 Then 'if at edge of room return false
163.1.2. Return False
163.1.3. Else 'Checks along edges of bot
163.1.4. For X = -ControlAlgo.GetSizeOfBot() / 2 To ControlAlgo.GetSizeOfBot() / 2
163.1.4.1. If ThisRoom2.FloorAt(ControlAlgo.GetLocation(0) + X, ControlAlgo.GetLocation(1) + ControlAlgo.GetSizeOfBot / 2 + 1) > 5 And
163.1.4.2. ThisRoom2.FloorAt(ControlAlgo.GetLocation(0) + X, ControlAlgo.GetLocation(1) + ControlAlgo.GetSizeOfBot / 2 + 1) < 8 Then 'if it finds obstical return false
163.1.4.3. Return False
163.1.4.4. End If
163.1.5. Next
163.1.6. End If
163.2. ElseIf NESW = 2 Then
163.2.1. If ControlAlgo.GetLocation(0) + ControlAlgo.GetSizeOfBot() / 2 + 1 > ThisRoom2.GetRoomSize(0) - 1 Then
163.2.2. Return False
163.2.3. Else
163.2.4. For Y = -ControlAlgo.GetSizeOfBot() / 2 To ControlAlgo.GetSizeOfBot() / 2
163.2.4.1. If ThisRoom2.FloorAt(ControlAlgo.GetLocation(0) + ControlAlgo.GetSizeOfBot / 2 + 1, ControlAlgo.GetLocation(1) + Y) > 5 And
163.2.4.2. ThisRoom2.FloorAt(ControlAlgo.GetLocation(0) + ControlAlgo.GetSizeOfBot / 2 + 1, ControlAlgo.GetLocation(1) + Y) < 8 Then
163.2.4.3. Return False
163.2.4.4. End If
163.2.5. Next
163.2.6. End If
163.3. ElseIf NESW = 3 Then
163.3.1. If ControlAlgo.GetLocation(1) - ControlAlgo.GetSizeOfBot / 2 - 1 < 0 Then
163.3.2. Return False
163.3.3. Else
163.3.4. For X = -ControlAlgo.GetSizeOfBot() / 2 To ControlAlgo.GetSizeOfBot() / 2
163.3.4.1. If ThisRoom2.FloorAt(ControlAlgo.GetLocation(0) + X, ControlAlgo.GetLocation(1) - ControlAlgo.GetSizeOfBot / 2 - 1) > 5 And
163.3.4.2. ThisRoom2.FloorAt(ControlAlgo.GetLocation(0) + X, ControlAlgo.GetLocation(1) - ControlAlgo.GetSizeOfBot / 2 - 1) < 8 Then
163.3.4.3. Return False
163.3.4.4. End If
163.3.5. Next
163.3.6. End If
163.4. ElseIf NESW = 4 Then
163.4.1. If ControlAlgo.GetLocation(0) - ControlAlgo.GetSizeOfBot / 2 - 1 < 0 Then
163.4.2. Return False
163.4.3. Else
163.4.4. For Y = -ControlAlgo.GetSizeOfBot() / 2 To ControlAlgo.GetSizeOfBot() / 2
163.4.4.1. If ThisRoom2.FloorAt(ControlAlgo.GetLocation(0) - ControlAlgo.GetSizeOfBot / 2 - 1, ControlAlgo.GetLocation(1) + Y) > 5 And
163.4.4.2. ThisRoom2.FloorAt(ControlAlgo.GetLocation(0) - ControlAlgo.GetSizeOfBot / 2 - 1, ControlAlgo.GetLocation(1) + Y) < 8 Then
163.4.4.3. Return False
163.4.4.4. End If
163.4.5. Next
163.4.6. End If
163.5. End If
163.6. Return True
164. End Function
165. End Class

166. Class Cleaner 'Cleans the room
167. Public Function Clean(ThisRoom As Room, BotLocation As Robot.Location, BotSize As Integer)
167.1. Dim Cleaned As Boolean = False
167.2. For Y = BotLocation.YAxis - BotSize / 2 To BotLocation.YAxis + BotSize / 2
167.2.1. For X = BotLocation.XAxis - BotSize / 2 To BotLocation.XAxis + BotSize / 2
167.2.2. If ThisRoom.FloorAt(X, Y) < 5 Then
167.2.2.1. ThisRoom.SetFloor(X, Y, 8)
167.2.2.2. Cleaned = True
167.2.3. End If
167.2.4. Next
167.3. Next
167.4. Return Cleaned
168. End Function
169. End Class
170. Class Battery 'battery info
171. Inherits GenRandomNum
172. Dim BatteryLevel As Decimal
173. Sub New()
173.1. SetRandomBetteryLevel()
174. End Sub

175. Public Sub SetBatteryLevel(Value As Integer)
175.1. BatteryLevel = Value
176. End Sub

177. Public Sub DecreaseBattery() 'drains battery
177.1. BatteryLevel = BatteryLevel - 0.01
177.2. Debug.WriteLine(BatteryLevel)
178. End Sub

179. Public Sub SetRandomBetteryLevel()
179.1. SetBatteryLevel(CreateRandInt(50, 100))
180. End Sub

181. Public Function GetBatteryLevel()
181.1. Return BatteryLevel
182. End Function
183. End Class
184. Class Rows 'Rows for the room and bot maps
185. Private Items As New List(Of Integer)
186. Public Sub AddItems()
186.1. Items.Add(New Integer)
187. End Sub

188. Public Sub SetItems(X As Integer, Value As Integer)
188.1. Items(X) = Value
189. End Sub

190. Public Function CountItems()
190.1. Return Items.Count
191. End Function

192. Public Function ItemAt(X As Integer)
192.1. Return Items(X)
193. End Function

194. Public Sub RemoveItem()
194.1. Items.RemoveAt(Items.Count - 1)
195. End Sub
196. End Class

197. Class CornerData 'Groups of corners corners
198. Private Corners As New List(Of Corner)
199. Public Sub SetCorners(X As Integer, Y As Integer, WhichCorner As Integer)
199.1. Corners(WhichCorner).SetCorner(0, X)
199.2. Corners(WhichCorner).SetCorner(1, Y)
200. End Sub

201. Public Function GetCorners(WhichCorner As Integer, XY As Integer)
201.1. Return Corners(WhichCorner).GetCorner(XY)
202. End Function

203. Public Sub AddCorners()
203.1. Corners.Add(New Corner)
204. End Sub

205. Class Corner 'specific corners
205.1. Private X As Integer
205.2. Private Y As Integer

205.3. Public Sub SetCorner(XY As Integer, Value As Integer)
205.3.1. If XY = 0 Then
205.3.2. X = Value
205.3.3. Else
205.3.4. Y = Value
205.3.5. End If
205.4. End Sub

205.5. Public Function GetCorner(XY As Integer)
205.5.1. If XY = 0 Then
205.5.2. Return X
205.5.3. Else
205.5.4. Return Y
205.5.5. End If
205.6. End Function
206. End Class
207. End Class
208. Class Room 'room info
209. Inherits GenRandomNum
210. Private EntireRoom As New List(Of Rows)
211. Private Walls As New List(Of Wall)
212. Private Furnitures As New List(Of Furniture)
213. Private ChargerObj As New Charger

214. Sub New(Clone As Boolean, XSize As Integer, YSize As Integer)
214.1. CreateRoom(Clone, XSize, YSize)
214.2. RoomWalls(GetRoomSize(0), GetRoomSize(1)) 'Bounding Walls for the room
214.3. GenerateWalls()
214.4. GenerateFurniture()
214.5. FillArea(0, 0, EntireRoom(0).CountItems - 1, EntireRoom.Count - 1, 1)
214.6. WriteRoomToFIle()
215. End Sub

216. Public Sub CreateRoom(Clone As Boolean, XSize As Integer, YSize As Integer)
216.1. If Clone <> True Then
216.1.1. SetRoomSize(200, 200)
216.2. Else
216.2.1. SetRoomSize(XSize, YSize)
216.3. End If
217. End Sub

218. Public Sub WriteRoomToFIle() 'Writes room to a txt document for debugging
218.1. Dim FILE_NAME As String = IO.Path.Combine(My.Application.Info.DirectoryPath, "Rooms\Room.txt")
218.2. System.IO.File.WriteAllText(FILE_NAME, "")
218.3. If System.IO.File.Exists(FILE_NAME) = True Then

218.3.1. Dim objWriter As New System.IO.StreamWriter(FILE_NAME)
218.3.2. For Y = GetRoomSize(1) - 1 To 0 Step -1
218.3.3. For X = 0 To GetRoomSize(0) - 1
218.3.3.1. objWriter.Write(FloorAt(X, Y))
218.3.4. Next
218.3.5. objWriter.WriteLine("")
218.3.6. Next
218.3.7. objWriter.Close()
218.4. Else

218.4.1. MessageBox.Show("File Does Not Exist")

218.5. End If
219. End Sub

220. Class Charger 'Charger info
220.1. Private ChargerLocation As Location
220.2. Private Corners As New CornerData
220.3. Private ChargerSize As Integer = 5
220.4. Private MapKey As Integer = 9

220.5. Structure Location 'location data type
220.5.1. Dim XAxis As Integer
220.5.2. Dim YAxis As Integer
220.6. End Structure

220.7. Public Sub SetChargerLocation(ValueX As Integer, ValueY As Integer)
220.7.1. ChargerLocation.XAxis = ValueX
220.7.2. ChargerLocation.YAxis = ValueY
220.7.3. For index = 0 To 3
220.7.4. Corners.AddCorners()
220.7.5. Next
220.7.6. Corners.SetCorners(ValueX - (ChargerSize / 2), ValueY - (ChargerSize / 2), 0)
220.7.7. Corners.SetCorners(ValueX + (ChargerSize / 2), ValueY - (ChargerSize / 2), 1)
220.7.8. Corners.SetCorners(ValueX + (ChargerSize / 2), ValueY + (ChargerSize / 2), 2)
220.7.9. Corners.SetCorners(ValueX - (ChargerSize / 2), ValueY + (ChargerSize / 2), 3)
220.8. End Sub

220.9. Public Function GetMapKey()
220.9.1. Return MapKey
220.10. End Function

220.11. Public Function GetChargerLocation(XY As Integer)
220.11.1. If XY = 0 Then
220.11.2. Return ChargerLocation.XAxis
220.11.3. Else
220.11.4. Return ChargerLocation.YAxis
220.11.5. End If
220.12. End Function

220.13. Public Function GetCorners()
220.13.1. Return Corners
220.14. End Function
221. End Class

222. Public Sub SetRoomSize(X As Integer, Y As Integer)
222.1. For YAxis = 0 To Y
222.1.1. EntireRoom.Add(New Rows)
222.1.2. For XAxis = 0 To X
222.1.3. EntireRoom(YAxis).AddItems()
222.1.4. Next
222.2. Next
223. End Sub

224. Public Sub GenerateWalls() 'Sets walls in the EntireRoom
224.1. Dim Numberofwalls As Integer = CreateRandInt(0, 4)
224.2. Dim GradientofWall As Long
224.3. Dim WallIntercept As Decimal
224.4. For index = 4 To Numberofwalls + 4
224.4.1. Dim StepY As Integer = 1
224.4.2. Dim StepX As Integer = 1
224.4.3. Walls.Add(New Wall(GetRoomSize(0), GetRoomSize(1), False))
224.4.4. If Walls(index).GetWallEnds(0, 1) > Walls(index).GetWallEnds(1, 1) Then
224.4.5. StepY = -1
224.4.6. End If
224.4.7. If Walls(index).GetWallEnds(0, 0) > Walls(index).GetWallEnds(1, 0) Then
224.4.8. StepX = -1
224.4.9. End If

224.4.10. If Walls(index).GetWallEnds(0, 0) - Walls(index).GetWallEnds(1, 0) <> 0 Then
224.4.11. GradientofWall = Walls(index).WallGradient(Walls(index).GetWallEnds(0, 0), Walls(index).GetWallEnds(0, 1), Walls(index).GetWallEnds(1, 0), Walls(index).GetWallEnds(1, 1))
224.4.12. WallIntercept = Walls(index).CalculateC(GradientofWall, Walls(index).GetWallEnds(0, 0), Walls(index).GetWallEnds(0, 1))
224.4.13. If GradientofWall <> 0 Then 'if it isnt vertical
224.4.13.1. For Y = Walls(index).GetWallEnds(0, 1) To Walls(index).GetWallEnds(1, 1) Step StepY
224.4.13.2. EntireRoom(Y).SetItems(Walls(index).WallEquation(GradientofWall, Y, WallIntercept, EntireRoom(0).CountItems), Walls(index).GetMapKey)
224.4.13.3. Next
224.4.14. Else 'if it is horizontal
224.4.14.1. For X = Walls(index).GetWallEnds(0, 0) To Walls(index).GetWallEnds(1, 0) Step StepX
224.4.14.2. EntireRoom(Walls(index).GetWallEnds(0, 1)).SetItems(X, Walls(index).GetMapKey)
224.4.14.3. Next
224.4.15. End If
224.4.16. Else 'if vertical
224.4.17. For Y = Walls(index).GetWallEnds(0, 1) To Walls(index).GetWallEnds(1, 1) Step StepY
224.4.17.1. EntireRoom(Y).SetItems(Walls(index).GetWallEnds(0, 0), Walls(index).GetMapKey)
224.4.18. Next
224.4.19. End If
224.5. Next
225. End Sub

226. Public Sub GenerateFurniture() 'creates the furniture in the room
226.1. Dim NumberofPeicesofFurniture As Integer = CreateRandInt(1, 5)
226.2. For index = 0 To NumberofPeicesofFurniture
226.2.1. Furnitures.Add(New Furniture(GetRoomSize(0), GetRoomSize(1), EntireRoom))
226.2.2. If Furnitures(index).GetGenerateLegs = 0 Then
226.2.3. For index2 = 0 To 3
226.2.3.1. FillArea(Furnitures(index).GetLegsCorners(index2, 0, 0), Furnitures(index).GetLegsCorners(index2, 0, 1), Furnitures(index).GetLegsCorners(index2, 2, 0), Furnitures(index).GetLegsCorners(index2, 2, 1), Furnitures(index).GetMapKey)
226.2.4. Next
226.2.5. Else
226.2.6. FillArea(Furnitures(index).GetFurnituresCorners(0, 0), Furnitures(index).GetFurnituresCorners(0, 1), Furnitures(index).GetFurnituresCorners(2, 0), Furnitures(index).GetFurnituresCorners(2, 1), Furnitures(index).GetMapKey)
226.2.7. End If
226.3. Next

227. End Sub
228. Public Function FloorAt(X As Integer, Y As Integer) 'returns the floor at a location
228.1. Return EntireRoom(Y).ItemAt(X)
229. End Function

230. Public Function GetRoomSize(xy As Integer) 'returns the size of the room
230.1. If xy = 0 Then
230.1.1. Return EntireRoom(0).CountItems()
230.2. Else
230.2.1. Return EntireRoom.Count
230.3. End If
231. End Function

232. Public Sub FillArea(X1 As Integer, Y1 As Integer, X2 As Integer, Y2 As Integer, MapKey As Integer) 'fills in areas of the room
232.1. Dim StepCountY, StepCountX As Integer
232.2. If Y1 > Y2 Then
232.2.1. StepCountY = -1
232.3. Else
232.3.1. StepCountY = 1
232.4. End If
232.5. If X1 > X2 Then
232.5.1. StepCountX = -1
232.6. Else
232.6.1. StepCountX = 1
232.7. End If
232.8. For Y = Y1 To Y2 Step StepCountY
232.8.1. For X = X1 To X2 Step StepCountX
232.8.2. If MapKey > FloorAt(X, Y) Or FloorAt(X, Y) = 0 Then
232.8.2.1. EntireRoom(Y).SetItems(X, MapKey)
232.8.3. End If
232.8.4. Next
232.9. Next
233. End Sub

234. Public Sub RoomWalls(RoomSizeX As Integer, RoomSizeY As Integer) 'create bounding walls for the room
234.1. For index = 0 To 3
234.1.1. Walls.Add(New Wall(RoomSizeX, RoomSizeY, True))
234.2. Next
234.3. Walls(0).SetWallEnds(0, 0, 0)
234.4. Walls(0).SetWallEnds(RoomSizeX - 1, 0, 1)
234.5. Walls(1).SetWallEnds(RoomSizeX - 1, 0, 0)
234.6. Walls(1).SetWallEnds(RoomSizeX - 1, RoomSizeY - 1, 1)
234.7. Walls(2).SetWallEnds(RoomSizeX - 1, RoomSizeY - 1, 0)
234.8. Walls(2).SetWallEnds(0, RoomSizeY - 1, 1)
234.9. Walls(3).SetWallEnds(0, RoomSizeY - 1, 0)
234.10. Walls(3).SetWallEnds(0, 0, 1)
234.11. For index = 0 To 3
234.11.1. Dim XStep As Integer = 1
234.11.2. Dim YStep As Integer = 1
234.11.3. If Walls(index).GetWallEnds(0, 1) > Walls(index).GetWallEnds(1, 1) Then
234.11.4. YStep = -1
234.11.5. End If
234.11.6. If Walls(index).GetWallEnds(0, 0) > Walls(index).GetWallEnds(1, 0) Then
234.11.7. XStep = -1
234.11.8. End If
234.11.9. For Y = Walls(index).GetWallEnds(0, 1) To Walls(index).GetWallEnds(1, 1) Step YStep
234.11.10. For X = Walls(index).GetWallEnds(0, 0) To Walls(index).GetWallEnds(1, 0) Step XStep
234.11.10.1. EntireRoom(Y).SetItems(X, Walls(0).GetMapKey)
234.11.11. Next
234.11.12. Next
234.12. Next

235. End Sub
236. Public Function RobotStartingPosition(SizeofBot As Integer) 'Returns a location the robot can start
236.1. Dim Start(1), Count As Integer
236.2. Dim Valid As Boolean = True
236.3. Count = 0
236.4. Do
236.4.1. Valid = True
236.4.2. Start(0) = CreateRandInt(SizeofBot / 2 + 1, GetRoomSize(0) - (SizeofBot / 2) - 1) 'tries placing in a random location
236.4.3. Start(1) = CreateRandInt(SizeofBot / 2 + 1, GetRoomSize(1) - (SizeofBot / 2) - 1)
236.4.4. For Y = Start(1) - (SizeofBot / 2) To Start(1) + (SizeofBot / 2)
236.4.5. For X = Start(0) - (SizeofBot / 2) To Start(0) + (SizeofBot / 2) 'checks to make sure its not inside an object
236.4.5.1. If FloorAt(X, Y) > 5 Then
236.4.5.2. Valid = False
236.4.5.3. End If
236.4.6. Next
236.4.7. Next
236.4.8. Count = Count + 1
236.5. Loop Until Valid = True Or Count > 1000 'if it cant find a place after 1000 tries returns (0,0)
236.6. If Valid = False Then
236.6.1. MsgBox("Bot could not be placed in the room")
236.6.2. Start(0) = 0
236.6.3. Start(1) = 0
236.7. End If
236.8. Return Start
237. End Function

238. Public Function GetFurniture()
238.1. Return Furnitures
239. End Function

240. Public Function GetWalls()
240.1. Return Walls
241. End Function

242. Public Sub SetFloor(X As Integer, Y As Integer, Value As Integer) 'sets floor at a location with a value
242.1. EntireRoom(Y).SetItems(X, Value)
243. End Sub

244. Public Sub CopyRoom(ByVal RoomToCopy As Room, ByRef RoomToReplace As Room) 'copys one room to another
244.1. If RoomToCopy.GetRoomSize(1) < RoomToReplace.GetRoomSize(1) Then
244.1.1. For RemoveFromY = 0 To RoomToReplace.GetRoomSize(1) - RoomToCopy.GetRoomSize(1)
244.1.2. RoomToReplace.EntireRoom.RemoveAt(RoomToReplace.GetRoomSize(1) - 1)
244.1.3. Next
244.2. End If
244.3. For Y = 0 To RoomToCopy.GetRoomSize(1) - 1
244.3.1. For X = 0 To RoomToCopy.GetRoomSize(0) - 1
244.3.2. RoomToReplace.SetFloor(X, Y, RoomToCopy.FloorAt(X, Y))
244.3.3. Next
244.4. Next
245. End Sub

246. Public Function GetChargerObj()
246.1. Return ChargerObj
247. End Function

248. End Class

249. Class Wall 'wall info
250. Inherits GenRandomNum
251. Private WallEnds As New CornerData
252. Private MapKey As Integer = 7
253. Private BoundingWall As Boolean
254. Sub New(RoomSizeX As Integer, RoomSizeY As Integer, RoomWall As Integer) 'when a wall is created checks what type is is and then generates them differently
254.1. BoundingWall = RoomWall
254.2. If RoomWall = False Then
254.2.1. GenerateWall(RoomSizeX, RoomSizeY)
254.3. Else
254.3.1. WallEnds.AddCorners()
254.3.2. WallEnds.AddCorners()
254.4. End If

255. End Sub

256. Public Sub GenerateWall(RoomSizeX As Integer, RoomSizeY As Integer) 'generates a random wall
256.1. WallEnds.AddCorners()
256.2. WallEnds.AddCorners()
256.3. SetWallEnds(CreateRandInt(0, RoomSizeX - 1), CreateRandInt(0, RoomSizeY - 1), 0)
256.4. SetWallEnds(CreateRandInt(0, RoomSizeX - 1), CreateRandInt(0, RoomSizeY - 1), 1)
257. End Sub

258. Public Sub SetWallEnds(X As Integer, Y As Integer, WhichEnd As Integer)
258.1. WallEnds.SetCorners(X, Y, WhichEnd)
259. End Sub

260. Public Function WallGradient(End1X As Integer, End1Y As Integer, End2X As Integer, End2Y As Integer) 'calculates wall gradient
260.1. Return (End1Y - End2Y) / (End1X - End2X)
261. End Function

262. Public Function CalculateC(Gradient As Decimal, X As Integer, Y As Integer) 'calculates wall's y intercept
262.1. Return Y - (Gradient * X)
263. End Function

264. Public Function WallEquation(Gradient As Decimal, Y As Integer, C As Integer, RoomSizeX As Integer) 'input y outputs x
264.1. If ((Y - C) / Gradient) <= 0 Then
264.1.1. Return 0
264.2. ElseIf ((Y - C) / Gradient) >= RoomSizeX - 1 Then
264.2.1. Return RoomSizeX - 1
264.3. Else
264.3.1. Return (Y - C) / Gradient
264.4. End If

265. End Function

266. Public Function GetWallEnds(Index As Integer, XY As Integer) 'returns the location of a wall end
266.1. Return WallEnds.GetCorners(Index, XY)
267. End Function

268. Public Function GetMapKey()
268.1. Return MapKey
269. End Function
270. End Class
271. Class Furniture 'furniture info
272. Inherits GenRandomNum
273. Private FurnitureCorners As New CornerData
274. Private Legs As New List(Of Leg)
275. Private MapKey As Integer = 6
276. Private GenerateLegs As Integer
277. Private MaximumLegsize As Integer = 10

278. Sub New(RoomSizeX As Integer, RoomsizeY As Integer, EntireRoom As List(Of Rows)) 'creates a random piece of furniture
278.1. Dim Size(1) As Integer
278.2. GenerateLegs = CreateRandInt(0, 1) 'decides if a piece of furniture has legs
278.3. For index = 1 To 4
278.3.1. FurnitureCorners.AddCorners() 'adds corners
278.4. Next
278.5. Dim Valid As Boolean = False
278.6. Dim Count As Integer = 0
278.7. 'Do
278.8. Size(0) = CreateRandInt(30, 60) 'Generates sizes between 30 to 60 cm
278.9. Size(1) = CreateRandInt(30, 60)
278.10. FurnitureCorners.SetCorners(CreateRandInt(MaximumLegsize \ 2, RoomSizeX - (Size(0) + (MaximumLegsize \ 2))), CreateRandInt(MaximumLegsize \ 2, RoomsizeY - (Size(1) + (MaximumLegsize \ 2))), 0) 'sets the 0ths corners to a random location in the room
278.11. FurnitureCorners.SetCorners(FurnitureCorners.GetCorners(0, 0) + Size(0), FurnitureCorners.GetCorners(0, 1) + Size(1), 2) 'sets corner 2, the opposing corner, the generated size away
278.12. FurnitureCorners.SetCorners(FurnitureCorners.GetCorners(0, 0), FurnitureCorners.GetCorners(2, 1), 1) 'sets other 2 corners
278.13. FurnitureCorners.SetCorners(FurnitureCorners.GetCorners(2, 0), FurnitureCorners.GetCorners(0, 1), 3)
278.14. Count = Count + 1
278.15. If GenerateLegs = 0 Then 'generates the legs if needed
278.15.1. AddLegs()
278.15.2. For index = 0 To 3
278.15.3. Legs(index).SetLegCorners(FurnitureCorners.GetCorners(index, 0), FurnitureCorners.GetCorners(index, 1))
278.15.4. Next
278.16. End If
279. End Sub

280. Public Sub AddLegs()
280.1. For index = 1 To 4
280.1.1. Legs.Add(New Leg)
280.2. Next
281. End Sub

282. Public Function GetGenerateLegs()
282.1. Return GenerateLegs
283. End Function

284. Public Function GetFurnituresCorners(WhichCorner As Integer, XY As Integer)
284.1. Return FurnitureCorners.GetCorners(WhichCorner, XY)
285. End Function

286. Public Function GetLegsCorners(WhichLeg As Integer, WhichCornerofLeg As Integer, XY As Integer)
286.1. Return Legs(WhichLeg).GetLegCorners(WhichCornerofLeg, XY)
287. End Function

288. Public Function GetMapKey()
288.1. Return MapKey
289. End Function
290. End Class
291. Class Leg 'leg info
292. Inherits GenRandomNum
293. Private LegSize As Integer
294. Private LegCorners As New CornerData
295. Sub New()
295.1. For index = 1 To 4
295.1.1. LegCorners.AddCorners()
295.2. Next
295.3. LegSize = 5 'CreateRandInt(2, 10)
296. End Sub

297. Public Sub SetLegCorners(X As Integer, Y As Integer) 'Adds Corners around the point x,y
297.1. LegCorners.SetCorners(X + (LegSize / 2), Y + (LegSize / 2), 0)
297.2. LegCorners.SetCorners(X + (LegSize / 2), Y - (LegSize / 2), 1)
297.3. LegCorners.SetCorners(X - (LegSize / 2), Y - (LegSize / 2), 2)
297.4. LegCorners.SetCorners(X - (LegSize / 2), Y + (LegSize / 2), 3)
298. End Sub

299. Public Function GetLegSize()
299.1. Return LegSize
300. End Function

301. Public Function GetLegCorners(WhichCornerOfleg As Integer, XY As Integer)
301.1. Return LegCorners.GetCorners(WhichCornerOfleg, XY)
302. End Function
303. End Class
304. Class GenRandomNum 'generates random numbers
305. Sub New()
305.1. Randomize()
306. End Sub

307. Function CreateRandInt(Min As Integer, Max As Integer)
307.1. Return CInt(Math.Floor((Max - Min + 1) * Rnd())) + Min
308. End Function
309. End Class

ResultsScreen
310. Public Class ResultsScreen
311. Sub New(GroundCovered, Timer, GroundCoveredControl)
311.1. InitializeComponent()
311.2. AreaCovered.Text = GroundCovered & "%" 'displays the area covered by my algo
311.3. TimeTaken.Text = Timer / 10 'displays the simulation time taken
311.4. AreaCoveredByControl.Text = GroundCoveredControl & "%" 'displays area covered by control algo
311.5. PercentageDifference.Text = GroundCovered - GroundCoveredControl & "%"
312. End Sub
313. Private Sub MenuButton_Click(sender As Object, e As EventArgs) Handles MenuButton.Click
313.1. Dim EraseWarningScreen As New EraseWarning(Me)
313.2. EraseWarningScreen.Activate() 'displays warning
313.3. EraseWarningScreen.Show()
314. End Sub

315. Private Sub ExitButton_Click(sender As Object, e As EventArgs) Handles ExitButton.Click
315.1. Me.Close() 'exit
316. End Sub

317. Private Sub ResultsButton_Click(sender As Object, e As EventArgs) Handles ResultsButton.Click
317.1. Process.Start("Explorer.exe", IO.Path.Combine(My.Application.Info.DirectoryPath, "Rooms\Results.txt"))
318. End Sub
319. End Class
EraseWarning
320. Public Class EraseWarning
321. Private Results As ResultsScreen
322. Sub New(PassedResults As ResultsScreen)
322.1. InitializeComponent()
322.2. Results = PassedResults
323. End Sub
324. Private Sub Label1_Click(sender As Object, e As EventArgs) Handles Label1.Click 'opens file location if lable is clicked
324.1. Process.Start("Explorer.exe", IO.Path.Combine(My.Application.Info.DirectoryPath, "Rooms\Results.txt"))
325. End Sub

326. Private Sub ContinueButton_Click(sender As Object, e As EventArgs) Handles ContinueButton.Click 'displays menu
326.1. Dim FrontPage As New Form1
326.2. FrontPage.Activate()
326.3. FrontPage.Show()
326.4. Results.Close()
326.5. Me.Close()
327. End Sub

328. Private Sub ExitButton_Click(sender As Object, e As EventArgs) Handles ExitButton.Click 'exit
328.1. Results.Close()
328.2. Me.Close()
329. End Sub
330. End Class

image1.jpeg
v -
©200s Howstutons

image2.png

image3.png

image4.png

image5.png
P crimsuithtable notespe X

€ & C 0 [® wwwuclacuk/~ucahbtw/docs/d1lesson2/primswithtable_notes.pdf ¥ =

Apps 8 YouTube @, Amszon o Colege [Ebay [Facebook [1] Msplin " CeX [, Codecsdemy @ Kissanime [KissCartoon (3 Universities [J Le Lenmy Face 0P Anime-Planst — XDA »

Prim’s Algorithm on a Distance Matrix

To find the Minimum spanning tree of a network when
represented as a distance matrix
 Networks, especially when they are large are often described in terms

of a distance matrix. This is useful since they may be inputted into
computers in this format.

o Prim’s algorithm (unlike Kruskal's algorithm) can be adapted for use
in a distance matrix.

Prim’s algorithm on a distance matrix:
1. Choose any vertex to start (usually specified in question).
2. Delete the row in the matrix for the chosen vertex

3. Number the column in the matrix for the chosen vertes.

4. Put a ring round the lowest undeleted entry in any of the numbered
columns (if there is more than one lowest entry, choose any).

5. The ringed entry becomes the next are to be added to the tree,
6. Repeat steps 2, 3, 4 and 5 until all rows are deleted.

YOU MUST MAKE SURE ALL STEPS OF THE ALGORITHM
HAVE BEEN CARRIED OUT AND CLEARLY MARKED,
OTHERWISE YOU WILL LOSE MARKS. THE SOLUTION

ITSELF IS NOT ENOUG]

image6.png
/ @ Adiacency Matix - fror X '\ | == I x

< C 0 | ® mathworldwolfram.com/AdjacencyMatrix htmi %0 =
Apps @8 YouTube @, Amazon T College [Ebay [E] Facebook [Maplin ¥2] CeX (@ Codecademy @ KissAnime [KissCartoon

Universties [} Le Lenny Face GP Amime-Planct - XDA »

WolframAlpha

Algebra
salisnenics Reee > Coar e o s o s M ot b us cookes
e 0 Improve your experience wi
‘Caleulus and Analy History and Terminaiogy > Woffem Lengusge Commands > eI a0 s
e Ineracive Enties > teracive Demonsiatans > Use his websi, you are
oree Mathematis Consening o hiase s
Foundations of Mathematics B N lescribed in our Privacy Policy.
Adjacency Matrix
Geametry
ownLOAD - sjscency matr o Perkel araph
o et S ek
‘Number Theory. The adjacency matrix, sometimes also called the connection matrix, of a simple labeled graph is a mafrix with rows and columns labeled by graph
e 1 S Verices, with a 1 r 0in positon (, ;) according to whethar v; and v; are acjacent or not.For a Smple graph with no sefioops, the adjacency matix Ineractve knoviedge apps rom
musthave 0s on the diagonal. For an Undirected oraph, the adjacency marix s symmetric. el HEDeseri Pt
Recreatona athemstis
B s Recurrence.Based
‘Topology. Representations of
the Logisic Map
Aphabeticaindex . i Zech
!
eraciive Enlres - Recurrence Network
Random Enty 2\ = | Measures or he
New in MathWorid . M . m::gch‘w:n
Mathiors Classroom Adiacency Matrices of
Manipulable Graphs
‘About MathWorid S Pean
. 0001 0101 0111
e -;hlem"l' 0001 1010 10011 Network Centraity
Send aess: eam Using Eigenvectors
0001 0101 1101 Blan Levasen
Mathiord Book 1110 1010 1110 =l

Wolfram Web Resources »

P “The ilustration above shows adjacency mattices for particular labelings of the claw graph, cycle graph G, and complete oraph K.

Lestupastea: Thu Aug 18 2018

Created, developed, and.
murmired By Erie Wetzirein
at olfam Rescarch

2 2 2

image7.jpeg

image8.jpeg

image9.jpeg
m

N We set out to find the ultimate
@ e (obot vac: one that can clean
your home comprehensively, without the
need for constant supervision or rescuing.

‘.

Finish point

Not covered

Coffee Start position- O
table Standing
lamp &
Cl cables
Fold-up K
S 2 Dyson 360 Eye floor coverage leaves
Table Fa very few gaps and takes 32 minutes to
& chairs clean the room. It cleans systematically
Our testing Fireplace and efficiently, so once it has cleaned
floor plan Curtain a portion of the room, it won’t waste
P energy going back over it.

The Hoover Robo.corr
after failing to return to its base after two
hours. It wasted time twirling pointlessly
in circles, and left big gaps under tables
and chairs, around the edges of the room
and next to the floor lamp.

Vacuum route

ran out of battery

Cleaning
We test to see
how well each

robot vacuum cleaner sucks

up fine dust and pet hair

from carpet as well as larger

debris from hard floors,
Some robots seem to
completely forget their

main function of vacuuming
atthe expense of elaborate

navigation systems.

Coverage Obstacles

We found that The common

the more intelligent household obstacles
and systematic cleaners we have in our testing room

include a tangle of cables,
Dyson and Samsung robots, tables and chairs, a rug, a floor
cover a room much more lamp and a metal pole taped
quickly than ‘random (similar to the legs
bouncers’, such as : ‘.The best
Hoover, which t
longer to co
amount of

we tested, such as the

Bumps and
thresholds

We measure the
maximum height that each
robot can climb over. The
best can clear a 2cm-high
lip. It's worth checking the
heights of your rugs and
the thresholds between your
rooms to see if you'll need
to help your robot move
rooms during cleaning.

image10.jpeg
ph is trav

¥ er of a very,
ree or val o
T o v 1 ven) valengy, " ny,
vertex is odd (€ h"t
g InChaP b it A . =
& are even,
' Jencies i3 9r2P" :
Jlthe va
g Ifa
Each vertey |
valency, ** Msang,
e odd, and all the rest are ¢ hen thains ix 8
ncies are odd, Er;
g i pecisely two vale)

5 Itis not possip, d

a graph with. just ope e
valency. (See lixamm:;f
Precisely 2 vertices
valency. ey

s traversable if it is possible to traverse (travel along) every arc
B Agraphi

just once With
g
taking your pen from the paper.

W Agraphis traversable if all the valencies are even.

B Agraphis semi-traversable if it has precisely two odd valenci

es. In this case the start pojy;
and the finish point will be the two vertices with odd valenci

es.

W Agraph s not traversable if it has more than two odd valencies.

a Verify that the graph js Eulerian,

b Finda oute, s 1 fini

shing at / 5
that traverses e graph, i

prove that !

pumber Of

1| List
i E
For-
a

image11.png
Obsticle sensor

Cliffsensor

Ciff Precence

Object Precence.

Avoid obstacle/

o Location of ciff

x

Yes

s rowsace—y

&l
sterean .] 2] | panooton
P— o | e v | Ansuer
linimum number of repeats- Minimum number
i oer of repeats of repeats.
Lovelotait
Level of dirt X
L uf| meseatamy mumparot
plbeck
[—
Craraingsaton L
location R‘E‘“”"“
i
S P —

image12.png
Simulation

Step

Floor.

-Room : Room
- Control : Robot
- Improved : Robot.

—_— o

—4

+ CreateRoom : Room
+ UpdateRoom : Room
+ DisplayRoom

- End() : Decimal
- Attribute 3: Type
- Attribute 4 : Type

+ CreatePanel

- Location() : List Integer

- DirtLevel: Integer
- Attribute 2 : Type
- Attribute 3 : Type
- Attribute 4 : Type

+ Operation 1 (arg list) : return
+ Operation 2 (arg list) : return
+ Operation 3 (arg list) : return
+ Operation 4 (arg list) : return

i

Room

- RoomDimensionX : Type
- RoomDimensionY: Type

Furniture

- NumberOfiegs : Integer
- SizeOfLegs : Type
-Leg:leg

- Location(,) : List Integer

+ Operation 2 (arg list) : return
+ Operation 3 (arglist) : return
+ Operation 4 (arg list) : return

Results
- AreaPossible : Decimal
- AreaCovered : Decimal lo— |
- Repeated Area : Decimal S ——
- PercentageDifference : Integer et Walle s Wall
- Average : Decimal Bk Wall
+ CalculateAverage(Valuel, Value2) : Average - PlaceWalls
+ CalcPercentageDifference(Value1, Value2) : PercentageDifference - CreateObiject : Furniture *
+ SaveResults - PlaceObjects
+ PrintResults - RandomNumber
Sensor ObjectRendering

Robot

ImprovedAlgorithm

- Range: Decimal
- DirectionObjectFound: Integer

- BetteryLevel: Decimal

- Map : List of Lists
- ShortestPathToCharger
- Speed : Decimal

+IfObjectinFront
+MoveDirectlyTo

+ CalculateShortest(xy) : Decimal
+ CoverArea

+ SavePreviousPath
+NextLocation

+Sweep

- Size() : Decimal

- Location() : Integer
- Sensor : Integer
- Direction

- Colour: String

(@ + Sweep(ObjectToSearchFor) : Integer

+ Display
+Refresh

+ Move(Direction)
+ Sensor(Direction : Integer

k—| + setLocation(Speed)

+ GetLocation: Location

_

ControlAlgorithm

+ Spiral
+FollowEdge
+ AvoidObject
+AvoidDrop

1

Leg

- LocationOfLeg():

fonine dagramming & design] CFEAtEly com

image13.png
D Design - Microsoft VisualStudio Al & QuickLaunch (Cti-Q) P - & x

Edit View Project Buid Debug Tesm Fomat Tools Test Amdze Window Help Samuel Percival - SP
o - B-OEE - Debug - Any CPU ME R =
g oot ax rome b B X © Soonbpiors “ax
g Search Tooloox P Qe -secam o p=]
H CheckBox 2 ing Search Solution Explorer (Ctre:) P
CheckedListBox tr Improved algorithm 53] Solution ‘Design’ (1 project)
ColorDialog 4 [®) Design
ComboBox 5 My Project
ContextMenusStrip 4 va References
DetoGrdview Aralyzers
& @ gyp;::‘K.GlCnmmI
B DateTimePicker ol
%] Diectoykntry SystemData
£ DirectorySearcher System.Data DataSetExtensions
3 DomainUpDown System Deployment
O Erorroider St
0 mm Smemhrdonstoms
B FieSystemWatcher ot
FlowLayoutPanel SystemXmlLing
FolderBrowserDialog D) App.config
FontDialog i > B Formivb
[GroupBox
B HelpProvider
o HcrollBar
@ Imagelist
A Label
A Linkabel |
ListBox
ListView Properties v Rx
. MaskedTextBox Form1 System Windows Forms.Form E
Bl Menustrip =]
& MessageQueve Font MicosttSons S, 82550 <
B MonthCalendar ForeColor ControlText
Lo Notifylcon < > < > FormBorderStyle Sizable
B NumericUpDown RightToLeft No
B1 OpenfileDislog RightToleftLayout False
) PageSetupDialog jicd] =ty
O rara UseWaitCursor False
[PerformanceCounter Pl
i AllowDrop False
AutoValidate EnablePreventFocusChange
g Ty ContextMenustrip)
& PrintDocument DoubleBuffered False
B PrintPrevienControl & < ax Enabled True -
A - -
R < The text associated with the contol.
Server Explorer | Toolbox Error List Output

image14.png
DG Resuits menu - Microsoft Visual Studio Al & QuickLaunch (Cti-Q) P - & x

Edit View Project Buid Debug Tesm Fomat Tools Test Amdze Window Help Samuel Percival - SP
0-0 B-UWMPH|D- < AyCPU - psare M B
£ Toolbox v #x Formlvb' [Formiwb[Design)t % X| ~ Solution Explorer v Ex
g Seorch Toolbox P @ o-sCcfBd
i A b - Search Solution Bxplorer (Ctrt+) P
A UinkLabel 5 5
i 31 Solution ‘Resuits menu (1 project)
4 [Resuits menu
ListView F MyProject
- MaskedTexBox b *m References
B Menustip) App.config
& MessageQueve b B Formivb
B MonthCalendar
[
B NumericUpDown
] OpenfileDislog
[PageSetupbislog
E Panel
PerformanceCounter
B PictureBox
& PrintDislog
& PrintDocument
B PrintPrevienControl
B piintPrevienialog
& Process
@ ProgressBar
5 PropertyGrid
© RadioButton
RichTertBox
Tl SovefileDialog Properties v Ex
S SeralPort Form1 System Windows Forms.Form =
" SenviceController En
o st e
ke Statusstrip & Behavior
=~ TabControl {ANowDrop | Fokee
8§ TobleLayoutbanel AutoVelidate EnablePreventFoct
B TetBox ContextMenust (none)
® Timer DoubleBuffered False
= Toolstip Enabled. True
0 ToolStipContainer ImeMode NoContrsl
o ToolTip EL
(Applicationseti
O TrackSer ey
5 :’s‘:‘:::a' Output -ax _Tg -
WebBrowser Show output from: - Text
= i—— - The text sssociated with the control.
Server Explorer Toolbox Error it Output

image15.png
] Mapixt - Notepad -
Fle Edt Fomat View Help

image16.png
1] Room.txt - Notepad

File Edit Format View Help

image17.png
W Mainm.. — o

[Numberof smulations to

[Sip Grophics (Faster)

[Wite Valves To Fie.

image18.png
' MainCode -

mproved Ao | Contrl Aot | o] [t =

Battery Battery

Progress

image19.png
Resuts Bt Backto menu

image20.png
W EraseWarning o x
Wamig, T vl ras any recordedrsut
Plse dose the program and calect any reals
cick st 10 open e e

E

Cortinve.

image21.png
] Mapixt - Notepad
Fle Edt Fomat View Help

image22.png
Can

Can

Can

Can

Move Move

love
Can't Move

Try Right,
avoiding
cleaned

love
Can't Move

Try
Backward,

Can't

Last direction s forward

Try Forward,
ignoring
cleaned

Can Move

Can't Move

Try Left,
ignoring
cleaned

Can Move

Move

Can't Move

Try Right,
ignoring
cleaned

Can Move

Can't Move

Try Backward,

avoiding
cleaned

love

ignoring Can Move

cleaned

Can't Move

Can Move

Can Move

Can Move

Can Move

Last direction s right

Try Right,
avoiding
cleaned

Can't Move

Try Forward
avoiding
cleaned

Cantextve

Can't

Try Backwards
avoiding
cleaned

Can't Move

Try Left
avoiding
cleaned

Can Move

Try Right,
Can Movp

ignoring
cleaned
Can't Move o
Try Forward,
ignoring Can Moy
cleaned
Move
Can't Move
cy
Try Backward,
ignoring Can Moy
cleaned
Can't Move
cy
Try Left,
ignoring Can Moy

cleaned

Can't Move

Move

Move

Move

Last direction is left

Try Left
avoiding
cleaned

Can't Move

Try Backwards
avoiding
cleaned

Can't Move
Can't

Try Forward
avoiding
cleaned

Can't Move

Try Right,
avoiding
cleaned

Last direction is backward

Can Move

Try Left,
ignoring
cleaned

Can Moy

Can't Move

Try Backward,
ignoring
cleaned

Can Moy

Move Can't Move

Try Forward,
ignoring
cleaned

Can Moy

Can't Move

Try Right,

ignoring Can Moy

cleaned

Can't Move

an Move

an Move

an Move

Try Backward:
avoiding
cleaned

Can't Move

Try Right,
avoiding
cleaned

Can't Move

Try Left
avoiding
cleaned

Can't Move

Try Forward
avoiding
cleaned

s

Can't

Try Backward,
ignoring
cleaned

Can Move -

Can't Move

Try Right,
ignoring
cleaned

Can Move |

Move
Can't Move

Try Left,
ignoring
cleaned

Can Move |

Can't Move

Try Forward,
ignoring
cleaned

Can Move |

Can't Move

fonine dagramming & design] CFEAtEly com

