

Dots and Boxes

Taren Collyer

Candidate Number: 9665

Centre Number: 64395

Godalming College

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

1

Contents
Research and Analysis.. 3

What AI Is and the Different Types ... 3

Neural Networks ... 3

Different Parts of a Neural Network ... 3

Example of an Artificial Neuron: Perceptrons ... 4

How a Neural Network Learns .. 4

Minimax .. 5

Example .. 5

Description of Dots and Boxes and How the Game Works ... 6

Dialogue With 3rd Party ... 8

Reading Review .. 9

Summary of Project .. 10

The Current System and the Intended System ... 10

IPSO Diagram .. 10

Flow Chart of Current Game Mechanics ... 11

Data Flow Diagrams .. 12

Level 0 ... 12

Level 1 ... 12

Game Screen and the AI Player... 13

Example of Game Scenario: Continuous Turns ... 14

Problem Breakdown ... 16

Requirements ... 17

Overall List of Objectives .. 17

Requirements: In Detail .. 17

Inputs .. 17

Processes .. 18

Storage .. 19

Outputs ... 19

Design ... 20

Top Level Design ... 20

Class Diagrams .. 21

Main Game Class .. 22

Difficulty Select Screen ... 23

Game Screen ... 24

Placing Lines ... 25

Calculating Lines Pseudo Code.. 26

Validating Lines ... 26

Move Class .. 27

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

2

Ending the Game .. 27

Pseudo Code: Setting Up the Dots .. 28

Dot Class ... 28

Drawing the Dots .. 28

Identifying Boxes .. 29

Box Class ... 30

Minimax .. 31

Writing AI Results to a Text File .. 31

Managing All Potential Move Locations (AI Player) .. 33

Testing Strategy ... 33

Input Validation, Functions and Processes ... 33

Testing the Minimax ... 35

Beta Testing .. 35

White Box Testing ... 35

Testing .. 36

Screenshots .. 39

Screenshot 1 ... 39

Screenshot 2 ... 39

Screenshot 3 ... 39

Third Party (Beta Test) Feedback .. 40

Evaluation .. 41

Checking Against Requirements ... 41

Personal Evaluation .. 45

Technical Solution .. 46

Main Form (Dots and Boxes) .. 46

AI Stats Form (Handling Display of AI Data) .. 71

Difficulty Select Form (Startup Form) ... 72

file://///godalming.ac.uk/dfs/UserAreas/Students/189665/Desktop/Computer%20Science%20NEA.docx%23_Toc34818875

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

3

Investigation
Research and Analysis
The investigation I’ve chosen to carry out is whether I can get an AI to learn a turn-based game and play
against a player. I want to make use of artifical intelligence in VB in order to enable the computer to play
the game. I’ve decided on using dots and boxes as the base game, as I feel it’s a suitable choice that will
effectively allow me to implement an AI. I decided to work on such an investigation as I think it would be
fascinating to understand the mechanisms and concept behind artificial intelligence, and ways to
implement it into an interactive and relatively unpredictable game setting.

What AI Is and the Different Types
AI, or artificial intelligence, is the development of a computer system which enables it to almost mimic
human intelligence, performing tasks such as image recognition and decision making. A very common
example of AI would be Google’s predictive search – as you begin typing, tailored recommendations
appear based on the data Google has collected about you. There are a few different types of AI, including:

• reactive AI: the most basic type of AI. There is no memory functionality, meaning they don’t “learn” from
previous experience. They simply respond to a user input or set of inputs. A classic example of a reactive
machine is IBM’s Deep Blue, the AI that beat chess grandmaster Garry Kasparov in the 1990s.

• limited memory AI: similar to a reactive machine, except this type of AI has the capability of responding
based upon past data in order to learn. This is the most common application of present-day AI, including
Google Search and also things like chat bots or self-driving cars.

• theory of mind AI: this is purely a conceptual, work-in-progress type of AI that isn’t yet available. It
ideally involves giving the AI a perception of human needs, emotions and thoughts – essentially giving
machines the ability to understand and independently interact with humans.

• self-aware AI: much like the previous type of AI, self-aware machines are not yet available and still very
much a work in progress. As the name suggests, this is a type of machine that will have such a high level of
human understanding that it will develop a consciousness and become self-aware. They ideally would be
able to have such a good understanding of the human mind and emotions that they themselves would
have the ability to evoke emotion, have beliefs and desires and interact with people. This is currently the
highest target for AI development.

In the case of my investigation, I have concluded that I hope to create a reactive machine which will be
able to make decisions based on the user’s input and all the remaining positions available to act as
opposition to a human player.

Neural Networks
A neural network is essentially a set of algorithms designed to function as closely to the human brain as
possible by giving a system the ability to recognise patterns and “learn” how to solve a certain problem. It
can learn from past data and become more efficient at working around the problem over time.

Different Parts of a Neural Network
Neural networks are composed of many different artificial neurons, interconnected with each other. There
are many different layers of these neurons: the input layer, the hidden layers and the output layer. The
input layer of neurons will take the input values and pass them forward into the hidden layers, which are

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

4

the main bulk of the network responsible for the main learning process, and into the output layers, to
generate a final output.

Example of an Artificial Neuron: Perceptrons
An artificial neuron is an essential component of a neural network. It will take an input, process it and as a
result produce an output. A perceptron, for example, is a basic type of artificial neuron first developed by
American psychologist Frank Rosenblatt in the late 1950s. The basic idea is that the perceptron will take
multiple inputs and produce a single output, shown below:

However, Rosenblatt also introduced the idea of numerical weights given to inputs – indicating their
importance in relation to the output. This means that the inputs are not merely limited to a binary 1 or 0,
and that they can now accept real numerical values. The output is now determined based on what sum of
inputs reach a preset threshold value. If, for example, we had 3 inputs with weightings of w₁ = 8, w₂ = 3 and
w₃ = 4 and our threshold value was set to 7, we could reach an output of 1 if input 1 (w₁) was true
irrelevant of the other inputs as it meets our threshold value, OR if both inputs 2 and 3 (w₂/w₃) were true,
as their combined sum would meet our threshold value. In essence, these perceptrons are used in neural
networks in order to decisively weigh up evidence and make sophisticated decisions – developing into
more intricate networks of different perceptrons to form situations that look more like this:

How a Neural Network Learns
Neural networks are made up of various different neurons that are interconnected, much like the network
of perceptrons above. Information enters through the input layer of neurons and into the hidden layers,
named so due to their nature of being neither an input or an output. After the hidden layers are triggered,
the information arrives at the output layers and an output can thus be generated. All of the inputs within a
layer are taken from the outputs of the previous layer, in a network type called the feedforward neural
network – the simplest neural net design type. The weights of the connections are combined with the
inputs received, and, as described in the basic perceptron model, trigger the next layer of neurons if the
previous sum reaches the set threshold value. Then, using a process known as back propagation, the
system can compare the final output generated in the neural net with the target output, and work out the
error margin between the two in order to adjust the weightings between layers going from the output
layer back to the input layer – causing the network to develop itself and learn. Its actual output and the

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

5

target output, over time, eventually will match, meaning the neural net has trained itself and will acquire
the desired output.

Minimax
Minimax is a type of algorithm used widely in virtual two-player turn-based games such as the likes of tic
tac toe and chess. It is one of the oldest forms of artificial intelligence technology. It acts as a decision
making algorithm, its name coming from minimizing the loss when the opposite (human) player takes a
turn that would cause the maximum amount of loss.

One player acts as the maximiser, and the other as the minimiser – one finds a game state with the
maximum possible score, and the other with the minimum. This means the maximiser tries to get the best
possible score while the minimiser attempts to get the lowest score by countering moves. The maximiser
will pick the move with the best possible outcome.

Example
In a simple game of tic tac toe, this is a simple explanation of how a minimax could be applied for the AI to
work out where to move.

Minimising

Maximising

Maximising
(deciding optimal

move)

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

6

O is the minimiser and X is the maximiser in the above situation. O picks between a score of +10 (state 5-9)
and -10 (state 6) – giving state 2’s possibilities an overall score of -10 (it wants to get the biggest loss out of
its options).

It also gives state 4’s overall score -10 due to the choice between +10 and -10 (state 4-7 and state 8).

State 3 gets an overall score of +10 as here it is X’s turn and as the maximiser, this allows it to win.

So overall, the best possible move to make in X’s case is the position at state 3, as this is the best chance of
a win.

Description of Dots and Boxes and How the Game Works
Dots and boxes is a classic game played using pen and paper by 2 players. Its roots date back to as early as
the 19th century and has always been a game to revolve around 2 human players, which is why I intend to
investigate into whether I can get an AI to compete with the player.

The main goal of the game is to complete as many boxes as you can in your player’s colour until the grid is
completely filled. The person with the most boxes wins.

One player starts by placing a single line on a grid of a certain number of dots (usually 4x4) like this one:

10 -10 -10

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

7

The other player then places a single line anywhere one the grid, in an attempt to make the first player
almost complete a 1x1 box. The grid may look something like this after 3 complete turns:

In this situation, both players have taken 3 turns each and player 1 has to start the 4th turn. Player 1 can
easily place a line here:

in order to form a 1x1 box and claim it on the grid.

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

8

Player 1 can then take another turn after claiming this box.
The game continues in this fashion until the grid is filled with boxes.

The boxes are then counted to see who wins. In this game, since player 2 has 5 boxes and player 1 has 3,
player 2 wins.

Using this knowledge and my research on both neural networks and the minimax algorithm, I have
concluded that I will need to use a minimax for the AI player as I feel it is most appropriate – it does not
need to have the complexity of learning to play the game itself, as this is inappropriate and excessive for a
game like this, and merely needs to take into account all possible moves that will enable it to win.

Dialogue With 3rd Party
I spoke with a friend who has an interest in turn-based board games and interviewed her with a few basic
questions revolving around the game and turn-based games in general to get a feel for the features the AI
could have as well as the game itself. The questions and their results are as follows:

1) When you play dots and boxes, how do you expect the game to work, roughly?
You want to have a player draw a 4 by 4 grid of dots on some paper. It’s for 2 players and both need to take
turns to put a line between any 2 of the dots on the grid until someone makes a box, which they mark with
their initials or a colour or something. When the grid gets filled the game’s over and you count up who has
the most boxes, then that person wins.

2) And when you’re playing, do you think it’s important to be able to tell each player’s moves apart in a
game like this? If so, what do you think the simplest way to show that is?
For this particular game it’s not essential, but from my perspective as a player I probably want to know
who’s moved where, to get a feel for who might or might not win and just see each other’s progress. Maybe
each player could have their own colour for the lines they draw to show who’s who, that would be a good
way of showing it.

3) Would it be more helpful if dots and boxes had a score count for the claimed boxes for each player in
a computerised version of the game displayed on screen, rather than having to count the boxes?
That would be easier from a player’s point of view, yes. Helpful to see who has the advantage at any point
in the game.

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

9

4) So if an AI is implemented to the game as the second player, how would you want it to behave, in
terms of being as “human” as possible? Would different difficulty levels be appropriate?
You’d want it to not be perfect. You wouldn’t want it to play perfectly because that’s not realistic and not
fun. I think different levels would be good, beginners might like an easier computer player while it would be
more challenging to have a normal or hard difficulty like other modern computer games.

Upon carrying out this interview, this has given me a more thorough understanding and confirmation of
some of the features that I will need to add to my project as part of this investigation in order to satisfy the
needs of an average player of dots and boxes and turn-based games as a whole.

Reading Review
• http://theconversation.com/understanding-the-four-types-of-ai-from-reactive-robots-to-self-aware-
beings-67616 – this article gave me a really firm grasp and understanding of the four fundamental types of
artifical intelligence. It also cites many resources throughout the article based on the information it gives.

• https://learn.g2.com/types-of-artificial-intelligence – I also read through this similar article to confirm my
knowledge on the different types of AI.

• https://social.technet.microsoft.com/wiki/contents/articles/32140.basis-of-neural-networks-in-visual-
basic-net.aspx – this page on the official Microsoft TechNet site was very insightful into looking at the basis
of neural networks and how artificial neurons work and how they essentially simulate natural neurons in a
living creature. It detailed methods like backpropogation and showed examples of preparing a sample
neural net in Visual Basic.

• https://www.explainthatstuff.com/introduction-to-neural-networks.html – this article also gave me
some additional information on the workings and concept behind a neural network, detailing the basics of
a simple feedforward neural network.

• https://www.baeldung.com/java-minimax-algorithm – this site gave me a great headstart learning about
how the minimax algorithm works. It covered the basics of the maximiser and minimiser components well,
but I still felt I needed explained examples to get a better understanding.

• https://www.globalsoftwaresupport.com/minimax-algorithm-explained/ – this article was great in the
example it gave, which I later used as inspiration to model my own demonstration of how a minimax
algorithm works with tic tac toe. The example was a great help in understanding how the algorithm would
work in a real scenario, and it was at this point in my research that I began to feel that this would be the
best algorithm to use over a neural network for my particular investigation.

• https://www.youtube.com/watch?v=FLNPAKBJavY – finally, this YouTube video gave a great rundown on
how dots and boxes works on paper, explaining the rules well.

http://theconversation.com/understanding-the-four-types-of-ai-from-reactive-robots-to-self-aware-beings-67616
http://theconversation.com/understanding-the-four-types-of-ai-from-reactive-robots-to-self-aware-beings-67616
https://learn.g2.com/types-of-artificial-intelligence
https://social.technet.microsoft.com/wiki/contents/articles/32140.basis-of-neural-networks-in-visual-basic-net.aspx
https://social.technet.microsoft.com/wiki/contents/articles/32140.basis-of-neural-networks-in-visual-basic-net.aspx
https://www.explainthatstuff.com/introduction-to-neural-networks.html
https://www.baeldung.com/java-minimax-algorithm
https://www.globalsoftwaresupport.com/minimax-algorithm-explained/
https://www.youtube.com/watch?v=FLNPAKBJavY

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

10

Summary of Project
To summarise, I intend to create a virtual game of dots and boxes using a minimax in order to have an AI
play the game and act as an opponent to the player. The AI will have the ability to place lines on the
playing area, gauging the best move it will be able to make, competing against the player and reacting to
the player’s moves. The AI will hopefully be able to participate in a turn-based game such as this
effectively, adapting its algorithm to different difficulty levels to play slightly differently.

The Current System and the Intended System
Currently, a game of dots and boxes is a paper-based game between 2 human players. The playing area will
consist of a grid of 4x4 dots drawn by the player and each player will take turns to place lines on the grid to
form boxes. As a box is claimed, the player may label it/colour it with their name/colour and will receive
another turn. To recreate this, I will need to implement a similar system visually on a screen and then
create an AI to act as player 1’s opponent. It will need to be able to efficiently calculate where the best
move could be, taking into account all possible moves the human player could make as well as where there
are unfinished boxes it could complete to increase its score. There will need to be a turn-based system in
place, and each player will need to be distinguishable from each other (i.e. by displaying placed lines and
claimed boxes in a colour-coded fashion). A score system will also be required to display the total number
of boxes claimed by either player in order to calculate the winner at the end.

IPSO Diagram
Below is an outline of the potential inputs, processes, storage and outputs the system will need to have:

Input

Place line
Choose difficulty
View AI scores (open CSV)
User chooses at the end of the game if they want
to continue or not

Process
Draw game board
Switch player turn
Determine where to display line
Calculate where to move (AI player)
Increment box count for either player (score)
Calculate if any spaces are left

Storage
Total AI wins (CSV file)
Internal:
 - All dot locations
 - All taken line locations
 - All available line locations
 - Boxes made

Output
Display game board
Display lines
Display claimed boxes
Display current score for either player
Display which player’s turn it is

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

11

Flow Chart of Current Game Mechanics
Here is a basic flow chart of the game in its current system, with 2 human players:

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

12

Data Flow Diagrams

Level 0

Level 1

The diagrams above show the overall concept of the mechanics of the game. The player inputs to the game
by placing a line on the grid (e.g. entering a coordinate or clicking on the desired line location), which will
then be displayed and stored as a used location on the grid. The game will calculate whether a 1x1 box has
been formed and if so, add to the appropriate player’s score. The AI player will acknowledge all of the
current lines on the grid, and calculate where to move from the remaining available spaces, returning its
chosen move as a result. The human player will be able to see the game board, as well as where all of the
lines and boxes are.

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

13

Game Screen and the AI Player
The game screen will need to be visually displayed as something similar to a 4x4 grid of dots where the
user can place a line between any 2 dots that have not already been filled by themself or the AI opponent.
Both players will require a colour coding system, such as blue for the player and red for the AI, where
whenever the user makes a move this is displayed as a red line and for the AI a blue line.

Example:

As a box is completed, the region’s colour should change to the same or a similar colour to the player who
finished the box, earning them a point, like this:

Or alternatively a representation of the player, such as a suitably coloured “P1” or “P2”.

Each dot on the screen could be split into a coordinate as part of a list of point values of all given dots. The
dots’ coordinates relative to the game area could be stored in some kind of list, giving each dot a value
within the list.

On a 4x4 grid, there are a total of 24 playable moves either player can make:

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

14

This means that, provided the user player goes first, the AI player will need to take into account the
remaining 23 locations that it can go on the first turn. With each new turn for the AI player, generally, this
count will decrease by 2 (its own previous turn + player 1’s turn) on a normal move – provided the user or
itself didn’t previously finish a box. The minimax should be able to discern what the best move would be
for each turn – starting off fairly random, and as the player makes more inputs, will make a more educated
decision. Difficulty will also need to be considered, using less layers of maximising and minimising to create
the effect of lower and higher difficulties.

Example of Game Scenario: Continuous Turns
In the instance that a player completes a box in this game, they receive another turn. That player can
actually take yet another turn if the first extra turn completed a second box, and this will continue until the
player makes a move that does not complete a box.

For example:

Here, player 1 is about to take another turn.
They can make a move here to complete a
box.

However, since they have another turn, they
can also move here again to complete this
box.

And again, here.

After the final box, player 1 no longer has any
boxes it can complete so it is back to a
normal turn. The move in this instance is
made in the very top right, and at this point it
is player 2’s turn again. This therefore shows
how the “continuous turn” mechanic needs
to work.

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

15

Theoretically, it would be possible for a single player to acquire all nine boxes in a single go, however this is
extremely unlikely and would require the grid to look something like this:

In this particular scenario, seven complete turns have been made, with player 1 placing their eighth. It’s
player 2’s eighth turn at this point, and can claim all nine boxes at once.

In order to alter the minimax algorithm to adjust to different levels of difficulty, the minimax will go
through less/more layers of the tree. On an easier difficulty it will iterate through fewer layers so it
considers less possible outcomes, while harder difficulties will consider more outcomes of the move they
make can have, making it think farther ahead. Even on a hard difficulty, I need to ensure that the minimax
algorithm does not iterate through every potential outcome in the earlier stages of the game, or else the AI
will become the “perfect” player – something which is unrealistic, and most importantly not fun or useful
to the user. It defeats the object of the game.

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

16

Problem Breakdown
Concluding this analysis, I understand that the system will need a number of elements, including:

• a graphical interface: consisting of a 4 x 4 game board of dots, where the user/AI can place a line
between any two dots in its own individual colour

• a request to the user for the difficulty level desired

• a system that will adjust the amount of moves in advance the minimax algorithm considers based upon
the chosen difficulty level

• a scoring system: this will track how many boxes each player has in order to identify the winner upon
completion of the game

• a function that will recognise when a box has been completed and will colour/mark this box to represent
the player who completed it and increment this player’s score by a single point

• functions that will ensure both players cannot overwrite each other’s lines

• having the players switch turns each time, unless the previous player claimed a box, in which case that
player may go again

• a function that will ensure that the game ends when there are no more spaces left to fill on the grid

• use of a minimax algorithm for the AI player that can take all of the available moves, minimise the
greatest chance of loss and maximise the loss for the opponent, and be able to make an educated decision
each turn that will render it a suitable opponent relative to the difficulty level to a human player

• store total number of games won by AI player for each difficulty level in a text file

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

17

Requirements
Overall List of Objectives
1. Create a game board of dots, e.g. 4x4, where the user is allowed to interact with it
 1.1 Dots an even space apart
 1.2 Store each dot as a coordinate on the grid
2. User selects difficulty
 2.1 Selection between easy, medium and hard
 2.2 Adjust number of scenarios minimax algorithm will iterate through based on difficulty selected
3. Have a systematic turn-based system that lets both players have a turn one after the other
 3.1 Check if last move completed a box. If it did, player receives another turn until a normal move is
 made
 3.2 On a normal move, switch turns after each player moves
4. Enable the user to place lines on the game board and display these lines visually on the board
 4.1 Accept user’s click location as location to place line
 4.2 Ensure click is ignored if it does not correlate accurately enough to a space on the
 grid/overwrites another line
 4.3 Display line on grid in correct colour and relative to where the user clicked
 4.4 Record all line positions on grid
5. Have the scores for both players displayed to the side for the user to see at all times
6. Increment the score if a box is made
 6.1 Display updated score each turn
7. Display the claimed boxes visually
8. Have a functioning AI player that can effectively take into account all the moves both it and the user can
make with each turn, making a decision via an implemented minimax algorithm
 8.1 AI iterates through fewer/more depth levels of the minimax depending on the difficulty, to alter
 how far it can think ahead and thus how “intelligent” it is

8.2 Record and update all moves available to AI player each turn
9. End the game when the board has been filled
 9.1 Ask if the user wants to replay
10. Calculate and display the overall winner of the game
 10.1 If the AI player won, add this to total games won in another file for corresponding difficulty,
 having this data accessible within the system. If the AI player lost, only update total games count

Requirements: In Detail
Following the identified overall requirements of my intended system, below are descriptions of how each
mechanic will need to work and what it will do for the system.

Inputs
• Choosing where to place a line
The system will firstly need to take the user’s input of where they wish to place a line on the grid, for
example by taking the position of the mouse click on the window. The user could alternatively enter their
desired line location in the form of typed coordinates, however I think that this would be too time-
consuming for the user themself and less user-friendly overall. The system will need to ignore any clicks
that don’t correlate to a proper location, and should not count as a move. The user should click within
certain set bounds of an area on the grid, and anything outside should be ignored.

• User selects level of difficulty
This could be between easy, medium and hard, for example. The user will need to select which level of AI
they wish to play against, which will in turn modify the minimax algorithm slightly depending on the
difficulty chosen.

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

18

• Restarting/ending the game
Upon completion of a game, it may be a good idea to have the system ask the user whether they wish to
play another round or whether they want to stop. If they want to continue, the user should be able to
confirm this and the grid will be redrawn. Otherwise, the game should close. This gives some flexibility to
the game, allowing the user to easily replay if they wish to.

Processes
• Constructing the game grid/board
The system will need to draw the 4x4 system of dots on to a Windows Form, where the game will be
played. It should place each dot an equal distance apart, taking into account the overall size of the Forms
window. I may include additional sizes such as 5x5 and 6x6 for the option of longer games.

• Switching player turns
The system needs to switch between the user player and the AI player with each turn. It should calculate
whether the last move either player made was a move that incremented their score (finished a box), and if
so, allows that player an additional turn until they make a regular move, in which case the turn will switch
to the other player.

• Drawing a line on the grid in the intended location, in the correct colour
Once the user makes a move, the system should be able to display the line in the corresponding location in
the user’s colour (red). The AI player making the move should have their line drawn and displayed as blue,
so the user is able to identify who has gone where on the grid. This is not absolutely necessary, however it
makes it more visually easy to look at and analyse and so the user can review each move.

• Calculating if a box has been made and colouring it correctly
If four lines connect and form a 1x1 box, the system will need to increment the score of the player that
completed the box (placed the fourth line) and colour the inside of this box with either player’s colour
(red/blue).

• Calculating if line location is taken
If the user clicks a spot to place a line that either they or the AI player had already used, this should not
count as a move and should be ignored until the user makes a valid move where there is a space. The user
needs to be prevented from overwriting lines, as this breaks the game.

• Minimax
The minimax will need to be implemented to the AI player and will need to process a number of things. It
will firstly need to acknowledge where all of the available spaces are, where the user’s and its own lines
are, and all of the locations the user can potentially move to, making a decision based on what minimises
the maximum amount of loss that is possible. It should know that placing a fourth line on a 3-line box
increments its score (its aim), placing a 3rd line decreases the score, placing a 2nd line would mildly increase
the score and placing a line in an empty space should be neutral. Depending on the difficulty, the minimax
will iterate through fewer or more layers of potential scenarios throughout the game as well. This ensures
that the AI will “think” less or farther ahead depending on the difficulty, making it less or more intelligent.
Different depth levels will allow for different levels of being able to think ahead – meaning a higher depth
will equal a more advanced AI player.

• Determining if the grid is filled
If the grid is completely full of lines and boxes, the system should end the game and calculate the winner,
and then ask if the user wants to play again.

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

19

Storage
• Current score for both players
The system needs to have a score counter for both players that will store their scores – which will be
calculated from the number of boxes they have completed each. This needs to be stored so that it can be
displayed for the user to review the current stats for the game, something I think would be helpful and
very user-friendly for a game like this.

• The previously calculated winner
At the end of the game, the overall winner of the game should be stored, so that it can then be displayed
to the user.

• Used line locations
In order to be able to calculate whether the user has made a valid, unused move as explained earlier, the
system needs to store the locations that have already been taken so that they cannot be overwritten and
so that the AI also knows that these are no longer valid move locations.

• The number and location of all moves available to the AI
In order to implement the minimax algorithm, the AI will need to know how many locations it will need to
take into account in its decision and where all of these are in order for it to operate. It could be stored in a
different list of moves and updated each turn, removing moves that have been taken by either player, so
the minimax always has access to every move available to it

• Storing total number of AI wins (writing to text file)
In terms of my investigation, this allows me to see how many times the AI wins against the player
depending on the difficulty.

Outputs
• The game grid/board
The game board will need to be drawn to the Windows Form for the user to see and interact with.

• All lines (moves)
The game will need to graphically display all of the lines on the grid, distinguished by player moves (red)
and AI player moves (blue), where each line is clearly displayed as connecting between 2 specific dots on
the grid/board.

• Claimed/completed boxes
The grid should colour the back of the grid where 4 lines intersect as a box in the colour of the player who
made the box, or otherwise mark it clearly as P1 or P2. This will help to visually display where either player
has scored, staying true to the original design of dots and boxes.

• Whose turn it currently is
The system could display whose turn it is to make a move, in order to prompt the user player to play when
it’s their turn, and to just make it overall more visually friendly.

• Current score count for both players
To the side of the grid, there should be a score count for both players that shows how many boxes either
player has. This helps the player keep up to date quickly and easily with the stats of the current game

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

20

Design
Top Level Design

This basic flow chart describes the main flow of the
system.

First, the user will be presented with some form of

selection between an easy, medium and hard
difficulty, and upon choosing this, they will be

directed to the main game screen.

The player and the AI player will then take turns to
select lines on the grid, which the system will in turn

display back to the user.

Any boxes made get displayed when 4 lines intersect,
labelled with the associated player (P1/P2).

As soon as all boxes have been made (so 9 for a 4x4

grid), the game ends and the winning player is
displayed to the user.

They will then be asked whether they wish to replay

the game or not. In the event that they want to
replay, the process repeats, however if the user

selects no the program should close.

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

21

Class Diagrams
I intend to use an object-oriented model for my system. This will involve the base class, which will feature
procedures such as handling the painting of graphics objects (lines, dots, boxes) to the control and
handling the player’s mouse click. It will also feature classes including a Dot, Move and Box class that
handle the dots, lines and boxes being manipulated. I also want to use Windows Forms to create the user
interface.

Below are some class diagrams outlining the structure of my main system:

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

22

Main Game Class
The main Game class will serve as the base class. It will contain many values that other subs within the
class will interact with.

Declarations

- windowHeight, windowWidth: sets window height and
width in pixels

- gridSize/gapSize: sets size of grid, which will be 4 for a
4x4 grid for example, while gapSize sets size of gap
between dots

- gameHeight, gameWidth: this will handle the pixel
dimensions of the panel the main game will take place on

- dots()/lines()/boxes(): lists that will hold the locations
and details of each dot on the grid, each placed line and
created box

- drawBrush/lineDraw/drawFormat: variables required
for the DrawBoard sub later that handles all of the paint
events on the game space

- dotSize: constant integer value that will determine pixel
size of each dot

- P1Score, P2Score: integer values that will hold the
values of both players’ scores

- playerTurn: integer value that will hold either a 1 or a 2,
indicating which player’s turn it is

- AIDepth: integer that will hold number of depth levels AI
needs to iterate through based on user choice

- availableMoves(): all moves available for the AI player to use

- boxCount: holds current number of boxes on the grid

- fileName: string that will store the file name of the CSV I intend to use to store score data

Functions and Procedures

- CreateGameGrid: will contain a double for loop (through x then y) that iterates from 0 through to the gridSize subtract 1 (0 to 3, which
will create all 16 dots, correlating to each dot index), adding each dot to the dots list to be drawn to the panel

- SetGridSize: sets the size of the grid as selected by the user (4x4/5x5/6x6)

- DrawBoard: procedure that handles the pain events. This involves processes such as drawing all the dots, all of the lines and all of the
boxes by iterating through their associated lists

- ChooseLine: procedure that handles the mouse click and overall operation of selecting a line. It features getting mouse coordinates and
translating them into lines, and procedures for checking boxes are handled here

- SetNewGame: a procedure that resets values like scores, moves, the box count etc. to their default settings of 0 in order to set a fresh
game

- CreateHorizontalBox/CreateVerticalBox: 2 procedures that handle identifying where a specific box has been claimed, handling the
labelling of boxes

- GetWinner: determines and returns the winning player at the end of a game

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

23

Difficulty Select Screen
Upon opening the program, the user should be greeted with a window similar to the one below that allows
them to select a difficulty between easy, medium and hard, and additionally an option to view all the AI
win scores for each difficulty from the external file. Depending on the difficulty chosen, this will pass the
number of depth levels back to the main game form. If the View AI Scores button is selected, a message
box should show, displaying details of the total number of wins for each difficulty, by reading back from
the AI won games file.

3 difficulty buttons which pass depth
level back to main game

Button that will read back the information from the AI
won games file and display to the user the number of
games won for each difficulty. As part of my
investigation, this function helps me to see how well
the AI handles different depth levels and how well each
level of difficulty acts as a valid opponent to the user

- NumBoxesMade: a function that will return an integer value on each turn to determine how many, if any, boxes have been made. This is
used to increase the score and also as part of scoring for the heuristic function

- SetAIDepth/GetAIData/UpdateAIData: subs for the AI that will set the AI depth to variable AIDepth based on user’s difficulty choice,
retrieve current AI score data from the CSV and subsequently update them

- EndOrReplay: sub that asks the user if they wish to replay or quit

- DoesNotOverwriteMove: sub that will check if the location the user clicks will overwrite an existing line

- SetPlayerTurn: sub that determines if the player turn needs to be switched and does so if necessary, and update the player score/turn
labels

- NumLinesAround: to be used in the minimax heuristic: calculates number of lines around given move to calculate its heuristic score and
how effective a move it would be to the AI

- Heuristic /Minimax: subs that will score potential moves based on how effective they would be for the AI, returning moves with the
greatest score for the AI player, recursively iterating through all of the different game scenarios to judge and return the AI’s best possible
move

- RemoveMove: sub that removes a move from a list of available moves to the AI once it has been used by either player. This can function
on the physical game grid for the AI to know its selection of moves available, but also within the minimax within the temporary game
states

- GetAIData/UpdateAIData: subs that will retrieve the AI score data from the CSV file, update the scores from a completed game within
the program and rewrite the data back to the CSV file using the file location stored in the string fileName

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

24

Game Screen

Next, after choosing a difficulty level, the user should be greeted with a screen similar to the one above. It
should feature a panel in the centre, composed of an evenly spaced 4x4 grid of dots. Either side you should
find the score count for both player 1 and player 2, in their corresponding colours. This count will update
each turn. The top should specify whether it’s player 1’s turn or player 2’s turn.

As the game progresses, lines should get displayed on to the screen, and if four lines intersect, a box
should be displayed and marked with the player who earned it, and the score of that player increases by 1.

Player 1
0

Player 2
0

Player 1’s turn
Game board and grid

Score counts

Player turn
indicator

Player 1
0

Player 2
0

Player 2’s turn
Player turn gets

updated
Lines get placed

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

25

Placing Lines
Placing lines for the user should involve them clicking the area in which they want to place the line, which
the system should then display. In order to do this effectively, the system needs to take the X and Y
coordinates of the mouse click, and compare these against the positions of each dot in the list. If the
mouse coordinates fall between a dot and the next dot in the list, it should place the line vertically, and if
the dot falls between a dot and the dot 4 index values ahead, it should place it horizontally. The line
coordinates are then added to a list of moves, similar to the dots.

Player 1
0

Player 2
1

Player 2’s turn

P2

Claimed box gets
marked with player

Score gets updated

Player turn stays the
same: if the player
claims a box, they

receive another turn

I also want the system to have an error range of a certain
number of pixels, such as 10, for the user to click within.
This means that if they click slightly to the left or right, the
system will still accept the click as a valid line placement.

 = error range bounds
x = possible user click point

Key

 x x

Would place vertical line
between dot 0 and dot 1:

lies in the error range

Dot 0

Dot 1

Dot 4

Dot 5

Would not place a line:
click not precise enough.
Click is not recorded as a
valid move and the user

can click again

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

26

Additionally, no line should be placed if the player selects a taken location.

Calculating Lines Pseudo Code
Here is the pseudo code I have designed for the above line placing procedure:

What the beginning of this for loop does is calculate where the mouse click correlates to, determining
whether the line should be vertical or horizontal. If the mouse Y coordinate is larger than the dot and
smaller the dot at the very next index, and within the bounderies of the error range, the line is registered
as being vertical and will set the next dot index to +1. Similarly, if mouse X coordinate is larger than the dot
and smaller than the dot 4 indexes away (on a 4x4 grid) and within the boundaries of the error range, the
line is registered as being horizontal and will set the next dot index as +4. The system can then later draw
this on to the form as the lines are added to the Move list.

Validating Lines
In order to ensure that the user has clicked a location that corresponds to a location on the grid, I feel that,
as in the pseudo code above, a try-catch statement would be appropriate. If there is an exception (e.g. not
an appropriate click), neither the vertical nor horizontal boolean will be set to true and the system will
make no further attempt to switch the player or advance the code, waiting until an appropriate click is
made. Additionally, to make sure that the player cannot overwrite one of their own lines or the lines of the
AI player there needs to be more validation. I intend to use a boolean, validMove, which will return false if,
after iterating through each move in the lines list, it finds a line there. For example, in the instance of the
line being vertical:

FOR dot = 0 TO 15

 TRY

IF (mouseCoords(Y) > dots(dot)(GetY) + errorRange AND mouseCoords(Y)

< dots(dot + 1)(GetY) - errorRange) AND ((mouseCoords(X) <=

dots(dot)(GetX) AND mouseCoords(X) > dots(dot)(GetX) - errorRange)

OR (mouseCoords(X) >= dots(dot)(GetX) AND mouseCoords(X) <

dots(dot)(GetX) + errorRange)) THEN

 vertical = True

ELSE IF (mouseCoords(X) > dots(dot)(GetX) + errorRange AND

mouseCOords(X) < dots(dot + 4)(GetX) - errorRange) AND

((mouseCoords(Y) <= dots(dot)(GetY) AND mouseCoords(Y) >

dots(dot)(GetY) - errorRange) OR (mouseCoords(Y) >= dots(dot)(GetY)

AND mouseCoords(Y) < dots(dot)(GetY) + errorRange)) THEN

 horizontal = True

END TRY

[...]

IF vertical THEN

 FOR line = 0 TO Length (lines) - 1

IF lines(line)(GetStartPosition) = dots(dot)(GetXY) AND

lines(line)(GetEndPosition) = dots(dot + 1)(GetXY) THEN

 validMove = False

 NEXT line

[...]

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

27

This will check each line in the total list of all lines on the grid against the current mouse click to see if it
already exists. If it does, validMove is set to false.

Move Class
As a line is placed on the grid, it will additionally be added to a list of lines stored as object Move, holding a
point value for the start position of the line and a point value for the end position of the line, correlating to
the coordinates of the 2 dots it connects. It should also hold which player made the move, so that when it
comes to drawing the line, the system will know whether to draw it in red or blue.

The class will take the first and last coordinates it needs, and will also create a line name based on the ID
values of the two dots it draws between (see Dot Class pseudo code). For example, a line being drawn
between dots of ID 1 and 5 would give the line the name “1-5”, which I later want to use to check for
boxes. It also takes the first and last part of the line name separately so it can check against other values
later. If the line name was 1-5, GetLineName1 would return 1 while GetLineName2 would return 5. The
GetLineColour function decides whether the line should be coloured blue or red depending on the player’s
turn, to be handled within the procedure that handles painting to the control later.

Ending the Game
The game will feature a variable, boxCount, that will increment as boxes are made by either player. Once
the value reaches 9 on a 4x4 grid, the game will end, the winner will be displayed and the player is asked if
they wish to replay.

FirstCoords = Point

LastCoords = Point

LineName = String

Player = Integer

New (FirstDot: Dot, LastDot: Dot, WhichPlayer: Integer)

 FirstCoords = FirstDot (Get XY)

 LastCoords = LastDot (Get XY)

 LineName = First Dot (GetID) + "-" + LastDot (GetID)

 Player = WhichPlayer

Function GetStartPos ()

 return FirstCoords

Function GetEndPos ()

 return LastCoords

Function GetLineName ()

 return LineName

Function GetLineName1 ()

 return first part of LineName

Function GetLineName2 ()

 return second part of LineName

Function GetLineColour ()

 IF Player = 1 THEN

 GetLineColour = red

 ELSEIF Player = 2 THEN

 GetLineColour = blue

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

28

Pseudo Code: Setting Up the Dots
The following pseudo code is intended to create the dots by calculating their appropriate coordinates in
relation to the game space and adding them to a list of 16 dots:

WindowHeight = 600

WindowWidth = 1000

GridSize = 4

DotSize = 10

dots = list of dot

BoardLocation = Point ((WindowWidth - BoardWidth) / 2, (WindowHeight -

BoardHeight) / 2)

DotGap = (1 / GridSize) * BoardHeight

FOR x = 0 TO GridSize – 1:

 FOR y = 0 TO GridSize – 1:

 DotXCoord = (BoardWidth / DotSize) + (DotGapSize * x)

 DotYCoord = (BoardHeight / DotSize) + (DotGapSize * y)

 dots <-- add new dot (DotXCoord, DotYCoord)

 NEXT y

NEXT x

This sets the game space in the centre of the game window by taking into account the window height and
width, and then sets the gap required between dots in relation to the size of the game board. The GridSize
relates to how many dots there are widthways and lengthways, which in a normal game of dots and boxes
would be 4. The program then iterates widthways and lengthways through each coordinate on the game
board and evenly assigns each dot an X and Y coordinate, then adding these as a dot in the list dots.

Dot Class
In order for dots to be added to a list as above, I want them to be stored as a separate object, Dot. The
class will have an X coordinate and a Y coordinate, for each dot, as well as an ID for the dot. In the instance
of a new dot being created, such as when dots are being added to the list, this X and Y coordinate and the
ID will be taken, and the class will feature functions to return these values for whenever they are required
throughout the program.

Drawing the Dots
In a separate sub that will handle drawing to the game space, the board position in relation to the window
will be prepared here as well as drawing all graphical elements such as the dots, any lines and claimed
boxes. To draw the dots, I will probably use a for loop to iterate through each dot in the “dots” list and

X = Integer

Y = Integer

XY = Point

id = String

New (location: Point, DotID: String)

 X = X of location

 Y = Y of location

 XY = location

 id = DotID

Function GetX ()

 return X

Function GetY ()

 return Y

Function GetXY ()

 return XY

Function GetID ()

 return id

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

29

draw it to the game space that way, using the SolidBrush object from the VB.net PaintEventArgs class –
which handles painting graphics to the control.

Identifying Boxes
When any 4 lines intersect, a box needs to be made. This could be done by separating the code into
checking firstly for horizontal boxes (up and down), and then vertical boxes (left and right), done within the
line choosing sub that handles the mouse click event. For a horizontal move, for example, the horizontal
boolean would be set to true, and the following procedure would apply:

DotSize = 10

DrawDot = SolidBrush (colour: black)

FOR each dot in dots:

 draw circle to GameBoard (DrawDot, dot (GetX), dot (GetY),

 DotSize)

NEXT dot

IF horizontal THEN

 IF line left ID MOD 4 <> 0 THEN

 FOR each line IN lines

 Check left, right and bottom lines

 NEXT line

 IF left line, right line AND bottom line THEN

 numBoxesToMakenumBoxesToMakeHorizontally += 1

 lowerBox = True

 IF line left ID MOD 4 <> 1 THEN

 FOR each line IN lines

 Check left, right and top lines

 NEXT line

 IF left line, right line AND bottom line THEN

 numBoxesToMakeHorizontally += 1

 upperBox = True

 SELECT CASE numBoxesToMakeHorizontally

 Case 1:

 boxCount += 1

 Case 2:

 boxCount += 2

 IF isBoxMade THEN

 create box (line left ID, line right ID,

 numBoxesToMakeHorizontally, upperBox, lowerBox)

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

30

If the left line ID (left dot ID) mod 4 is not equal to 0, then the system will check all lines right, left and
below the player’s move. The reason for this is that start dots 4, 8, 12 and 16 are all of the dots on the
bottom row of a 4x4 grid, and, all being multiples of 4, mod 4 would produce 0 for every start dot on this
row. This means that the system will ignore checking for boxes below them. Similarly, if the left line ID mod
4 is not 1, the system will again check lines right and left of the player’s current moves, but instead of the
line below, it will check the line above. This means the system will now include start dots 4, 8, 12 and 16
along the bottom in order to check for boxes above, but will ignore lines with start dots 1, 5, 9 and 13, as
these values all produce 1 when mod 4 is applied. This is because these are the top line of dots, so no
boxes need to be checked above them. Then boolean values upperBox and lowerBox will be set, indicating
which box type is needed for labelling. Additionally, both can be true at the same time, since you can claim
2 boxes simultaneously – hence why the select case statement will increment boxCount by either 1 or 2
depending on how many boxes were claimed. The function isBoxMade will return either true or false
depending on whether one or more boxes have been made for that turn, which can be used as a win
condition for the AI player.

Vertically, this process is similar. Instead of using mod 4, however, we can just check for line left IDs
greater than 4 for boxes to the left, and line left IDs smaller than 13 for boxes to the right, as dots move
from top to bottom in step in terms of their IDs.

Switching player turns will be a case of changing playerTurn from 1 to 2/2 to 1 if
numBoxesToMakeHorizontally and numBoxesToMakeVertically are both 0. This ensures the players switch
turns if they haven’t made a box. If either one is 1 or more, this means 1 or more boxes have been made
and that player needs to have another turn.

Box Class
The Box class will essentially handle the marking of boxes on the game grid, taking into account the upper
line of the box and the player turn in order to know where to place the box label and which player it needs
to represent.

boxTopStartCoords = Point

boxTopEndCoords = Point

player = Integer

numOfBoxesToLabel = Integer

labelCoords = Point

New (ULineStartCoords: Point, ULineEndCoords: Point, whoseTurn: Integer, howManyBoxes: Integer)

 boxTopStartCoords = ULineStartCoords

 boxTopEndCoords = ULineEndCoords

 player = whoseTurn

 numOfBoxesToLabel = howManyBoxes

Function SetLabelPosition()

 X of labelCoords = (X of boxTopStartCoords + X of boxTopEndCoords) / 2

 Y of labelCoords = Y of boxTopStartCoords + (X of labelCoords + X of boxTopStartCoords)

 return labelCoords

Function GetLabelTextColour()

 IF player = 1 THEN

 GetLabelTextColour = red

 ELSEIF player = 2 THEN

 GetLabelTextColour = blue

Function GetLabelText()

 IF player = 1 THEN

 GetLabelText = "P1"

 ELSEIF player = 2 THEN

 GetLabelText = "P2"

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

31

Minimax
The AI will need to be able to identify the best move within n depth levels it can make using the minimax. It
could use alpha-beta pruning in order to reduce any unnecessary computation time, such as for example
checking for minimum values on a particular depth level when a minimum value has already been found.
This works by adding additional parameters, alpha and beta, with alpha representing the best value the
maximiser can guarantee for a given depth level, and beta representing the best value the minimiser can
guarantee for a given depth level. The first time the minimax function is called, alpha would be set to a
value equivalent to negative infinity and beta to positive infinity. By comparing each child node with not
just the best value but also against alpha and beta, branches in the minimax that don’t need to be
searched can be ignored this way. The minimax, at the beginning, would generally operate something like
this:

The AI will be able to identify the terminal game state by checking if there are no further moves available to make –
indicating that the grid is full – using the list containing all of the possible moves available to it.

If the current node is a leaf node (also known as a terminal
node – in this instance, the depth equalling 0 or no further
moves being available due to the grid being complete would
be a terminal state for the minimax algorithm), this node
value is returned as a result of calling the function, therefore
passing the AI’s chosen move into the game. For each
possible move path, these values are compared to find the
greatest, and thus the best move.

The minimax begins by maximising. The best value is set to –
∞ and the minimax will iterate through every child node
(every game state). Within the minimiser the best value is set
to +∞, and it then places another move and iterates through
the child node of this move, and the minimax continues to
recursively alternate between minimising and maximising
until we reach the leaf nodes (maximum depth). At this point,
the raw score, or heuristic value, of each of these leaf nodes
of the move above are checked and provided we are
maximising at this point, the leaf node with the greatest
heuristic value is passed up to the maximiser (by comparing if
each score > best value). Of all the moves at this depth which
collect the greatest leaf node value, the minimiser then
selects between them the one that would return the lowest
score (by comparing if each score < best value) - so we can
say here that the role of the minimiser is minimising the
maximum amount of success. Once the values have been
accumulated for each move on this minimising layer, the
maximiser above it gets the greatest value from them. The
role of the maximiser here is to therefore maximise the
minimum amount of success as calculated in the minimising
layer below it. We can therefore see how the minimax
algorithm would operate.

The role of alpha and beta is to reduce computation time. For example, if we were on a maximising layer, getting
the greatest possible value and coming from a minimising layer above, a value for beta would have been passed in.
Any time a greatest value is set at this maximising layer, alpha changes to it. If at any point beta becomes smaller
than or equal to the value of alpha, this means that it is not worth continuing to search down this move branch.
The reason for this is that if for example the value of beta from the minimising layer above was -2 (smallest and
therefore best value so far at the minimising layer) and alpha at this layer was currently 5 (best value so far at this
maximising layer), it is not worth continuing to search this path as the minimiser above is already guaranteed a
value of -2 or lower.

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

32

Writing AI Results to a Text File
I want the system to be able to count the number of times the AI has won against the player for each
difficulty level and store this externally for me to access as part of my investigation. This will enable me to
see how efficiently the AI can pose as an opponent for the three different difficulty levels I want to
implement to it. If the AI wins a game, it should add 1 to the count in a text file by writing to it in
accordance with the difficulty level the user played on. I could use a CSV file to do this. This information
can then be used on the main difficulty select screen, where if the user wishes to see the won AI games,
they can do so via the use of this file.

I intend to use a structure, AIWins, which will be used in array wins to store the total wins, total games and
difficulty for the 3 rows in the CSV (easy/medium/hard). The file contents will then be read in from the
CSV, changed in the program and rewritten back to the CSV. Then, on the difficulty select screen, the View
AI Scores button will again open the file and read back the contents to the user.

The CSV file would look something like this:

Using the total number of games for each difficulty and the number of AI wins for each difficulty, the
system can calculate the win rate for the AI on each difficulty.

Structure AIWins

 totalWins = Integer

 difficulty = String

 totalGames = Integer

winner = 2

Open file "aimoves.csv"

headers = String (top row of CSV)

wins(3) = AIWins

FOR row = 1 TO 3

 Input to wins(row).difficulty

 Input to wins(row).totalWins

IF AIDepth = 1 THEN

 wins(0).totalWins += 1

 wins(0).difficulty = "Easy"

ELSEIF AIDepth = 3 THEN

 wins(1).totalWins += 1

 wins(1).difficulty = "Medium"

ELSE

 wins(2).totalWins += 1

 wins(2).difficulty = "Hard"

Rewrite headers to file

Rewrite wins array to file

Headers row

Difficulty column

Wins and total games columns:
parts that will be updated

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

33

Managing All Potential Move Locations (AI Player)
I feel that one possible way of providing the AI with access to all potential move locations could be by
creating another list within the program which will contain all the available moves, with all 24 moves
present at the beginning of the game and as each line is placed on to the grid, the corresponding move is
removed from the list. This will allow the minimax to iterate through each potential move. This will also
ensure that the AI player doesn’t overwrite any lines.

Testing Strategy
Input Validation, Functions and Processes
The following validation and general function tests will allow me to identify and ensure each user input is
appropriately handled, and will check each function and procedure works as it should. I will test the system
using typical, acceptable data, and erroneous data that should be managed and ignored.

Test
Number

Description Data Type Detail & Expected
Result

Actual Result Pass/Fail

1 Selecting a button on the
difficulty select screen will pass
in the relevant number of
depth levels

Typical Selecting Easy passes in a
depth of 1, Medium a depth
of 3 and Hard a depth of 5

2 Dots should display in a
clear 4x4/5x5/6x6
manner on the screen

Typical At the beginning of the
game, the dots should be
drawn to the panel and
their coordinates recorded

3 The system will get the
user’s mouse click and
display the line
accordingly

Typical User clicks a location
between 2 dots, line is
placed

4 The system will ignore
any inaccurate mouse
clicks

Erroneous User clicks an ambiguous
location, no line is placed
and turn remains the same
until an appropriate line is
placed

5 The system will visually
display a box to the user
if a 4th line is placed on a
box

Typical User finishes a box, box is
labelled P1 in the
appropriate place

6 The system will label 2
boxes simultaneously if a
line is placed in the centre
of two 3-line boxes

Typical User places a line between
2 unfinished boxes, both
are claimed at once

7 Game will end once all
boxes are created

Typical If it’s the user’s last turn,
game will end and a
message box will display,
showing the winner and
scores

8 System will ignore any
clicks where there is
already a line

Erroneous If user tries to place a line
where a line already exists,
it should be ignored

FOR each line in availableMoves

 If line start coords = newly placed line start coords AND line end

 coords = newly placed line end coords THEN

 removeIndex = index of line

availableMoves.RemoveAt removeIndex

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

34

Test
Number

Description Data
Type

Detail & Expected
Result

Actual Result Pass/Fail

9 System will ask if the
user wants to play again
at the end of a game

Typical If user selects yes, difficulty
select form is shown and
game restarts. If user selects
no, game closes

10 Where a line is placed,
system will record its
location and name in a
list of all moves

Typical E.g. placing a line between
dots 1 and 2 stores the line
name as 1-2, their
coordinates and the player
who made the line (1/2)

11 Where a box is made,
this increases the score

Typical Adds to player score counts
depending on the number
of boxes claimed by either
player

12 Where a player creates a
box, they receive
another turn

Typical Placing a fourth line on a
box results in this player, AI
or not, placing more moves
after this until a move is a
normal (non-box) move

13 For specified depth level,
minimax function should
only search possible
turns up to this depth
level

Typical E.g. for a depth level of 3,
the minimax function should
only call itself and search
through the layers a
maximum of 3 times

14 When minimax
determines a move, this
line should be placed
accordingly on the grid

Typical Move returned out of
the minimax is placed
on the grid in the
correct position as a
blue line

15 Where move is a winning
move (completes a box),
AI should typically move
here

Typical A 3 lined incomplete box
being present on the AI’s
turn should lead to the
minimax placing this line
here

16 Selecting “View AI
Scores” should show AI
scores appropriately

Typical When the user wants to
view AI scores from the
difficulty select menu, this
should read from the CSV
file correctly and display the
total number of AI wins for
easy, medium and hard
difficulties out of the total
number of games played for
that difficulty level

17 If AI wins, score in CSV for
the selected difficulty
should update on top of
total number of games

Typical AI wins: score in text file and
on AIStats form increments
by 1, as does total game
count for that difficulty

18 Total number of games
played for selected
difficulty is updated in CSV
even when AI doesn’t win

Typical AI doesn’t win: total games
in CSV and on AIStats form
increases by 1 for that
difficulty, but does not
increment total wins

19 When the game is
replayed, everything
should be completely
reset

Typical System should empty all
boxes, moves, available
moves, scores and relevant
variables reset to default (0)

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

35

Testing the Minimax
To test the minimax algorithm, I will conduct some black box and white box testing, as well as some
simpler tests (table above). In the black box testing I intend to run the game and explain/determine the
behaviour of the AI (on a depth > 1 to showcase its recursive nature). With white box testing, I could
analyse the scoring of game states, for example where there are 3 lines on a box to ensure that the
minimax will recognise it should place a fourth line (scoring it highly), and situations where there are 2
lines on a box to see if the minimax knows that placing a third line on a box will result in the other player
(user) being able to win a box and thus producing a worse score. I want to analyse the heuristic specifically
to go into detail with how it scores moves for different game states.

Beta Testing
In order to beta test my system, I will prepare some questions for my third party, a friend who will test
how well and how accurately the game functions in relation to the original game, how effective the
different difficulty levels are and how challenging the AI is, and how simple it is to play the game and
access all of its features. She should play through the game at least once on each difficulty level.

1. Did you find any obvious issues with the program? (Y/N)

2. If so, explain what issues you ran into or otherwise detail any bugs/annoyances

3. How clearly laid out was the interface? Was everything structured and easy to understand?

4. Did you feel anything about the program was unnecessary? Give any details

5. Did each difficulty level adequately provide a different level of difficulty?

6. How closely did the game resemble the original? Would you describe this game as being accurate
enough?

7. What in particular did you like about the game?

8. What do you think could be improved to make it better?

White Box Testing
I will use white box testing to provide further evidence that the key algorithms, including the
minimax/heuristic, in the game work correctly. Key algorithms I want to test will include:

 • ensuring mouse click is registered and assigned the correct values on the grid, checking the
 mouse click coordinate values and checking these against the code

 • ensuring minimax and heuristic functions appropriately decide which moves are better than
 others: e.g. a move completing a box has a higher priority than one that does not, boxes with 3
 lines should be seen as negative for the AI player whereas standalone moves or moves with one
 parallel/adjacent line should be fairly neutral in scoring. Minimax on higher depths than 1
 (medium/hard) should keep track of a cumulative total of scores for each possible game path to
 judge what the best move could be

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

36

Test
Number

Description Data
Type

Detail &
Expected

Result

Actual Result Pass/Fail Video
Timestamp

--- Program demo 0:00

1 Selecting a button on
the difficulty select
screen will pass in the
relevant number of
depth levels

Typical Selecting Easy
passes in a depth of
1, Medium a depth
of 3 and Hard a
depth of 5

Easy set AIDepth to
1, Medium set
AIDepth to 3, Hard
set AIDepth to 5

Pass 1:36

1a) Not selecting a grid
size before choosing
a difficulty should
be handled

Erroneous If no grid size is
selected from the
drop down and a
difficulty button is
clicked, an error
message is
displayed until a
grid size is selected

Error message was
presented; see
screenshot 1

Pass 2:08

2 Dots should display
in a clear
4x4/5x5/6x6
manner on the
screen

Typical At the beginning of the
game, the appropriate
amount of dots should
be drawn to the panel
and their coordinates
recorded

Selecting 4x4
presented 4x4 dots,
selecting 5x5
presented 5x5 dots,
selecting 6x6
presented 6x6 dots

Pass 2:23

3 The system will get
the user’s mouse
click and display the
line accordingly

Typical User clicks a
location between 2
dots, line is placed

Mouse was clicked
between dots 8 and 9,
vertical line was placed;
mouse clicked between
dots 20 and 26,
horizontal line was
placed

Pass 2:48

4 The system will
ignore any
inaccurate mouse
clicks

Erroneous User clicks an
ambiguous location,
no line is placed and
turn remains the
same until an
appropriate line is
placed

Mouse was clicked
in white spaces not
between any 2
dots; no lines were
placed and player
turn was not
altered

Pass 3:08

5 The system will
visually display a
box to the user if a
4th line is placed on
a box

Typical User finishes a box,
box is labelled P1 in
the appropriate
place; AI player
finishes a box, box is
labelled P2 in the
appropriate place

When the AI player
claimed a box, it
was labelled with a
blue “P2”. When
player 1 claimed a
box, it was labelled
with a red “P1”

Pass 3:29

6 The system will label 2
boxes simultaneously if
a line is placed in the
centre of two 3-line
boxes

Typical User/AI places a line
between 2
unfinished boxes,
both are claimed at
once

AI claimed two
boxes
simultaneously and
both were labelled

Pass 4:00

7 Game will end once
all boxes are
created

Typical Game will end and a
message box will
display, showing the
appropriate winner
and scores once there
are no more moves

Game ended, asked
to play again on all
grid sizes, when no
lines were left

Pass 4:28

7a) Game displays draw
when scores are
even

Typical Game informs user that
they drew if the sum total
of boxes is the same for
both players (5x5 grid)

Appropriate
message was
displayed: see
screenshot 2

Pass 5:41

Testing
I have produced a video that showcases the following tests, with their timestamps also given below.

Here is the link to my video: https://youtu.be/H2Mk-ypgyHU

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

37

Test
Number

Description Data
Type

Detail &
Expected

Result

Actual Result Pass/Fail Video
Timestamp

8 System will ignore
any clicks where
there is already a
line

Erroneous If user tries to place
a line where a line
already exists, it
should be ignored

Attempted to
overwrite AI’s moves
of 3-4 and 3-7, own
move of 2-6; no
moves placed

Pass 6:09

9 System will ask if
the user wants to
play again at the
end of a game

Typical If user selects yes,
difficulty select form
is shown and game
restarts. If user
selects no, game
closes

Yes selected; user
brought back to
difficulty select. No
selected; program
closed. Dialog box:
see screenshot 3

Pass 6:34

10 Where a line is
placed, system will
record its location
and name in a list of
all moves

Typical E.g. placing a line
between dots 1 and
2 stores the line
name as 1-2, their
coordinates and the
player who made
the line (1/2)

Move 5-9 and its
coordinates were
added as type
“Move” to the list
of all moves on
the grid, lines

Pass 7:11

11 Where a box is
made, this increases
the score

Typical Adds to player score
counts depending
on the number of
boxes claimed by
either player

Boxes made by
both players, scores
appropriately
increased

Pass 7:58

12 Where a player
creates a box, they
receive another
turn

Typical Placing a fourth line
on a box results in
this player, AI or
not, placing more
moves after this
until a move is a
normal (non-box)
move

As a player claimed
a box, they could
take another turn
until their move
was a “normal”
move (didn’t claim
a box)

Pass 8:54

13 For specified depth
level, minimax
function should
only search possible
turns up to this
depth level

Typical E.g. for a depth level
of 3, the minimax
function should only
call itself and search
through the layers a
maximum of 3 times

Minimax
provided with
depth of 1, 3 or 5
appropriately for
easy, medium or
hard

Pass 10:06

14 When minimax
determines a move,
this line should be
placed accordingly
on the grid

Typical Move returned
out of the
minimax is
placed on the
grid in the
correct position
as a blue line

Final move of 5-6
was returned out
of the minimax,
this move was
then placed on
the grid

Pass 10:55

15 Where there is a 2-
lined box, AI should
avoid placing a 3rd
line as much as
possible

Typical Trying to get the
minimax to place a
3rd line on a box
should fail to work;
it should avoid
placing a 3rd line

Tried to get the
AI to place a 3rd
line on many 2-
lined boxes: no
attempts worked

Pass 11:46

15a) Where move is a
winning move
(completes a box),
AI should typically
move here

Typical A 3 lined
incomplete box
being present on
the AI’s turn
should lead to the
minimax placing
this line here

Placed a series of
3-lined boxes, AI
continued to
successfully
complete these
boxes

Pass 12:35

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

38

Test
Number

Description Data
Type

Detail &
Expected

Result

Actual Result Pass/Fail Video
Timestamp

16 Selecting “View AI
Scores” should
show AI scores
appropriately

Typical When the user
wants to view AI
scores from the
difficulty select
menu, this should
read from the CSV
file correctly and
display the total
number of AI wins
for easy, medium
and hard difficulties
out of the total
number of games
played for that
difficulty level

Clicking View AI
Scores gave a
table displaying
the number of AI
wins out of the
total games for
that difficulty, as
well as the win
rate, that match
the contents of
the CSV file

Pass 13:15

17 If AI wins, score in
CSV for the selected
difficulty should
update on top of total
number of games

Typical AI wins: score in
text file and on
AIStats form
increments by 1, as
does total game
count for that
difficulty

Wins for easy
were 31/59, AI
won a game on
easy, this
updated to 32/60

Pass 14:01

18 Total number of games
played for selected
difficulty is updated in
CSV even when AI
doesn’t win

Typical AI doesn’t win: total
games in CSV and
on AIStats form
increases by 1 for
that difficulty, but
does not increment
total wins

Wins for easy
were 32/60, AI
lost a game on
easy, this
updated to 32/61

Pass 14:59

19 When the game is
replayed,
everything should
be completely reset

Typical System should
empty all boxes,
moves, available
moves, scores and
relevant variables
reset to default (0)

All recorded lines,
boxes and dots
were cleared ready
for a new game
when player chose
to play again

Pass 15:53

20 Clicking the back
button on the AI
Stats or main game
forms should return
the player back to
the difficulty select
form

Typical Player is returned to
difficulty select
form, any moves
made on the grid on
the main form are
reset for a new
game to be played

Back buttons
all directed
user back to
difficulty
select form

Pass 16:57

21 Clicking the exit
button on the main
or difficulty select
form closes the
entire program

Typical Program should
completely stop
running upon
clicking exit on
either the difficulty
select or main forms

Both exit
buttons entirely
closed the
program

Pass 17:27

22 Black box testing: gameplay on medium (depth 3) 17:48

23 White box testing: minimax on medium (depth 3) 22:27

24 White box testing: heuristic values for different game states 35:35

25 White box testing: mouse click procedure and ensuring whether clicks are/are not
valid

47:45

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

39

Screenshots

Screenshot 1
Error message dialog box.

Screenshot 2
This dialog box was displayed due to both player scores being equal.

Screenshot 3
Dialog box shown at the end of a game.

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

40

Third Party (Beta Test) Feedback
I asked my third party to beta test the program and play a few games on each difficulty level. I then sent
her my short feedback questionnaire along with the program, and these were my responses.

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

41

Evaluation
Checking Against Requirements

Requirement
Number

Detail Is
Requirement

Met?

Testing Cross-
Reference

Summary

1 Create a game board
of dots, e.g. 4x4,
where the user is
allowed to interact
with it

Yes Test 2 Depending on whether a
4x4, 5x5 or 6x6 grid is
selected, a grid of this size of
dots is created

1.1 Dots an even space
apart

Yes Test 2 Gaps between dots are
calculated with attribute
gapSize

1.2 Store each dot as a
coordinate on the
grid

Yes Test 2 Stored within object Dot for
all dots on the grid as X and
Y coordinates

2, 2.1 User selects difficulty:
selection between
easy, medium and
hard

Yes Test 1 Difficulty select form allows
user to choose a difficulty at
the beginning of every game

2.2 Adjust number of
scenarios minimax
algorithm will iterate
through based on
difficulty selected

Yes Test 1 Maximum search depth is
set accordingly for each
difficulty: depth 1 for easy,
depth 3 for medium, depth 5
for hard

3, 3.2 Have a systematic
turn-based system
that lets both players
have a turn one after
the other; on a
normal move, switch
turns after each
player moves

Yes Program demo Player turns are alternated
each normal turn. If player 1
moves, player 2 then moves
afterwards. If it’s the AI
player’s go on the first move
of the game, a random move
is generated at the
beginning

3.1 Check if last move
completed a box. If it
did, player receives
another turn until a
normal move is made

Yes Test 12 Completing a box gives the
player another turn until a
move no longer completes a
box, in which the turns are
alternated as normal.
Similarly if the AI player
completes a box they can do
the same

4, 4.3 Enable the user to
place lines on the
game board and
display these lines
visually on the board;
display line on grid in
correct colour and

Yes Test 3 Lines are placed based on
user’s click input in red, and
placed based on the Move
object returned from the
minimax for the AI in blue in
the correct locations

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

42

relative to where the
user clicked

4.1 Accept user’s click
location as location to
place line

Yes Test 3, white box
testing of click

sub

User click coordinates are
translated into the game
space, calculating whether
the line should be
horizontal, vertical or invalid
and displaying/not
displaying it appropriately

4.2 Ensure click is ignored
if it does not
correlate accurately
enough to a space on
the grid/overwrites
another line

Yes Test 4, test 8 No move is made and no
further turns are made if the
player attempts to overwrite
an existing move or click an
empty space

4.4 Record all line
positions on grid

Yes Test 10 All line coordinates are
stored within their object
type, Move, and stored in a
list of all moves

5 Have the scores for
both players
displayed to the side
for the user to see at
all times

Yes Program demo Player 1’s score is displayed
in red to the left, player 2’s
score is displayed in blue to
the right

6, 6.1 Increment the score if
a box is made; display
updated score each
turn

Yes Test 11 As player 1 or 2 claims a box,
this score is incremented
appropriately with the
number of boxes claimed
being added to the current
score. This is displayed
within the labels on the left
and right

7 Display the claimed
boxes visually

Yes Test 5, test 6 When player 1 claims a box,
this box is labelled as a red
P1. When player 2 claims a
box, this is labelled as a blue
P2

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

43

8 Have a functioning AI
player that can
effectively take into
account all the moves
both it and the user
can make with each
turn, making a
decision via an
implemented
minimax algorithm

Yes Test 14, test 15,
test 15a, white
box testing of

minimax/heuristic

Current game state,
available moves as well as
which player, the maximum
depth and alpha/beta are
passed into the minimax on
its initial call. The minimax is
recursively called,
decreasing the depth with
each call and alternating
between player 1
(minimising) and player 2
(maximising), first acquiring
leaf nodes and appropriately
getting the greatest/smallest
heuristic score on each level
depending on whether it is
minimising or maximising
and accumulating a total
score for each move path up
to the top layer to decide on
the best move to make

8.1 AI iterates through
fewer/more depth
levels of the minimax
depending on the
difficulty, to alter
how far it can think
ahead and thus how
“intelligent” it is

Yes Test 13 With the passed in depth
level from the main game,
AIDepth, which is set to 1, 3
or 5 depending on the
difficulty, the minimax will
decrease from this value
until it reaches 0 and
therefore hits the leaf
nodes. The minimax does
not search beyond the
number of layers it is passed
in

8.2 Record and update all
moves available to AI
player each turn

Yes White box testing
of minimax

The availableMoves list in
the main game is removed
from as either player makes
moves to ensure the AI
cannot attempt to use these
moves or take them into
consideration.
tempAvailableMoves also
exists in the minimax to
serve as a temporary version
of this list when it iterates
through theoretical game
states

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

44

9 End the game when
the board has been
filled

Yes Test 7 When there are no moves
left, the game displays a
message box showing the
winner and scores

9.1 Ask if the user wants
to replay

Yes Test 9, test 19 User is given the option to
replay, which returns them
to the difficulty select screen
for another game, or to quit,
which quits the program

10 Calculate and display
the overall winner of
the game

Yes Test 7, test 7a At the end of the game, the
winner is determined by
judging which player’s score
was larger. If they were
equal a message indicating a
draw is displayed instead.
Scores are displayed
underneath

10.1 If the AI player won,
add this to total
games won in
another file for
corresponding
difficulty, having this
data accessible within
the system. If the AI
player lost, only
update total games
count

Yes Test 16, test 17,
test 18

The CSV file is written to at
the end of every game.
Regardless of which player
won, the Total Games
column is updated on the
associated difficulty row by
incrementing the amount by
1 in the file. The Wins
column is incremented by 1
on the associated difficulty
row only when player 2 was
the winner and there was no
draw. The win rate is added
as an additional column on
the AI stats form, calculated
within the program, using
the total games and won
games

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

45

Personal Evaluation
Overall, I think my system successfully meets my list of requirements. As for my investigation, I managed to
find out that an AI player can play a turn-based game like dots and boxes, using a minimax algorithm to
pose as an appropriate challenge to the player. The UI is clear and the program overall is simple to use.

Using the feedback from my beta testing (see testing) and through my own testing, I do think my system
emulates the traditional gameplay of dots and boxes well, additionally introducing newer features such as
extra grid sizes and having a clear user interface. The AI player successfully provides different levels of
challenge for the user, though perhaps the gap in difficulty is less obvious to a less experienced player who
may not have developed much of a strategy – however I do agree that sometimes the AI can be a bit
slower to respond compared to easy difficulty, especially when there are several potential successive
boxes to claim. This is more of a technical issue with the recursive nature of the minimax. With other
games this is avoidable by stopping the search when the game is won, but the multiple turns rule in dots
and boxes makes this much more complicated. Personalisable names/colours could have been interesting
from a player’s perspective, even though it wouldn’t affect the core gameplay.

In order to reduce the complexity and therefore possibly help with the program’s performance, maybe I
could have used a different variant of the minimax, negamax, where instead of alternating between min
and max it combines the two into one function, calling negamax and -negamax recursively depending on
whether it is player 1/2. It’s based on the principle that the opponent is also playing perfectly, and will
therefore play the inverse of the maximum move (hence -negamax). It’s a more refined version of the
minimax and may have helped with the speed of my program.

On top of this, maybe I could have added a feature like saving the game. It might be a bit excessive for a
game of this nature however I think it could be an interesting feature to be able to save your progress
and come back to the game later. It could have added a layer of complexity to the project.

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

46

Technical Solution
In my technical solution, I finalised my decision to include other board sizes. This means that on top of a 4x4 grid, there is also the option of a 5x5 and 6x6
grid in order to add some variety and give the user some choice as to how long they want the game to be. Additionally, in a 5x5 grid, there is the possibility of
a draw due to the number of total dots being odd, providing another end game scenario.

Main Form (Dots and Boxes)
The main game form where most of the processing takes place. Dots, lines, and boxes are stored and managed, scores are kept, objects are displayed, and
the gameplay including the minimax for the AI is found here. It additionally updates the AI scores in the file for the AI Stats form to use.

Imports System.IO

Public Class Game
 Private Const windowHeight = 600
 Private Const windowWidth = 1000
 Private gridSize As Integer
 Private Const panelHeight = 400
 Private Const panelWidth = 400
 Private gapSize As Decimal
 Private dots As New List(Of Dot)
 Private lines As New List(Of Move) 'all moves made (game state)
 Private availableMoves As New List(Of Move) 'all moves available
 Private boxes As New List(Of Box)
 Private drawFormat As StringFormat
 Private Const dotSize As Integer = 10
 Private P1Score As Integer
 Private P2Score As Integer
 Private playerTurn As Integer
 Private boxCount As Integer
 Private AIdepth As Integer
 Public AIWins(2) As AIWin
 Public fileHeaders As String
 Private fileName As String = "aiscores.csv"

 Private Sub CreateGameGrid()
 Dim xcoord As Integer
 Dim ycoord As Integer
 gapsize = Math.Floor(((1 / gridSize) * panelHeight))
 For x = 0 To gridSize - 1 'Embedded loop that sets coordinates of all dots and adds them to a list of point values

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

47

 For y = 0 To gridSize - 1
 xcoord = CInt((panelWidth / dotSize) + (gapSize * x))
 ycoord = CInt((panelHeight / dotSize) + (gapSize * y))

 dots.Add(New Dot(New Point(xcoord, ycoord), (dots.Count + 1).ToString))
 Next
 Next

 End Sub

 Private Sub SetGridSize()
 gridSize = DifficultySelect.gridDimension 'Sets the grid size to 4x4/5x5/6x6 as chosen by the user
 End Sub

 Private Sub DrawBoard(sender As Object, e As PaintEventArgs) Handles GameBoard.Paint
 Dim coordinates As New List(Of Point)
 Dim gameSpace As Panel = DirectCast(sender, Panel) 'Sets the panel to the variable gameSpace
 Dim gridGraphics As Graphics = gameSpace.CreateGraphics
 Dim StartDrawPos As Point
 Dim EndDrawPos As Point
 Dim lineDraw As Pen
 Dim drawBrush As SolidBrush
 Dim gameEndString As String = vbCrLf & vbCrLf & "Player 1: " & P1Score & vbCrLf & "Player 2: " & P2Score

 Me.Height = windowHeight 'Setting everything visual up
 Me.Width = windowWidth
 gameSpace.BackColor = Color.White
 gameSpace.Height = panelHeight
 gameSpace.Width = panelWidth
 gameSpace.Location = New Point((windowWidth - panelWidth) / 2, (windowHeight - panelHeight) / 2) 'Centres the panel on to the window
 lbl_P1Score.Font = New Drawing.Font("Arial", 20)
 lbl_P2Score.Font = New Drawing.Font("Arial", 20)
 lbl_WhoseTurn.Font = New Drawing.Font("Arial", 24)
 lbl_P1Score.ForeColor = Color.Red
 lbl_P2Score.ForeColor = Color.Blue
 lbl_WhoseTurn.ForeColor = Color.Black
 lbl_P1Score.Location = New Point(gameSpace.Left - lbl_P1Score.Width - 50, windowHeight / 2)
 lbl_P2Score.Location = New Point(gameSpace.Right + 50, windowHeight / 2)
 lbl_WhoseTurn.Location = New Point(gameSpace.Location.X * 1.3, gameSpace.Top - 50)
 btn_Back.Location = New Point(gameSpace.Location.X, gameSpace.Location.Y + panelHeight + 20)
 btn_Exit.Location = New Point(btn_Back.Location.X + 100, btn_Back.Location.Y)

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

48

 drawBrush = New SolidBrush(Color.Black)
 lineDraw = New Pen(Color.Black, 5)
 drawFormat = New StringFormat()
 drawFormat.Alignment = StringAlignment.Center
 drawFormat.LineAlignment = StringAlignment.Center

 If lines.Count <= 1 Then 'Gets AI depth as selected by user at beginning of the game
 SetAIDepth()
 End If

 For Each dot In dots 'Draws all of the dots
 gridGraphics.FillEllipse(drawBrush, dot.GetX, dot.GetY, dotSize, dotSize)
 Next

 For Each line In lines 'Draws all of the lines
 StartDrawPos = line.GetStartPos
 EndDrawPos = line.GetEndPos

 lineDraw.Color = line.GetLineColour

 If StartDrawPos.Y = EndDrawPos.Y Then
 gridGraphics.DrawLine(lineDraw, StartDrawPos.X + 10, StartDrawPos.Y + 5, EndDrawPos.X + 1, EndDrawPos.Y + 5)

 ElseIf StartDrawPos.X = EndDrawPos.X Then
 gridGraphics.DrawLine(lineDraw, StartDrawPos.X + 5, StartDrawPos.Y + 10, EndDrawPos.X + 5, EndDrawPos.Y + 1)
 End If

 Next

 For Each box In boxes 'Draws all claimed boxes
 If boxes.Count <> 0 Then
 drawBrush.Color = box.GetLabelTextColour
 gridGraphics.DrawString(box.GetLabelText, New Drawing.Font("Arial", gapsize / 3), drawBrush, box.SetLabelPosition, drawFormat)
 End If

 Next

 If boxCount = (gridSize - 1) ^ 2 Then

 If GetWinner() = 1 Or GetWinner() = 2 Then
 MsgBox("Player " & GetWinner() & " wins" & gameEndString)

 Else MsgBox("You drew" & gameEndString)

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

49

 End If

 GetAIData()
 UpdateAIData()
 AskToEndOrReplayGame()

 End If
 End Sub

 Private Function GetWinner()
 Dim winner As Integer
 If P1Score > P2Score Then
 winner = 1
 ElseIf P2Score > P1Score Then
 winner = 2
 Else
 winner = 0
 End If

 Return winner

 End Function

 Public Structure AIWin
 Dim difficulty As String
 Dim totalWins As Integer
 Dim totalGames As Integer
 End Structure

 Private Sub GetAIData()
 '*** Read data from CSV file and update within program ***
 Dim fileLines As New List(Of String)
 Dim reader As New StreamReader(fileName)
 Dim currentLine As String

 For row = 0 To 3
 currentLine = reader.ReadLine()
 If row = 0 Then
 fileHeaders = currentLine
 Else
 fileLines.Add(currentLine)
 Dim data As String() = fileLines(row - 1).Split(",")

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

50

 AIWins(row - 1).difficulty = data(0)
 AIWins(row - 1).totalWins = CInt(data(1))
 AIWins(row - 1).totalGames = CInt(data(2))
 End If
 Next

 If AIdepth = 1 Then
 If GetWinner() = 2 Then
 AIWins(0).totalWins += 1
 End If
 AIWins(0).totalGames += 1
 ElseIf AIdepth = 3 Then
 If GetWinner() = 2 Then
 AIWins(1).totalWins += 1
 End If
 AIWins(1).totalGames += 1
 ElseIf AIdepth = 5 Then
 If GetWinner() = 2 Then
 AIWins(2).totalWins += 1
 End If
 AIWins(2).totalGames += 1
 End If

 reader.Close()

 End Sub

 Private Sub UpdateAIData()
 '*** Write updated data to CSV ***
 Dim linesToWrite As New List(Of String)
 Dim writer As New StreamWriter(fileName)

 For i = 0 To 2
 linesToWrite.Add(AIWins(i).difficulty & "," & AIWins(i).totalWins & "," & AIWins(i).totalGames)
 Next

 For row = 0 To 3
 If row = 0 Then
 writer.WriteLine(fileHeaders)
 Else
 writer.WriteLine(linesToWrite(row - 1))
 End If
 Next

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

51

 writer.Close()

 End Sub

 Private Sub AskToEndOrReplayGame()
 Dim ExitGame As DialogResult

 ExitGame = MsgBox("Play again?", MsgBoxStyle.YesNo)
 If ExitGame = MsgBoxResult.Yes Then
 Hide()
 SetNewGame()
 DifficultySelect.Show()
 ElseIf ExitGame = MsgBoxResult.No Then
 Application.Exit()
 End If
 End Sub

 Private Function DoesNotOverwriteMove(ByVal verticalLine As Boolean, ByVal horizontalLine As Boolean, ByVal firstDotIndex As Integer)
 Dim falseFlag As Boolean = False

 If verticalLine Then
 For line = 0 To lines.Count - 1
 If lines(line).GetStartPos = dots(firstDotIndex).GetXY And lines(line).GetEndPos = dots(firstDotIndex + 1).GetXY Then
 falseFlag = True
 End If
 Next

 ElseIf horizontalLine Then
 For line = 0 To lines.Count - 1
 If lines(line).GetStartPos = dots(firstDotIndex).GetXY And lines(line).GetEndPos = dots(firstDotIndex + gridSize).GetXY Then
 falseFlag = True
 End If
 Next

 End If

 If falseFlag Then
 Return False

 Else Return True

 End If

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

52

 End Function

 Private Sub CheckLines(ByVal sender As Object, ByVal e As System.Windows.Forms.MouseEventArgs) Handles GameBoard.MouseClick
 Dim mouseCoords As New Point(e.X, e.Y)
 Dim errorRange As Integer = gapsize / 5 'Margin of error allowed for the user's mouse click
 Dim vertical As Boolean
 Dim horizontal As Boolean
 Dim validMove As Boolean
 Dim nextDotIndex As Integer
 Dim numOfBoxesToMake As Integer
 Dim TBox, BBox, LBox, RBox As Boolean
 Dim currentIndex As Integer
 Dim lineFound As Boolean
 Dim AIMove As Move

 For dotVal = 0 To (gridSize ^ 2) - 1
 vertical = False
 horizontal = False
 validMove = True
 numOfBoxesToMake = 0
 lineFound = False
 TBox = False
 BBox = False
 LBox = False
 RBox = False

 If playerTurn = 1 Then
 Try 'Check click correlates to a position
 If (mouseCoords.Y > dots(dotVal).GetY + errorRange And mouseCoords.Y < dots(dotVal + 1).GetY - errorRange) And ((mouseCoords.X
<= dots(dotVal).GetX And mouseCoords.X > dots(dotVal).GetX - errorRange) Or (mouseCoords.X >= dots(dotVal).GetX And mouseCoords.X <
dots(dotVal).GetX + errorRange)) Then
 vertical = True
 nextDotIndex = 1

 ElseIf (mouseCoords.X > dots(dotVal).GetX + errorRange And mouseCoords.X < dots(dotVal + gridSize).GetX - errorRange) And
((mouseCoords.Y <= dots(dotVal).GetY And mouseCoords.Y > dots(dotVal).GetY - errorRange) Or (mouseCoords.Y >= dots(dotVal).GetY And mouseCoords.Y <
dots(dotVal).GetY + errorRange)) Then
 horizontal = True
 nextDotIndex = gridSize

 End If

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

53

 Catch ex As Exception

 End Try

 ElseIf playerTurn = 2 Then

 If availableMoves.Count = 1 Then
 AIMove = availableMoves(0)
 If AIMove.GetOrientation = "H" Then
 horizontal = True
 Else vertical = True
 End If

 dotVal = CInt(AIMove.GetLeftName) - 1

 ElseIf availableMoves.Count > 1 Then
 ComputerMove(AIMove)
 If AIMove.GetOrientation = "H" Then
 horizontal = True
 Else vertical = True
 End If

 dotVal = CInt(AIMove.GetLeftName) - 1

 End If

 End If

 If DoesNotOverwriteMove(vertical, horizontal, dotVal) = False Then
 validMove = False

 End If

 If validMove And (horizontal Or vertical) Then

 If playerTurn = 1 Then
 lines.Add(New Move(dots(dotVal), dots(dotVal + nextDotIndex), 1))
 Else
 lines.Add(New Move(New Dot(AIMove.GetStartPos, AIMove.GetLeftName), New Dot(AIMove.GetEndPos, AIMove.GetRightName), 2))
 End If

 currentIndex = lines.Count - 1

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

54

 RemoveMove(availableMoves, lines, currentIndex)

 numOfBoxesToMake = CheckForBox(lines(currentIndex), lines, TBox, BBox, LBox, RBox)

 Select Case numOfBoxesToMake
 Case 1
 boxCount += 1
 Case 2
 boxCount += 2
 End Select

 If numOfBoxesToMake > 0 Then
 If horizontal Then

 CreateBoxH(lines(currentIndex).GetLeftName, lines(currentIndex).GetRightName, numOfBoxesToMake, TBox, BBox)

 ElseIf vertical Then

 CreateBoxV(lines(currentIndex).GetLeftName, lines(currentIndex).GetRightName, numOfBoxesToMake, LBox, RBox)

 End If
 End If
 SetPlayerTurn(numOfBoxesToMake)
 UpdateLabels()
 GameBoard.Refresh() 'Refreshes board to add newly drawn objects (lines, boxes)

 End If

 Next

 End Sub

 Private Sub SetPlayerTurn(ByVal numBoxes As Integer)
 If numBoxes = 0 Then
 If playerTurn = 1 Then
 playerTurn = 2
 Else playerTurn = 1

 End If
 Else
 If playerTurn = 1 Then

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

55

 P1Score = P1Score + numBoxes
 Else P2Score = P2Score + numBoxes

 End If

 End If
 End Sub

 Private Sub UpdateLabels()
 lbl_P1Score.Text = "Player 1" & vbCrLf & P1Score
 lbl_P2Score.Text = "Player 2" & vbCrLf & P2Score
 lbl_WhoseTurn.Text = "Player " & playerTurn & "'s turn"
 End Sub

 Private Sub RemoveMove(ByRef movesAvailable As List(Of Move), ByVal movesMade As List(Of Move), ByVal moveIndex As Integer)
 Dim lineFound As Boolean = False
 Dim removeIndex As Integer

 For Each line In movesAvailable
 If line.GetStartPos = movesMade(moveIndex).GetStartPos And line.GetEndPos = movesMade(moveIndex).GetEndPos Then
 removeIndex = movesAvailable.IndexOf(line)
 lineFound = True

 End If
 Next

 If lineFound Then
 movesAvailable.RemoveAt(removeIndex)
 End If
 End Sub

 Private Function BoxesMade(ByVal potentialMove As Move, ByVal movesList As List(Of Move))
 Return CheckForBox(potentialMove, movesList, Nothing, Nothing, Nothing, Nothing)

 End Function

 'direction 1 = up or left, direction 2 = down or right
 Private Function checkNumLines(ByVal potentialMove As Move, ByVal movesList As List(Of Move), ByVal direction As Integer)
 Dim lineL, lineR, lineB, lineA As Boolean
 Dim currentLineName As String
 Dim currentLineLeftPart, currentLineRightPart As Integer

 currentLineName = potentialMove.GetLineName

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

56

 currentLineLeftPart = potentialMove.GetLeftName
 currentLineRightPart = potentialMove.GetRightName

 If potentialMove.GetOrientation = "H" And direction = 2 Then
 If (currentLineLeftPart Mod gridSize) <> 0 Then
 For Each line In movesList
 If currentLineLeftPart = line.GetLeftName And currentLineRightPart = line.GetRightName + (gridSize - 1) Then
 lineL = True
 ElseIf currentLineLeftPart = line.GetLeftName - gridSize And currentLineRightPart = line.GetRightName - 1 Then
 lineR = True
 ElseIf currentLineLeftPart = line.GetLeftName - 1 And currentLineRightPart = line.GetRightName - 1 Then
 lineB = True
 End If
 Next
 End If

 If lineL And lineR And lineB Then
 Return 0
 ElseIf (lineL And lineR And Not lineB) Or (lineL And lineB And Not lineR) Or (lineR And lineB And Not lineL) Then
 Return 3
 ElseIf (lineL And Not (lineR Or lineB)) Or (lineR And Not (lineL Or lineB)) Or (lineB And Not (lineL Or lineR)) Then
 Return 2
 Else Return 1
 End If

 lineL = False
 lineR = False

 ElseIf potentialMove.GetOrientation = "H" And direction = 1 Then
 If currentLineLeftPart Mod gridSize <> 1 Then
 For Each line In movesList
 If currentLineLeftPart = line.GetLeftName + 1 And currentLineRightPart = line.GetRightName + gridSize Then
 lineL = True
 ElseIf currentLineLeftPart = line.GetLeftName - (gridSize - 1) And currentLineRightPart = line.GetRightName Then
 lineR = True
 ElseIf currentLineLeftPart = line.GetLeftName + 1 And currentLineRightPart = line.GetRightName + 1 Then
 lineA = True
 End If
 Next
 End If

 If lineL And lineR And lineA Then

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

57

 Return 0
 ElseIf (lineL And lineR And Not lineA) Or (lineL And lineA And Not lineR) Or (lineR And lineA And Not lineL) Then
 Return 3
 ElseIf (lineL And Not (lineR Or lineA)) Or (lineR And Not (lineL Or lineA)) Or (lineA And Not (lineL Or lineR)) Then
 Return 2
 Else Return 1
 End If

 ElseIf potentialMove.GetOrientation = "V" And direction = 2 Then
 If currentLineLeftPart < (gridSize ^ 2) - gridSize Then
 For Each line In movesList
 If currentLineLeftPart = line.GetLeftName - 1 And currentLineRightPart = line.GetRightName - gridSize Then
 lineB = True
 ElseIf currentLineLeftPart = line.GetLeftName And currentLineRightPart = line.GetRightName - (gridSize - 1) Then
 lineA = True
 ElseIf currentLineLeftPart = line.GetLeftName - gridSize And currentLineRightPart = line.GetRightName - gridSize Then
 lineR = True
 End If
 Next
 End If

 If lineB And lineA And lineR Then
 Return 0
 ElseIf (lineB And lineA And Not lineR) Or (lineB And lineR And Not lineA) Or (lineR And lineA And Not lineB) Then
 Return 3
 ElseIf (lineB And Not (lineA Or lineR)) Or (lineR And Not (lineA Or lineB)) Or (lineA And Not (lineL Or lineB)) Then
 Return 2
 Else Return 1
 End If

 lineA = False
 lineB = False

 ElseIf potentialMove.GetOrientation = "V" And direction = 1 Then
 If currentLineLeftPart > gridSize Then
 For Each line In movesList
 If currentLineLeftPart = line.GetLeftName + (gridSize - 1) And currentLineRightPart = line.GetRightName Then
 lineB = True
 ElseIf currentLineLeftPart = line.GetLeftName + gridSize And currentLineRightPart = line.GetRightName + 1 Then
 lineA = True
 ElseIf currentLineLeftPart = line.GetLeftName + gridSize And currentLineRightPart = line.GetRightName + gridSize Then
 lineL = True
 End If

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

58

 Next
 End If

 If lineA And lineB And lineL Then
 Return 0
 ElseIf (lineA And lineB And Not lineL) Or (lineB And lineL And Not lineA) Or (lineL And lineA And Not lineB) Then
 Return 3
 ElseIf (lineB And Not (lineA Or lineL)) Or (lineL And Not (lineA Or lineB)) Or (lineA And Not (lineL Or lineB)) Then
 Return 2
 Else Return 1
 End If

 End If

 End Function

 Private Function CheckForBox(ByVal potentialMove As Move, ByVal movesList As List(Of Move), ByRef TBox As Boolean, ByRef BBox As Boolean, ByRef
LBox As Boolean, ByRef RBox As Boolean)
 Dim currentLineName As String
 Dim currentLineLeftPart, currentLineRightPart As Integer
 Dim lineL, lineR, lineB, lineA As Boolean
 Dim numOfBoxesToBeMadeH, numOfBoxesToBeMadeV As Integer

 currentLineName = potentialMove.GetLineName
 currentLineLeftPart = potentialMove.GetLeftName
 currentLineRightPart = potentialMove.GetRightName

 If potentialMove.GetOrientation = "H" Then
 If (currentLineLeftPart Mod gridSize) <> 0 Then
 For Each line In movesList
 If currentLineLeftPart = line.GetLeftName And currentLineRightPart = line.GetRightName + (gridSize - 1) Then
 lineL = True
 ElseIf currentLineLeftPart = line.GetLeftName - gridSize And currentLineRightPart = line.GetRightName - 1 Then
 lineR = True
 ElseIf currentLineLeftPart = line.GetLeftName - 1 And currentLineRightPart = line.GetRightName - 1 Then
 lineB = True
 End If
 Next
 End If

 If lineL And lineR And lineB Then
 numOfBoxesToBeMadeH += 1
 BBox = True

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

59

 End If

 lineL = False
 lineR = False

 If currentLineLeftPart Mod gridSize <> 1 Then
 For Each line In movesList
 If currentLineLeftPart = line.GetLeftName + 1 And currentLineRightPart = line.GetRightName + gridSize Then
 lineL = True
 ElseIf currentLineLeftPart = line.GetLeftName - (gridSize - 1) And currentLineRightPart = line.GetRightName Then
 lineR = True
 ElseIf currentLineLeftPart = line.GetLeftName + 1 And currentLineRightPart = line.GetRightName + 1 Then
 lineA = True
 End If
 Next
 End If

 If lineL And lineR And lineA Then
 numOfBoxesToBeMadeH += 1
 TBox = True
 End If

 If numOfBoxesToBeMadeH > 0 Then
 Return numOfBoxesToBeMadeH

 End If

 ElseIf potentialMove.GetOrientation = "V" Then

 If currentLineLeftPart < (gridSize ^ 2) - gridSize Then
 For Each line In movesList
 If currentLineLeftPart = line.GetLeftName - 1 And currentLineRightPart = line.GetRightName - gridSize Then
 lineB = True
 ElseIf currentLineLeftPart = line.GetLeftName And currentLineRightPart = line.GetRightName - (gridSize - 1) Then
 lineA = True
 ElseIf currentLineLeftPart = line.GetLeftName - gridSize And currentLineRightPart = line.GetRightName - gridSize Then
 lineR = True
 End If
 Next
 End If

 If lineA And lineB And lineR Then
 numOfBoxesToBeMadeV += 1

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

60

 RBox = True
 End If

 lineA = False
 lineB = False

 If currentLineLeftPart > gridSize Then
 For Each line In movesList
 If currentLineLeftPart = line.GetLeftName + (gridSize - 1) And currentLineRightPart = line.GetRightName Then
 lineB = True
 ElseIf currentLineLeftPart = line.GetLeftName + gridSize And currentLineRightPart = line.GetRightName + 1 Then
 lineA = True
 ElseIf currentLineLeftPart = line.GetLeftName + gridSize And currentLineRightPart = line.GetRightName + gridSize Then
 lineL = True
 End If
 Next
 End If

 If lineA And lineB And lineL Then
 numOfBoxesToBeMadeV += 1
 LBox = True

 End If
 If numOfBoxesToBeMadeV > 0 Then
 Return numOfBoxesToBeMadeV

 End If

 If numOfBoxesToBeMadeH = 0 And numOfBoxesToBeMadeV = 0 Then
 Return 0
 End If

 TBox = False
 BBox = False
 RBox = False
 LBox = False

 End If
 End Function

 Public Sub SetNewGame()
 Dim AIFirstMove As Move

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

61

 Dim listIndex As Integer

 P1Score = 0
 P2Score = 0
 lines.Clear()
 boxes.Clear()
 dots.Clear()
 availableMoves.Clear()
 boxCount = 0
 playerTurn = Int((2 * Rnd()) + 1) 'Randomise which player starts by generating a number between 1 and 2
 UpdateLabels()

 SetGridSize()
 CreateGameGrid()

 For dot = 0 To dots.Count - 1
 If dots(dot).GetID Mod gridSize <> 0 Then
 availableMoves.Add(New Move(dots(dot), dots(dot + 1), 0))
 End If

 If dots(dot).GetID <= ((gridSize ^ 2) - gridSize) Then
 availableMoves.Add(New Move(dots(dot), dots(dot + gridSize), 0))
 End If

 Next

 If playerTurn = 2 Then
 listIndex = Int((availableMoves.Count - 1) * Rnd()) 'Gets a random first move for the AI player if the AI player is selected to go
first
 AIFirstMove = availableMoves(listIndex)
 lines.Add(New Move(New Dot(AIFirstMove.GetStartPos, AIFirstMove.GetLeftName), New Dot(AIFirstMove.GetEndPos, AIFirstMove.GetRightName),
2))
 RemoveMove(availableMoves, lines, lines.Count - 1)
 SetPlayerTurn(0)
 UpdateLabels()
 End If

 GameBoard.Refresh()
 End Sub

 Private Sub SetAIDepth()
 AIdepth = DifficultySelect.AILevels
 End Sub

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

62

 Private Sub CreateBoxH(ByVal currentLineLeftPart As Integer, ByVal currentLineRightPart As Integer, ByVal numOfBoxesToBeMade As Integer, ByVal
TBox As Boolean, ByVal BBox As Boolean)
 Dim upperLineName As String
 Dim upperLineStart As Point
 Dim upperLineEnd As Point

 For n = 1 To numOfBoxesToBeMade
 If TBox And BBox And numOfBoxesToBeMade > 1 Then
 BBox = False
 End If

 If TBox Then
 upperLineName = (currentLineLeftPart - 1).ToString & "-" & (currentLineRightPart - 1).ToString

 ElseIf BBox Then
 upperLineName = currentLineLeftPart.ToString & "-" & currentLineRightPart.ToString

 End If

 For Each line In lines
 If line.GetLineName = upperLineName Then
 upperLineStart = line.GetStartPos
 upperLineEnd = line.GetEndPos
 End If
 Next

 boxes.Add(New Box(upperLineStart, upperLineEnd, playerTurn, numOfBoxesToBeMade))
 TBox = False
 BBox = True
 Next

 End Sub

 Private Sub CreateBoxV(ByVal currentLineLeftPart As Integer, ByVal currentLineRightPart As Integer, ByVal numOfBoxesToBeMade As Integer, ByVal
LBox As Boolean, ByVal RBox As Boolean)
 Dim upperLineName As String
 Dim upperLineStart As Point
 Dim upperLineEnd As Point

 For n = 1 To numOfBoxesToBeMade
 If LBox And RBox And numOfBoxesToBeMade > 1 Then

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

63

 RBox = False
 End If

 If RBox Then
 upperLineName = currentLineLeftPart.ToString & "-" & (currentLineRightPart + (gridSize - 1)).ToString

 ElseIf LBox Then
 upperLineName = (currentLineLeftPart - gridSize).ToString & "-" & (currentLineRightPart - 1).ToString

 End If

 For Each line In lines
 If line.GetLineName = upperLineName Then
 upperLineStart = line.GetStartPos
 upperLineEnd = line.GetEndPos
 End If
 Next

 boxes.Add(New Box(upperLineStart, upperLineEnd, playerTurn, numOfBoxesToBeMade))
 LBox = False
 RBox = True
 Next

 End Sub

 Private Sub Game_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 Randomize()
 Hide()
 DifficultySelect.Show()
 GetAIData()
 End Sub

 Private Sub HideOnStartup(sender As Object, e As EventArgs) Handles Me.Shown
 Me.Visible = False
 End Sub

 Private Function Heuristic(ByVal potentialMove As Move, ByVal movesMade As List(Of Move)) 'Used within minimax to determine the score of any
given move
 Dim score As Integer

 If BoxesMade(potentialMove, movesMade) > 0 Then
 If BoxesMade(potentialMove, movesMade) = 2 Then
 score += 500

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

64

 ElseIf BoxesMade(potentialMove, movesMade) = 1 Then
 score += 250
 End If
 End If

 'Checks for the number of lines around proposed move
 For direction = 1 To 2 'Checks above and below/left and right a proposed move
 If checkNumLines(potentialMove, movesMade, direction) = 2 Then
 score += 100
 ElseIf checkNumLines(potentialMove, movesMade, direction) = 3 And BoxesMade(potentialMove, movesMade) = 0 Then
 score -= 500
 ElseIf checkNumLines(potentialMove, movesMade, direction) = 3 And BoxesMade(potentialMove, movesMade) = 1 Then 'Checks boxes can be
made consecutively, giving a score equivalent to acquiring 2 boxes simultaneously
 score += 250
 End If
 Next

 Return score

 End Function

 Private Function Minimax(ByVal player As Integer, ByVal depth As Integer, ByVal movesMade As List(Of Move), ByVal movesAvailable As List(Of
Move), ByVal currentMove As Move, ByRef bestMove As Move, ByVal alpha As Integer, ByVal beta As Integer)
 Dim tempGameState As List(Of Move)
 Dim tempAvailableMoves As List(Of Move)
 Dim score As Integer
 Dim greatest As Integer
 Dim tempPresentMove As Move
 Dim moveIndex As Integer
 Dim moveToReturn As Move

 'Creates temporary board states for searching a particular game route, which are passed in with each recursive call
 tempGameState = movesMade
 tempAvailableMoves = movesAvailable

 If depth = 0 Or tempAvailableMoves.Count = 1 Then 'If the depth reaches the given max depth or there is only one move left on the board
(end game state), it will return this move score back up the minimax
 If tempAvailableMoves.Count = 1 Then 'returns whatever move is left if this is the last available move
 Return Heuristic(tempAvailableMoves(0), tempGameState)

 Else 'returns score of leaf node passed in if depth reaches limit
 Return Heuristic(currentMove, tempGameState)

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

65

 End If
 End If

 If player = 2 Then 'Maximising
 greatest = -999999

 For i = 0 To tempAvailableMoves.Count - 1
 score = 0
 tempPresentMove = tempAvailableMoves(i)
 tempGameState.Add(New Move(New Dot(tempPresentMove.GetStartPos, tempPresentMove.GetLeftName), New Dot(tempPresentMove.GetEndPos,
tempPresentMove.GetRightName), 2))
 moveIndex = tempGameState.Count - 1
 RemoveMove(tempAvailableMoves, tempGameState, moveIndex)
 If depth > 1 Then
 score = Heuristic(tempPresentMove, tempGameState)
 End If

 If BoxesMade(tempPresentMove, tempGameState) >= 1 Then 'If 1+ box is made this player gets another turn; is added to cumulative
score for this same depth
 If score = 0 Then
 score = Heuristic(tempPresentMove, tempGameState)
 End If
 score += Minimax(2, depth, tempGameState, tempAvailableMoves, tempPresentMove, bestMove, alpha, beta)
 Else score += Minimax(1, depth - 1, tempGameState, tempAvailableMoves, tempPresentMove, bestMove, alpha, beta)
 End If

 tempAvailableMoves.Insert(i, tempPresentMove)
 tempGameState.RemoveAt(moveIndex)

 If score > greatest Then
 greatest = score
 moveToReturn = tempPresentMove
 End If

 If greatest > alpha Then
 alpha = greatest
 End If

 If beta <= alpha Then
 Exit For
 End If

 Next

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

66

 If depth = AIdepth And currentMove Is Nothing Then 'returns ideal move out by reference on the uppermost depth (representing the next
move in the real game)

 bestMove = moveToReturn

 End If

 Return greatest

 ElseIf player = 1 Then 'Minimising
 greatest = 999999

 For i = 0 To tempAvailableMoves.Count - 1
 score = 0
 tempPresentMove = tempAvailableMoves(i)
 tempGameState.Add(New Move(New Dot(tempPresentMove.GetStartPos, tempPresentMove.GetLeftName), New Dot(tempPresentMove.GetEndPos,
tempPresentMove.GetRightName), 1))
 moveIndex = tempGameState.Count - 1
 RemoveMove(tempAvailableMoves, tempGameState, moveIndex)
 If depth > 1 Then
 score = Heuristic(tempPresentMove, tempGameState)
 End If
 If BoxesMade(tempPresentMove, tempGameState) >= 1 Then
 If score = 0 Then
 score = Heuristic(tempPresentMove, tempGameState)
 End If
 score += Minimax(1, depth, tempGameState, tempAvailableMoves, tempPresentMove, bestMove, alpha, beta)
 Else score += Minimax(2, depth - 1, tempGameState, tempAvailableMoves, tempPresentMove, bestMove, alpha, beta)
 End If

 tempAvailableMoves.Insert(i, tempPresentMove) 'adds moves back to the available moves once one possible route has been searched
 tempGameState.RemoveAt(moveIndex) 'removes temporary moves made on the temporary board state once a route has been searched

 If score < greatest Then
 greatest = score
 moveToReturn = tempPresentMove
 End If

 If greatest < beta Then
 beta = greatest
 End If

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

67

 If beta <= alpha Then
 Exit For
 End If

 Next

 Return greatest

 End If

 End Function

 Private Sub ComputerMove(ByRef bestMove As Move)
 Dim temp As Move
 Minimax(2, AIdepth, lines, availableMoves, temp, bestMove, -999999, 999999) 'Initial minimax call. Will determine AI move, passing it out
of the minimax by reference with parameter bestMove
 End Sub

 Private Sub btn_Back_Click(sender As Object, e As EventArgs) Handles btn_Back.Click
 Hide()
 DifficultySelect.Show()
 End Sub

 Private Sub btn_Exit_Click(sender As Object, e As EventArgs) Handles btn_Exit.Click
 Application.Exit()
 End Sub
End Class

Class Dot
 Private xCoord As Integer
 Private yCoord As Integer
 Private xyCoords As Point
 Private id As String

 Public Sub New(ByVal location As Point, ByVal DotID As String)
 xCoord = location.X
 yCoord = location.Y
 xyCoords = location
 id = DotID
 End Sub

 Public Function GetX()
 Return xCoord

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

68

 End Function

 Public Function GetID()
 Return id
 End Function

 Public Function GetY()
 Return yCoord
 End Function

 Public Function GetXY()
 Return xyCoords
 End Function

End Class

Class Move
 Private firstXY As Point
 Private lastXY As Point
 Private name As String
 Private player As Integer

 Public Sub New(ByVal firstDot As Dot, ByVal lastDot As Dot, whichPlayer As Integer)
 firstXY = firstDot.GetXY
 lastXY = lastDot.GetXY
 name = firstDot.GetID & "-" & lastDot.GetID
 player = whichPlayer

 End Sub

 Public Function GetLineColour()
 If player = 1 Then
 GetLineColour = Color.Red
 ElseIf player = 2 Then
 GetLineColour = Color.DodgerBlue
 End If
 End Function

 Public Function GetStartPos()
 Return firstXY
 End Function

 Public Function GetEndPos()

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

69

 Return lastXY
 End Function

 Function GetLineName()
 Return name
 End Function

 Public Function GetLeftName()
 Return CInt(name.Split("-")(0))
 End Function

 Public Function GetRightName()
 Return CInt(name.Split("-")(1))
 End Function

 Public Function GetOrientation()
 If GetRightName() = GetLeftName() + 1 Then
 Return "V"
 Else Return "H"
 End If
 End Function

End Class

Class Box
 Private boxRoofStartCoords As Point
 Private boxRoofEndCoords As Point
 Private player As Integer
 Private numBoxesToLabel As Integer
 Private labelCoords As Point

 Public Sub New(ByVal upperLineStartCoords As Point, ByVal upperLineEndCoords As Point, ByVal whoseTurn As Integer, ByVal howManyBoxes As
Integer)
 boxRoofStartCoords = upperLineStartCoords
 boxRoofEndCoords = upperLineEndCoords
 player = whoseTurn
 numBoxesToLabel = howManyBoxes
 End Sub

 Public Function SetLabelPosition()
 labelCoords.X = (boxRoofStartCoords.X + boxRoofEndCoords.X) / 2
 labelCoords.Y = boxRoofStartCoords.Y + (labelCoords.X - boxRoofStartCoords.X)

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

70

 Return labelCoords
 End Function

 Public Function GetLabelTextColour()
 If player = 1 Then
 GetLabelTextColour = Color.Red
 ElseIf player = 2 Then
 GetLabelTextColour = Color.Blue
 End If
 End Function

 Public Function GetLabelText() As String
 If player = 1 Then
 GetLabelText = "P1"
 ElseIf player = 2 Then
 GetLabelText = "P2"
 End If
 End Function

End Class

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

71

AI Stats Form (Handling Display of AI Data)
This form is used to review total AI scores. It makes use of a listbox to store headings and values and pulls the values from the AIWins structure in the main
form (which takes/stores data in CSV). It additionally calculates the total win rate using the total wins and total games for each difficulty level.

Public Class AIStats
 Private strFormat As String = "{0, -14}{1, -14}{2, -14}{3, -14}" 'String format that lays out the headings and values clearly

 Private Sub AIStats_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 UpdateListbox()
 End Sub

 Private Sub UpdateItems()
 Dim winRate As String

 For row = 0 To 2
 winRate = CStr(CalcWinRate(Game.AIWins(row).totalWins, Game.AIWins(row).totalGames)) & "%"
 lst_Stats.Items.Add(String.Format(strFormat, Game.AIWins(row).difficulty, Game.AIWins(row).totalWins, Game.AIWins(row).totalGames,
winRate))
 Next
 End Sub

 Private Function CalcWinRate(ByVal numWins As Integer, ByVal numGames As Integer)
 Dim rate As Decimal
 Dim final As Integer
 If numWins = 0 Then
 final = 0
 Else
 rate = (numWins / numGames) * 100
 final = Math.Round(rate, 0)
 End If
 Return final
 End Function

 Private Sub btn_Back_Click(sender As Object, e As EventArgs) Handles btn_Back.Click
 Hide()
 DifficultySelect.Show()
 End Sub

 Private Sub UpdateListbox()
 lst_Stats.Items.Add(String.Format(strFormat, "Difficulty", "Total Wins", "Total Games", "Win Rate"))
 UpdateItems()
 End Sub

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

72

 Private Sub btn_Refresh_Click(sender As Object, e As EventArgs) Handles btn_Refresh.Click
 lst_Stats.Items.Clear()
 UpdateListbox()
 End Sub

 Private Sub IfClosed(ByVal sender As Object, ByVal e As System.ComponentModel.CancelEventArgs) Handles MyBase.Closing 'Completely closes
program if X is clicked and asks user to confirm
 DifficultySelect.Show()
 End Sub
End Class

Difficulty Select Form (Startup Form)
This form is the first form the user is presented with upon loading the program. The buttons correlate to the number of depth levels the minimax will use as
the maximum depth and sets this in the main form. It also prepares the correct grid size using a combo box, presenting a 4x4, 5x5 or 6x6 grid to the user back
in the main form depending on the option selected by the user.

Public Class DifficultySelect
 Public AILevels As Integer
 Public gridDimension As Integer

 Private Sub btn_Easy_Click(sender As Object, e As EventArgs) Handles btn_Easy.Click
 AILevels = 1
 GetGridSize()
 If cmb_GridSize.Items.Contains(cmb_GridSize.Text) = True Then
 Game.SetNewGame()
 Hide()
 Game.Show()
 Else
 MsgBox("Please select a valid grid size")
 End If
 End Sub

 Private Sub btn_Medium_Click(sender As Object, e As EventArgs) Handles btn_Medium.Click
 AILevels = 3
 GetGridSize()
 If cmb_GridSize.Items.Contains(cmb_GridSize.Text) = True Then
 Game.SetNewGame()
 Hide()
 Game.Show()
 Else

Candidate No.: 9665 Name: Taren Collyer Godalming College Centre No.: 64395

73

 MsgBox("Please select a valid grid size")
 End If
 End Sub

 Private Sub btn_Hard_Click(sender As Object, e As EventArgs) Handles btn_Hard.Click
 AILevels = 5
 GetGridSize()
 If cmb_GridSize.Items.Contains(cmb_GridSize.Text) = True Then
 Game.SetNewGame()
 Hide()
 Game.Show()
 Else
 MsgBox("Please select a valid grid size")
 End If
 End Sub

 Private Sub btn_ViewAIScores_Click(sender As Object, e As EventArgs) Handles btn_ViewAIScores.Click
 Hide()
 AIStats.Show()

 End Sub

 Private Sub IfClosed(ByVal sender As Object, ByVal e As System.ComponentModel.CancelEventArgs) Handles MyBase.Closing 'Completely closes
program if X is clicked and asks user to confirm
 Application.Exit()
 End Sub

 Private Sub btn_Exit_Click(sender As Object, e As EventArgs) Handles btn_Exit.Click
 Application.Exit()
 End Sub

 Private Sub GetGridSize()
 If cmb_GridSize.SelectedItem = "4x4" Then
 gridDimension = 4
 ElseIf cmb_GridSize.SelectedItem = "5x5" Then
 gridDimension = 5
 ElseIf cmb_GridSize.SelectedItem = "6x6" Then
 gridDimension = 6
 End If
 End Sub

End Class

