
Jonathan Maud Candidate Number: 0154 Centre Number: 64395

1

Game of Life
Non-Examined Assessment
Jonathan Maud

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

2

Table of Contents
Introduction .. 5

Notes from Interview .. 5

What is the Proposal? ... 5

Initial Research ... 6

Forms of Teaching Methods ... 6

John Horton Conway’s Game of Life ... 9

Conclusion ... 10

Potential User ... 11

What my Program should include? ... 11

Problems when programing the project ... 11

Solution ... 11

Background of Problem .. 11

Flowchart of Single Cell: .. 11

The Simulation .. 11

Data Storage .. 12

Survey .. 12

What can be added to my project? .. 12

Requirements ... 14

Success Criteria ... 14

Time Plan ... 15

Design ... 16

User Interface ... 16

Flowchart showing interactivity: ... 18

Flow Charts: .. 20

Generate Population Flowchart .. 20

Rules of the Game Flowchart: ... 21

IPSO Chart: .. 22

UML Class Diagram: .. 22

Pseudo code .. 24

High Level Flowchart ... 26

Implementation .. 27

Screen Shots of the Implementation Process ... 27

Testing orientation of x and y coordinates ... 27

Correcting the x and y coordinates in early testing. ... 27

First working prototype .. 33

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

3

Changing the Visual Speed Output ... 35

Moving the project to Forms: ... 37

Input Method .. 41

Adding this to my solution .. 42

Simplifies Output .. 45

Integrating the Input Routine ... 47

Finished Base Code ... 49

Technical Solution ... 56

Prototyping the Stop Button by using timer function .. 59

Adding Functionality to Exit Button .. 59

Speed Variations ... 61

File Handling Prototype .. 62

Reset Button ... 65

Testing for robustness with exceptional data ... 66

Intermediate Stage Feedback ... 68

Prototyping the Stamp Function ... 69

Prototyping the Stamp Tool .. 70

Presets ... 71

Adding New Preset 2 ... 73

Adding New Preset 3 ... 74

Adding New Preset 4 ... 75

Adding New Preset 5 ... 76

Adding New Preset 6 ... 77

Object Orientated Code .. 78

End User Testing ... 83

Testing .. 88

GUI Testing Table .. 88

Beta Testing .. 93

Beta Testing Result ... 94

Evalutaion ... 95

What went well: .. 95

End User Sign Off .. 95

Feedback/ Evidence .. 95

Evaluation of Success Criteria ... 96

What I would change if I was to do this again: ... 101

Future development ... 101

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

4

Conclusion ... 102

Appendix: Full Code Listing ... 103

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

5

Introduction
In order to do this project, I began by asking my friends and family if they had any problems suitable
for me to investigate and possibly solve. However, none of them were very helpful and so I
expanded my search. Eventually my brother Sebastian Maud told me of a project that he thought I
might be interested in. Sebastian attends my old school and is currently in year 11.

Sebastian told me that his biology teacher has been speaking to him about the fact that his GCSE
students where finding it hard to understand how environmental factors might affect the growth or
decline of an organism. I felt that I might be able to help and so I arranged to have an initial meeting
with Mr Watson so that I could clarify the problem. In order to help me I took notes displayed below.

Notes from Interview-

Me: “Thank You for seeing me Mr Watson, I believe there is a problem you
discussed with my brother”

Mr Watson: “Yes. My Year 11 Students are finding it difficult to visualise
how environmental effects can shape a collection of organisms over time. My
top students have it, but I have a number of visual learners in my class
who I would like to engage with more fully. I used to have a simulation on
VHS video, but since the upgrade in systems my VHS player no longer can
connect with the new system.”

Me: “Could you describe the contents of the video?”

Mr Watson: “Sure, it was very good. It consists of time lapses showing the
growth of bacteria on a pond. In the first instance the environmental
factors are in favour of the bacteria to too greater level, and the
bacteria chokes the ecosystem. In the second instance a retardant is added
to the surface of the pond halfway through, this inhibits the growth of the
bacteria and therefore allows other life forms to flourish. In this case
the growth of the bacteria was slow enough for other pond life to feed on
it before choked the pond and the bacteria disappeared. In the third
instance the environmental conditions inhibited growth to just the right
amount to provide a balance in the ecology, and this meant that both the
bacteria and the pond life survived.”

Me: “I am doing a project and I think I might be able to model something
similar on a computer program would that be of interest to you?”

Mr Watson: “Yes, that would be great.”

Me: “Ok, I will look at possible solutions for you, and get back to you.”

I felt that this problem had the potential to be a suitable project, and so I investigated it further.

What is the Proposal?

My Project will be used to help teach the growth of bacteria to students. I will create a program that
will simulate the growth of cells abiding by the rules that the teacher has decided. Presently, there
are very few simulations that exist with the same rules, but don’t give anywhere near the amount of
detail. The Year 11 students will be able to visually study the growth of cells in a certain area. The
simulation will give the students a much more interactive visual way to help the students that prefer
to learn in that way. When the program is completed Mr Watson should be able to teach the topic
more easily and that will lead to improved grades within his classes.

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

6

Initial Research
Forms of Teaching Methods
The first thing I did was to see how this problem has been solved before. (i.e. to help students
understand growth and decline in an environmental setting.)

 1- BBC Bitesize discuss reproduction but only on a cellular level. They did not consider multiple
organisms and how these may interact.

Figure 1: Reproduction as explained by Bitesize

 2-Crash Course (YouTube Channel) this channel specialises in providing video for school children on
various topics. The content is good and relevant however there are no animations and so would not
appeal to Mr Watson’s students.

 https://www.youtube.com/watch?v=izRvPaAWgyw&list=PL3EED4C1D684D3ADF&index=40

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

7

 3-Role Play I researched other methods of teaching this topic and I understood that a method
sometimes used inside the classroom is role-play. In this method members of the class are assigned
various roles or personas which is reflective of the topic being explained. Students then interact in a
way that mimic the topic being taught. This will be very good for end user’s students visual learning,
however I have discovered a number of limitations. Number one: most of the resources on the
internet for this type of activity are aimed at primary school children and therefore would be
unlikely to engage a year 11 student. Number two: the type of knowledge that Mr Watson was
describing related to large scale patterns comprised of tiny organisms. Such patterns would require
thousands or millions of components and therefore would be hard to demonstrate using a handful
of students.

4-Use of TextBooks

Figure 2: AQA GCSE Biology Student Book Ann Fullick

I surveyed all of the popular GCSE biology textbooks. The closest thing that I found to what Mr
Watson described is shown in figure 2. As can been seen from the screen shot the mechanism of

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

8

mitosis is clearly described using key words, but a visual learner may find it difficult to understand or
remember the information.

5 The Internet -Next I searched the internet for resources that might help me solve this problem. I
came across this company that specialise in creating time-lapse photography, but when I checked
their prices they started at £1000 which is far too high for an educational establishment.

https://www.solutions.co.uk/video-services/time-lapse-
photography/?gclid=CjwKCAjwq4fsBRBnEiwANTahcGlDb16gZTxbsRrBjb27een8bUGlWz3C74HigMDTbSxJaUQCZ-nb7RoCLIsQAvD_BwE

6-Existing Computer Programs. Next I searched for a computer program that would simulate
bacteria growth. The best result that I found is shown in figure 3. This model was developed by the
University of Birmingham. I was very impressed with the visual interface and this seemed to be
exactly what my end user needed. However, I felt that the interface was too complex for my end
user, and the program would require complex configuration and input.

 Figure 3
http://www.mybiosoftware.com/bacsim-simulator-bacterial-growth.html

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

9

John Horton Conway’s Game of Life
As I was looking at modern programs which simulated bacterial growth I came across a reference to
John Conway’s Game of Life. Conway discovered ‘The Game of Life’ in 1970. It works by applying a
few simple rules to a series of cells, and then stepping the solution through a number of iterations or
‘generations’. The results were a pattern that seemd to have a life of it’s own, hence the name. The
rules of ‘The Game of Life’ are as follows:

1. If the cell has less that two neighbouring cells it will die (from loneliness)
2. If the cell has two or three neighbour it carries on living to the next generation
3. If the cell has more than three cells neighbouring it the cell will die (from overcrowding)
4. If a space has exactly three neighbours then it will be come to life

 What Conway discovered has been studied ever since. Evolving patterns, not obvious from initial
conditions. Some patters would die out, some patterns would find an equilibrium, and some would
remain unstable. Over time, elements within the game have been identified and named. Some of
these are shown below

Examples of Patterns

Still Life

Oscillators

Spaceship

Example of very complex life like patterns which are created from these simple patterns can be
found on You Tube, for example

https://www.youtube.com/watch?v=C2vgICfQawE

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

10

Conclusion
Throughout my research I came across a lot of resources that would be useful to a year 11 biology
student. I was impressed by the clarity of diagram of BBC Bitesize. The book by Anne Fullick was full
of keywords and written descriptions. The YouTube video was good but probably better for a
student who preferred auditory learning. Finally, the computer program had excellent graphics but
was too hard for GCSE level.
I found John Horton Conway’s Game of Life very interesting as it displays the generation of cells
using only four simple rules. Biological systems often have simple rules affecting growth, such as
phototropism and geotropism, and yet from those simple rules complexity can develop. I felt that
‘The Game of Life’ therefore would offer an excellent basis from which to develop a computerised
solution to my problem. I therefore decided to use this as a basis for my project and to include all
the best features from the other resources that I have reviewed into a single computer program.

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

11

My Game of Life project aims to help Mr Watson to teach the regeneration of cells to year 11
students studying GCSE Biology. Some of his students find it difficult to learn using the currently
available resources. My interactive simulation should increase engagement, allowing these students
to be able to learn by visual and kinaesthetic means.

Potential User
My project is targeted specifically at Mr Watson (see Introduction) as well as any other Biology
teacher that would like a visual and interactive teaching aid that demonstrates the regeneration of
cells.

What my Program should include?
My project is going to be used inside the classroom and so needs to be visually appealing as well as
simple to use so that it can retain students’ attention. It should allow interactively, which will allow
students to feel more part of the process and should improve learner engagement.

The interactivity should allow students to be able to choose where to place the cells and then
observe the growth or decline of the organism. The idea is that a few simple rules applied to a
random system can produce complex outcomes.

Problems when programing the project
- The visual simulation
- Accurate interactive
- Being Visually intriguing

Solution
My project will interact with the student and teacher and allow input via an intuitive user interface.
Ther should be no noticeable delay time so that the class’ attention does not become distracted.

Background of Problem
My brother’s Biology teacher has been speaking to him about the fact that his GCSE students where
finding it hard to understand how environmental factors might affect the growth or decline of an
organism and so I needed to create a simulation that displays the growth and decay of cells.

Flowchart of Single Cell:

The Simulation
My project has to simulate the topic being taught in the classroom. Iit is essential that it is usable
and useful for the year 11 students in the classroom. It should simulate the life cycle of a cell. It

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

12

should display how the cells grow over time in an animation. The simulation should be interactive
and have rapid response in order to facilitate understanding.

Data Storage

One of the features for my project is that the students will be able to save, store and load pre
prepared patterns. I will use stream writer to save and load data between the program and a text
file.

Survey
During my visit to Mr Watson’s class I performed a piloted study. I performed a group interview of
five of his students to help me with my design. I have selected some of the group answers below.

How useful would my project be to your learning experience?

Student: “It will give me a mental break from all the reading we
have to do in lessons while still learning the topics at hand”

Student: “It will help a lot as I am very much a visual and physical
learner so your program will allow me to be able to learn with more
ease”

What Key aspects of the code must the program have?

Student: “It must be easy to use”

Mr Watson: “It must be able to engage the class in order to maximise
its use”

Is there anything else that you would like to add?

Student: “No, just make the program work so it will aid me in
getting a higher grade”

Student: “Make it easy to use”

The main points to take away from this:

- Importance of ease of use
- Emphasis on being aesthetically pleasing
- Needs to be animated

What can be added to my project?
In order to make my project more flexible and easier to use, I will need to add some extra features
to my user interface:

- A set of instructions so that the end user (Mr Watson) and students know how to use the
program

- The ability to speed up and slow down an animation so that simulations can either be played
slowly to allow narration to take place, or quickly to show how generations change over
time. This will also allow the visualisation to be fine tuned to run at an optimum speed on
machined with different processing speeds.

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

13

- Speed control would also place students more in control of the simulation and encourage
interactivity. This will enclurage closer inspection benefitting learning and allow each
learner experience the program to their individual needs.

- Pre created shapes/ designs that can be loaded so that a novice could get going with the
software without any fore-knowledge of the rules, and also to allow more complex shapes to
be loaded quickly.

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

14

Requirements
This project must be a helpful device for my end user, teacher and students in year 11 and must be
created to a high standard in order for it to be worthwhile as an effective teaching device. The
program will initially be based on the John Conway rules, but if time allows, other rules may be
explored. The program must be robust and reliable as it will be working in an educational setting.

Success Criteria
In this section is a list of requirements that my project should fulfil will have been derived from my
analysis section.

1) My project’s user interface must be welcoming and easy to use in the classroom
environment.

2) My Solution should mimic the life cycle of cells in an artificial habitat, using the rules from
Conway’s Game of Life. I will measure this criteria using feedback from the year 11 students
and Mr Watson:

3) My solution should be complete, self contained and fully functioning.
4) The solution that I provide must be better than, or at least complementary to, other teaching

methods (Based on feedback from the teacher Mr Watson and the year 11 students.
a. Interactive
b. Simple to use
c. Must be aesthetically pleasing to maximise the student’s attention span
d. Teaches the required topic with ease

5) My project must be able to store and retrieve student designs.
6) My solution must be robust and should not crash when being used as this could disrupt

lessons, resulting in wasted time and ruining the classroom atmosphere. In order to measure
this, I will ask my end user (Mr Watson) to do some preliminary testing and also to keep a
reliability log once my project has been given to him.

7) My solution should be fully documented which will facilitate further development either
myself or by a 3rd party should this be required in the future. I will test these criteria by
showing my solution to other fellow Computer Science students to see if they can easily
understand my project without an explanation from myself.

8) My solution should engage students, I will judge these criteria based on the feedback from
my end user (Mr Watson) and the Year 11 students.

a. ‘Students will be able to interact using the mouse, which should focus a student’s
attention as they create new patterns and life forms. This freedom will encourage
self learning.

b. The program may be seen as relaxing fun during the biology lesson, which is usually
full of reading and learning from the textbooks. This program will allow a break
from that cycle while still having an educational subtext.

c. The colours that I chose should also help make the students more engaged with my
project as it will be more aesthetically pleasing, drawing and retaining a student’s
attention.

9) My solution must be easy to use. I will judge this criteria based on feedback from my end
user (Mr Watson) and the Year 11 students.

10) My solution should take up a limited amount of space on a hard drive. I am aiming for a
maximum footprint of 30mb.

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

15

11) My project must be capable of running on all of the computers used at the school.
12) My solution should quick to load, I would estimate the longest time the end user (Mr

Watson) and the students will have to wait would be maximum 10 seconds, based on normal

attention span.

13) My project should generate an animation showing cell growth and decline.

14) My project should store the designs created by the user, so that the student will be able to

carry on where they left off last time they used the project, or so that more complex designs

can be loaded quickly

15) My solution must run quickly enough to create persistence of vision.

16) My solution must be capable of running on the minimum specification computer that my end
user (Mr Watson) might encounter.

17) My solution must be capable of running on the school’s network, due to it having a
numerous number of security protocols.

Time Plan
1. I will conduct my initial interview will my end user (Mr Watson) by 13/10/19.
2. I will complete my initial designs and develop some prototypes to return to my end user (Mr

Watson) by 13/11/19.
3. I will complete my finally designs by 27/11/2019.
4. I will complete the majority of my development by 17/12/2019.
5. I will aim to meet with my end user (Mr Watson) by 11/01/2020 to present my solution.
6. I will allow 2 weeks’ contingency from 11/01/2020 for any changes to my project.
7. I will aim for final sign off by the end of January 2020.
8. I will aim to complete my project and submit it by the end of February 2020.
9. I will allow again allow 2 weeks’ contingency from the end of February 2020 for any changes

or correction my teacher may request.

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

16

Design
User Interface
Here is what my user interface will look like:

Here is the instruction screen:

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

17

Here is what my user interface will look like when it is running.

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

18

Flowchart showing interactivity:

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

19

Pseudo Code Interactive:

On-click

X = Mouseclick.X

Y = Mouseclick.y

Cells.add (New Cell (X, Y))

Pseudo Code Display:

Board Setup

Do until Mouse Click Play

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

20

Flow Charts:
Generate Population Flowchart

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

21

Rules of the Game Flowchart:

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

22

IPSO Chart:
Inputs Processes

-Grid Size
-Number of Cells
-Game Rules

-Check Number of Cells Surrounding a Cell
-Delete Cell
-Create New Cell

Storage Outputs
-Generation
-Number of Cells

-Display
-Board

UML Class Diagram:

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

23

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

24

Pseudo code
In this section I will discuss the main sections that I will need in my program.

Class Definition
Class Simulation
 Public Definitions
 Pond: String
 MaximumcoordX: Integer(50)
 MaximumcoordY: Integer (50)
 Private Definitions (button1)
 Outputline: string
 Neighbours(x, y): as integer
 Nextgen(x, y): as string
 Generation: integer = 1
 Blocksize: integer = 9
 Colour: New
 Private Definitions (Display)
 a: integer
 b: integer
 blocksize: integer = 9
 Counterx, countery: integer
End Class

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

25

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

26

High Level Flowchart

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

27

Implementation
Screen Shots of the Implementation Process
I began in console mode with the idea that once I solved the problem I would improve the graphical
interface by making a version using forms.

Testing orientation of x and y coordinates

Correcting the x and y coordinates in early testing.

Sub Main()
 'initialising variables
 Dim outputline As String
 Dim pond(11, 11) As String
 Dim generation As Integer = 1
 For counterx = 1 To 10
 For countery = 1 To 10
 pond(counterx, countery) = "O"
 neighbours(counterx, countery) = 0
 Next
 Next

For counterx = 1 To 10
 For countery = 1 To 10
 pond(counterx, countery) = nextgen(counterx, countery)
 neighbours(counterx, countery) = 0
 Next
 Next

Sub Main()
 Dim outputline As String
 Dim pond(11, 11) As String
 Dim generation As Integer = 1
 For counterx = 1 To 10
 For countery = 1 To 10
 pond(counterx, countery) = "O"
 neighbours(counterx, countery) = 0
 Next
 Next

 For counterx = 1 To 10
 For countery = 1 To 10
 outputline = outputline & neighbours(counterx, countery)
 Next
 Console.WriteLine(outputline)
 outputline = ""
 Next

For counterx = 1 To 10
 For countery = 1 To 10
 pond(counterx, countery) = nextgen(counterx, countery)
 neighbours(counterx, countery) = 0
 Next
 Next

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

28

^^Error was made

 For counterx = 1 To 10
 For countery = 1 To 10
 If pond((counterx - 1), (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), countery) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond(counterx, (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond(counterx, (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), countery) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 Next
 Next

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

29

^^Solved, wrong duplicate test

^^Testing counting the neighbouring algorithm.

 For counterx = 1 To 10
 For countery = 1 To 10
 If pond((counterx - 1), (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx - 1), countery) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx - 1), (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond(counterx, (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond(counterx, (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), countery) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 Next
 Next

For counterx = 1 To 10
 For countery = 1 To 10
 pond(counterx, countery) = "O"
 neighbours(counterx, countery) = 0
 Next
 Next

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

30

^^Testing with 3 positions.

^^Testing count algorithms in corners.

^^Error index generation

^^Solved, error was I hadn’t accounted for 2 neighbours

pond(5, 5) = "x”
pond(6, 6) = "x"
pond(5, 6) = "x"

pond(5, 5) = "x”
pond(6, 6) = "x"
pond(5, 6) = "x"
pond(1, 1) = "x"

For counterx = 1 To 10
 For countery = 1 To 10

outputline = pond(counterx, countery)
 Next
 Console.WriteLine(outputline)
 outputline = ""
 Next

For counterx = 1 To 10
 For countery = 1 To 10

outputline = outputline &
pond(counterx, countery)

 Next
 Console.WriteLine(outputline)
 outputline = ""
 Next

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

31

^^2 generation showing growth

^^Testing generation 1

^^First attempt at 5 generations with a few bugs

For counterx = 1 To 10
 For countery = 1 To 10

outputline = outputline &
pond(counterx, countery)

 Next
 Console.WriteLine(outputline)
 outputline = ""
 Next

Console.WriteLine("----------")
 For counterx = 1 To 10
 For countery = 1 To 10
 pond(counterx, countery) = nextgen(counterx,
countery)
 neighbours(counterx, countery) = 0
 Next
 Next
 generation = generation + 1
 System.Threading.Thread.Sleep(1000)
Next gen
 Console.ReadLine()
 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

32

^^Bug fixed neighbour count needed reset after each iteration

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

33

First working prototype:

Module Module1
 Sub Main()
 'initialising variables
 Dim outputline As String
 Dim pond(11, 11) As String
 Dim neighbours(10, 10) As Integer
 Dim nextgen(10, 10) As String
 Dim generation As Integer = 1
 For counterx = 1 To 10
 For countery = 1 To 10
 pond(counterx, countery) = "O"
 neighbours(counterx, countery) = 0
 Next
 Next
 pond(5, 5) = "x"
 pond(6, 6) = "x"
 pond(5, 6) = "x"
 pond(1, 1) = "x"
 For gen = 1 To 20
 Console.Clear()
 For counterx = 1 To 10
 For countery = 1 To 10
 If pond((counterx - 1), (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx - 1), countery) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx - 1), (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond(counterx, (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond(counterx, (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), countery) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 Next
 Next
 'outputroutine
 Console.WriteLine("Generation " & generation)
 outputline = ""
 For counterx = 1 To 10
 For countery = 1 To 10
 outputline = outputline & pond(counterx, countery)
 Next
 Console.WriteLine(outputline)
 outputline = ""
 Next
 Console.WriteLine("----------")
 outputline = ""
 'For counterx = 1 To 10
 ' For countery = 1 To 10
 ' outputline = outputline & neighbours(counterx, countery)
 ' Next
 ' Console.WriteLine(outputline)
 ' outputline = ""
 'Next

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

34

^^Full code in console

 For counterx = 1 To 10
 For countery = 1 To 10
 If neighbours(counterx, countery) < 2 Or neighbours(counterx, countery) > 3 Then
 nextgen(counterx, countery) = "O"
 End If
 If neighbours(counterx, countery) = 3 Then
 nextgen(counterx, countery) = "x"
 End If
 If neighbours(counterx, countery) = 2 Then
 If pond(counterx, countery) = "x" Then
 nextgen(counterx, countery) = "x"
 Else
 nextgen(counterx, countery) = "O"
 End If
 End If
 Next
 Next
 Console.WriteLine("----------")
 ' outputline = ""
 'For counterx = 1 To 10
 'For countery = 1 To 10
 'outputline = outputline & nextgen(counterx, countery)
 'Next
 'Console.WriteLine(outputline)
 'outputline = ""
 'Next
 For counterx = 1 To 10
 For countery = 1 To 10
 pond(counterx, countery) = nextgen(counterx, countery)
 neighbours(counterx, countery) = 0
 Next
 Next
 generation = generation + 1
 System.Threading.Thread.Sleep(1000)
 Next gen
 Console.ReadLine()
 End Sub
End Module

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

35

Changing the Visual Speed Output

^^console.clear added to the loop to create a illusion of animation but too fast for the human eye

 'initialising variables
 Dim outputline As String
 Dim pond(11, 11) As String
 Dim neighbours(10, 10) As Integer
 Dim nextgen(10, 10) As String
 Dim generation As Integer = 1
 For counterx = 1 To 10
 For countery = 1 To 10
 pond(counterx, countery) = "O"
 neighbours(counterx, countery) = 0
 Next
 Next
 pond(5, 5) = "x"
 pond(6, 6) = "x"
 pond(5, 6) = "x"
 pond(1, 1) = "x"
 For gen = 1 To 20
 Console.Clear()
 For counterx = 1 To 10
 For countery = 1 To 10
 If pond((counterx - 1), (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx,
countery) + 1
 End If
 If pond((counterx - 1), countery) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx,
countery) + 1
 End If
 If pond((counterx - 1), (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx,
countery) + 1
 End If
 If pond(counterx, (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx,
countery) + 1
 End If
 If pond(counterx, (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx,
countery) + 1
 End If

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

36

^^Solved, system.threading.thread.sleep(1000) creates the illusion of animation but slow enough to
be seen by human eye

'outputroutine
 Console.WriteLine("Generation " & generation)
 outputline = ""
 For counterx = 1 To 10
 For countery = 1 To 10
 outputline = outputline & pond(counterx, countery)
 Next
 Console.WriteLine(outputline)
 outputline = ""
 Next
 Console.WriteLine("----------")
 outputline = ""

 For counterx = 1 To 10
 For countery = 1 To 10
 If neighbours(counterx, countery) < 2 Or neighbours(counterx,
countery) > 3 Then
 nextgen(counterx, countery) = "O"
 End If
 If neighbours(counterx, countery) = 3 Then
 nextgen(counterx, countery) = "x"
 End If
 If neighbours(counterx, countery) = 2 Then
 If pond(counterx, countery) = "x" Then
 nextgen(counterx, countery) = "x"
 Else
 nextgen(counterx, countery) = "O"
 End If
 End If
 Next
 Next
 Console.WriteLine("----------")
 For counterx = 1 To 10
 For countery = 1 To 10
 pond(counterx, countery) = nextgen(counterx, countery)
 neighbours(counterx, countery) = 0
 Next
 Next
 generation = generation + 1
 System.Threading.Thread.Sleep(1000)
 Next gen
 Console.ReadLine()
 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

37

Moving the project to Forms:
Once I had a working solution using the console, I started to port the solution to VB forms. This was
quite difficult as I had never used forms before, so the first this I had to do was to upskill myself.

Once I had a good understanding of the ‘Forms’ environment I realised that there were two main
routes that I could go down in order to create and animated display. I could either use drawing
tools, or manipulate an image at the pixel level. I decided to try some prototyping with the pixel
method as I thought this would have a sharper’s resolution, support larger population sizes and
facilitate resizing, zooming into detail etc.

However, my initial attempt was disappointing.

The picture below shows a 6x6 matrix with each element in the matrix represented by one pixel as
can be seen by the diagram visual studio does not scale pixels well.

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

38

^^After some thought decided to try using more pixels per bacterium. This gave a much sharper
output.

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles
Button1.Click
 Dim a, c, q, p, r, s As Integer
 Dim picout As New Bitmap(20, 20,
System.Drawing.Imaging.PixelFormat.Format32bppPArgb)
 Dim cw As New Color
 cw = Color.Black
 For y = 0 To 6
 For x = 0 To 6
 picout.SetPixel(y, x, cw)
 If cw = Color.Black Then
 cw = Color.White
 Else
 cw = Color.Black
 End If
 Next
 Next
 PictureBox1.Image = picout
 Me.Refresh()
 cw = Color.White
 End Sub
End Class

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

39

This seemd to be a workable solution, so I went on to develop an intermediate solution with it using
hard coded initial conditions for now

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

40

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 Dim outputline As String
 Dim pond(11, 11) As String
 Dim neighbours(10, 10) As Integer
 Dim nextgen(10, 10) As String
 Dim generation As Integer = 1
 Dim blocksize As Integer = 9
 'new
 Dim outputpic As New Bitmap(200, 200, System.Drawing.Imaging.PixelFormat.Format32bppPArgb)
 Dim clr As New Color
 For counterx = 1 To 10
 For countery = 1 To 10
 pond(counterx, countery) = "O"
 neighbours(counterx, countery) = 0
 Next
 Next
 pond(5, 5) = "x"
 pond(6, 6) = "x"
 pond(5, 6) = "x"
 pond(4, 5) = "x"
 For gen = 1 To 20
 'calculates next geberation
 For counterx = 1 To 10
 For countery = 1 To 10
 If neighbours(counterx, countery) < 2 Or neighbours(counterx, countery) > 3 Then
 nextgen(counterx, countery) = "O"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.White)
 Next
 Next
 End If
 If neighbours(counterx, countery) = 3 Then
 nextgen(counterx, countery) = "x"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.Black)
 Next
 Next
 End If
 If neighbours(counterx, countery) = 2 Then
 If pond(counterx, countery) = "x" Then
 nextgen(counterx, countery) = "x"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.Black)
 Next
 Next
 Else
 nextgen(counterx, countery) = "O"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.White)
 Next
 Next
 End If
 End If
 Next
 Next
 For counterx = 1 To 10
 For countery = 1 To 10
 pond(counterx, countery) = nextgen(counterx, countery)
 neighbours(counterx, countery) = 0
 Next
 Next
 generation = generation + 1
 pctDisplay.Image = outputpic
 Me.Refresh()
 System.Threading.Thread.Sleep(1000)
 Next gen
 End Sub
End Class

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

41

Input Method
The next thing I decided to investigate was an input method. The previous code had the initial
conditions hard coded into the solution and I wanted to allow the user to set the initial conditions
themselves, I found a method using the mouse down event where I could return the x and y
coordinates of a picture box.

Prototype

Public Class form1
Private Sub PictureBox1_MouseDown(ByVal sender As Object, ByVal e As

System.Windows.Forms.MouseEventArgs) Handles PictureBox1.MouseDown
 MsgBox(e.X.ToString)
 MsgBox(e.Y.ToString)
 End Sub
End Class

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

42

Adding this to my solution

Public Class Form1
 Dim outputpic As New Bitmap(520, 520, System.Drawing.Imaging.PixelFormat.Format32bppPArgb)
 Dim pond(51, 51) As String
 Dim maxx As Integer = 50
 Dim maxy As Integer = 50
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 Dim outputline As String
 Dim neighbours(maxx, maxy) As Integer
 Dim nextgen(maxx, maxy) As String
 Dim generation As Integer = 1
 Dim blocksize As Integer = 9
 For x = 1 To maxx
 For y = 1 To maxy
 neighbours(x, y) = 0
 Next
 Next
 'new
 Dim clr As New Color
 For gen = 1 To 1000
 ' Calculate each cell's number of neighbours
 For counterx = 1 To maxx
 For countery = 1 To maxy
 If pond((counterx - 1), (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx - 1), countery) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx - 1), (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond(counterx, (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond(counterx, (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), countery) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 Next
 Next

 lblGeneration.Text = ("Generation " & generation)
 'calculates next geberation
 For counterx = 1 To maxx
 For countery = 1 To maxy
 If neighbours(counterx, countery) < 2 Or neighbours(counterx, countery) > 3 Then
 nextgen(counterx, countery) = "O"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.White)
 Next
 Next
 End If

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

43

 If neighbours(counterx, countery) = 3 Then
 nextgen(counterx, countery) = "x"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.Black)
 Next
 Next
 End If
 If neighbours(counterx, countery) = 2 Then
 If pond(counterx, countery) = "x" Then
 nextgen(counterx, countery) = "x"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.Black)
 Next
 Next
 Else
 nextgen(counterx, countery) = "O"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.White)
 Next
 Next
 End If
 End If
 Next
 Next
 For counterx = 1 To maxx
 For countery = 1 To maxy
 pond(counterx, countery) = nextgen(counterx, countery)
 neighbours(counterx, countery) = 0
 Next
 Next
 generation = generation + 1
 pctDisplay.Image = outputpic
 Me.Refresh()
 Next gen
 End Sub

 Private Sub pctDisplay_MouseDown(sender As Object, e As MouseEventArgs) Handles
pctDisplay.MouseDown
 Dim a As Integer
 Dim b As Integer
 Dim blocksize As Integer = 9
 Dim counterx, countery As Integer
 a = (e.X.ToString)
 b = (e.Y.ToString)
 a = Int(a / 10)
 b = Int(b / 10)
 If pond(a, b) = "x" Then
 pond(a, b) = "O"
 Else
 pond(a, b) = "x"
 End
 For x = (a * 10) To (a * 10 + 9)
 For y = (b * 10) To (b * 10 + 9)
 If pond(a, b) = "x" Then
 outputpic.SetPixel(x, y, Color.Black)
 Else
 outputpic.SetPixel(x, y, Color.white)
 End If
 Next
 Next
 pctDisplay.Image = outputpic
 End Sub
 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 For counterx = 1 To maxx
 For countery = 1 To maxy
 pond(counterx, countery) = "O"
 Next
 Next

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

44

 For k = 1 To 500
 For l = 1 To 500
 outputpic.SetPixel(k, l, Color.White)
 Next
 Next

 pctDisplay.Image = outputpic
 End Sub
End Class

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

45

Simplifies Output
Showing successful integration of previous console based solutions into forms (simplified output)

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 Dim outputline As String
 Dim pond(11, 11) As String
 Dim neighbours(10, 10) As Integer
 Dim nextgen(10, 10) As String
 Dim generation As Integer = 1
 Dim blocksize As Integer = 9
 'new
 Dim outputpic As New Bitmap(200, 200,
System.Drawing.Imaging.PixelFormat.Format32bppPArgb)
 Dim clr As New Color
 For counterx = 1 To 10
 For countery = 1 To 10
 pond(counterx, countery) = "O"
 neighbours(counterx, countery) = 0
 Next
 Next
 pond(5, 5) = "x"
 pond(6, 6) = "x"
 pond(5, 6) = "x"
 pond(4, 5) = "x"
 For gen = 1 To 20
 For counterx = 1 To 10
 For countery = 1 To 10
 If pond((counterx - 1), (countery - 1)) = "x" Then

 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx - 1), countery) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx - 1), (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond(counterx, (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond(counterx, (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), countery) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 Next
 Next
 lblGeneration.Text = ("Generation " & generation)
 outputline = ""
 For counterx = 1 To 10
 For countery = 1 To 10
 outputline = outputline & pond(counterx, countery)
 Next
 'MsgBox(outputline)
 outputline = ""
 Next
 outputline = ""

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

46

For counterx = 1 To 10
 For countery = 1 To 10
 If neighbours(counterx, countery) < 2 Or neighbours(counterx, countery) >
3 Then
 nextgen(counterx, countery) = "O"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.White)
 Next
 Next
 End If
 If neighbours(counterx, countery) = 3 Then
 nextgen(counterx, countery) = "x"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.Black)
 Next
 Next
 End If
 If neighbours(counterx, countery) = 2 Then
 If pond(counterx, countery) = "x" Then
 nextgen(counterx, countery) = "x"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery +
blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.Black)
 Next
 Next
 Else
 nextgen(counterx, countery) = "O"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery +
blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.White)
 Next
 Next
 End If
 End If
 Next
 Next
 For counterx = 1 To 10
 For countery = 1 To 10
 pond(counterx, countery) = nextgen(counterx, countery)
 neighbours(counterx, countery) = 0
 Next
 Next
 generation = generation + 1
 pctDisplay.Image = outputpic
 Me.Refresh()
 System.Threading.Thread.Sleep(1000)
 Next gen
 End Sub
End Class

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

47

Integrating the Input Routine

Public Class Form1

 Dim pond(11, 11) As String
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 Dim outputline As String

 Dim neighbours(10, 10) As Integer
 Dim nextgen(10, 10) As String
 Dim generation As Integer = 1
 Dim blocksize As Integer = 9
 'new
 Dim outputpic As New Bitmap(200, 200,
System.Drawing.Imaging.PixelFormat.Format32bppPArgb)
 Dim clr As New Color
 For counterx = 1 To 10
 For countery = 1 To 10
 pond(counterx, countery) = "O"
 neighbours(counterx, countery) = 0
 Next
 Next
 pond(5, 5) = "x"
 pond(6, 6) = "x"
 pond(5, 6) = "x"
 pond(4, 5) = "x"
 pond(4, 4) = "x"
 For gen = 1 To 20
 ' Calculate each cell's number of neighbours
 For counterx = 1 To 10
 For countery = 1 To 10
 If pond((counterx - 1), (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx - 1), countery) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx - 1), (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond(counterx, (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond(counterx, (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), countery) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 Next
 Next
 lblGeneration.Text = ("Generation " & generation)
 outputline = ""
 For counterx = 1 To 10
 For countery = 1 To 10
 outputline = outputline & pond(counterx, countery)
 Next
 'MsgBox(outputline)
 outputline = ""

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

48

'calculates next geberation
 For counterx = 1 To 10
 For countery = 1 To 10
 If neighbours(counterx, countery) < 2 Or neighbours(counterx, countery) > 3 Then
 nextgen(counterx, countery) = "O"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.White)
 Next
 Next
 End If
 If neighbours(counterx, countery) = 3 Then
 nextgen(counterx, countery) = "x"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.Black)
 Next
 Next
 End If
 If neighbours(counterx, countery) = 2 Then
 If pond(counterx, countery) = "x" Then
 nextgen(counterx, countery) = "x"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.Black)
 Next
 Next
 Else
 nextgen(counterx, countery) = "O"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.White)
 Next
 Next
 End If
 End If
 Next
 Next
 For counterx = 1 To 10
 For countery = 1 To 10
 pond(counterx, countery) = nextgen(counterx, countery)
 neighbours(counterx, countery) = 0
 Next
 Next
 generation = generation + 1
 pctDisplay.Image = outputpic
 Me.Refresh()
 System.Threading.Thread.Sleep(1000)
 Next gen
 End Sub

 Private Sub pctDisplay_MouseDown(sender As Object, e As MouseEventArgs) Handles pctDisplay.MouseDown
 Dim a As Integer
 Dim b As Integer
 Dim blocksize As Integer = 9
 Dim counterx, countery As Integer
 Dim outputpic As New Bitmap(200, 200, System.Drawing.Imaging.PixelFormat.Format32bppPArgb)
 MsgBox(e.X.ToString)
 MsgBox(e.Y.ToString)
 a = (e.X.ToString)
 b = (e.Y.ToString)
 a = Int(a / 10)
 b = Int(b / 10)
 pond(a, b) = "x"

 For x = 1 To 10
 For y = 1 To 10
 For h = (x * 10) To ((x * 10) + 9)
 For j = (y * 10) To ((y * 10) + 9)
 If pond(x, y) = "x" Then
 outputpic.SetPixel(h, j, Color.Black)
 Else
 outputpic.SetPixel(h, j, Color.White)
 End If
 Next
 Next
 Next
 Next

 pctDisplay.Image = outputpic

 'PictureBox1.Image = outputpic
 End Sub
End Class

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

49

Finished Base Code

Public Class Form1
 Dim pond(101, 101) As String
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 Dim outputline As String
 Dim neighbours(100, 100) As Integer
 Dim nextgen(100, 100) As String
 Dim generation As Integer = 1
 Dim blocksize As Integer = 9
 'new
 Dim outputpic As New Bitmap(1100, 1100, System.Drawing.Imaging.PixelFormat.Format32bppPArgb)
 Dim clr As New Color
 For gen = 1 To 1000
 ' Calculate each cell's number of neighbours
 For counterx = 1 To 100
 For countery = 1 To 100
 If pond((counterx - 1), (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx - 1), countery) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx - 1), (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond(counterx, (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond(counterx, (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), countery) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 Next
 Next
 lblGeneration.Text = ("Generation " & generation)
 outputline = ""
 For counterx = 1 To 100
 For countery = 1 To 100
 outputline = outputline & pond(counterx, countery)
 Next
 'MsgBox(outputline)
 outputline = ""
 Next
 outputline = ""

 'calculates next geberation
 For counterx = 1 To 100
 For countery = 1 To 100
 If neighbours(counterx, countery) < 2 Or neighbours(counterx, countery) > 3 Then
 nextgen(counterx, countery) = "O"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.White)
 Next
 Next
 End If
 If neighbours(counterx, countery) = 3 Then
 nextgen(counterx, countery) = "x"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.Black)
 Next
 Next
 End If

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

50

If neighbours(counterx, countery) = 2 Then
 If pond(counterx, countery) = "x" Then
 nextgen(counterx, countery) = "x"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.Black)
 Next
 Next
 Else
 nextgen(counterx, countery) = "O"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.White)
 Next
 Next
 End If
 End If
 Next
 Next
 For counterx = 1 To 100
 For countery = 1 To 100
 pond(counterx, countery) = nextgen(counterx, countery)
 neighbours(counterx, countery) = 0
 Next
 Next
 generation = generation + 1
 pctDisplay.Image = outputpic
 Me.Refresh()
 System.Threading.Thread.Sleep(1000)
 Next gen
 End Sub

 Private Sub pctDisplay_MouseDown(sender As Object, e As MouseEventArgs) Handles pctDisplay.MouseDown
 Dim a As Integer
 Dim b As Integer
 Dim blocksize As Integer = 9
 Dim counterx, countery As Integer
 Dim outputpic As New Bitmap(1100, 1100, System.Drawing.Imaging.PixelFormat.Format32bppPArgb)
 'MsgBox(e.X.ToString)
 'MsgBox(e.Y.ToString)
 a = (e.X.ToString)
 b = (e.Y.ToString)
 a = Int(a / 10)
 b = Int(b / 10)
 If pond(a, b) = "x" Then
 pond(a, b) = "o"
 Else
 pond(a, b) = "x"
 End If

 For x = 0 To 99
 For y = 0 To 99
 For h = (x * 10) To ((x * 10) + 9)
 For j = (y * 10) To ((y * 10) + 9)
 If pond(x, y) = "x" Then
 outputpic.SetPixel(h, j, Color.Black)
 Else
 outputpic.SetPixel(h, j, Color.White)
 End If
 Next
 Next
 Next
 Next

 pctDisplay.Image = outputpic

 'PictureBox1.Image = outputpic
 End Sub

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 For counterx = 1 To 100
 For countery = 1 To 100
 pond(counterx, countery) = "O"
 ' neighbours(counterx, countery) = 0
 Next
 Next
 pond(5, 5) = "x"
 pond(6, 6) = "x"
 pond(5, 6) = "x"
 pond(4, 5) = "x"
 pond(4, 4) = "x"
 End Sub
End Class
Trying to increase board size

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

51

Public Class Form1
 Dim pond(51, 51) As String
 Dim maxx As Integer = 50
 Dim maxy As Integer = 50
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 Dim outputline As String
 Dim neighbours(maxx, maxy) As Integer
 Dim nextgen(maxx, maxy) As String
 Dim generation As Integer = 1
 Dim blocksize As Integer = 9
 'new
 Dim outputpic As New Bitmap(520, 520, System.Drawing.Imaging.PixelFormat.Format32bppPArgb)
 Dim clr As New Color
 For gen = 1 To 1000
 ' Calculate each cell's number of neighbours
 For counterx = 1 To maxx
 For countery = 1 To maxy
 If pond((counterx - 1), (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx - 1), countery) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx - 1), (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond(counterx, (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond(counterx, (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), countery) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 Next
 Next

 lblGeneration.Text = ("Generation " & generation)
'calculates next geberation
 For counterx = 1 To maxx
 For countery = 1 To maxy
 If neighbours(counterx, countery) < 2 Or neighbours(counterx, countery) > 3 Then
 nextgen(counterx, countery) = "O"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.White)
 Next
 Next
 End If
 If neighbours(counterx, countery) = 3 Then
 nextgen(counterx, countery) = "x"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.Black)
 Next
 Next
 End If
 If neighbours(counterx, countery) = 2 Then
 If pond(counterx, countery) = "x" Then
 nextgen(counterx, countery) = "x"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.Black)
 Next
 Next
 Else
 nextgen(counterx, countery) = "O"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.White)
 Next
 Next
 End If
 End If
 Next
 Next
 For counterx = 1 To maxx
 For countery = 1 To maxy
 pond(counterx, countery) = nextgen(counterx, countery)
 neighbours(counterx, countery) = 0
 Next
 Next
 generation = generation + 1
 pctDisplay.Image = outputpic
 Me.Refresh()
 System.Threading.Thread.Sleep(1000)
 Next gen
 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

52

 Private Sub pctDisplay_MouseDown(sender As Object, e As MouseEventArgs) Handles pctDisplay.MouseDown
 Dim a As Integer
 Dim b As Integer
 Dim blocksize As Integer = 9
 Dim counterx, countery As Integer
 Dim outputpic As New Bitmap(520, 520, System.Drawing.Imaging.PixelFormat.Format32bppPArgb)
 'MsgBox(e.X.ToString)
 'MsgBox(e.Y.ToString)
 a = (e.X.ToString)
 b = (e.Y.ToString)
 a = Int(a / 10)
 b = Int(b / 10)
 If pond(a, b) = "x" Then
 pond(a, b) = "o"
 Else
 pond(a, b) = "x"
 End If

 For x = 0 To maxx
 For y = 0 To maxy
 For h = (x * 10) To ((x * 10) + 9)
 For j = (y * 10) To ((y * 10) + 9)
 If pond(x, y) = "x" Then
 outputpic.SetPixel(h, j, Color.Black)
 Else
 outputpic.SetPixel(h, j, Color.White)
 End If
 Next
 Next
 Next
 Next

 pctDisplay.Image = outputpic

 'PictureBox1.Image = outputpic
 End Sub

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 For counterx = 1 To maxx
 For countery = 1 To maxy
 pond(counterx, countery) = "O"
 ' neighbours(counterx, countery) = 0
 Next
 Next
 'pond(5, 5) = "x"
 'pond(6, 6) = "x"
 'pond(5, 6) = "x"
 'pond(4, 5) = "x"
 'pond(4, 4) = "x"
 End Sub
End Class
So now the board size is a variable

**

Public Class Form1
 Dim outputpic As New Bitmap(520, 520, System.Drawing.Imaging.PixelFormat.Format32bppPArgb)
 Dim pond(51, 51) As String
 Dim maxx As Integer = 50
 Dim maxy As Integer = 50
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 Dim outputline As String
 Dim neighbours(maxx, maxy) As Integer
 Dim nextgen(maxx, maxy) As String
 Dim generation As Integer = 1
 Dim blocksize As Integer = 9

 'outputline = ""
 'For x = 1 To 50
 ' For y = 1 To 50
 ' outputline = outputline & pond(x, y)
 ' Next
 'Next
 'MsgBox(outputline)

 For x = 1 To maxx
 For y = 1 To maxy
 neighbours(x, y) = 0
 Next
 Next

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

53

'new
 ' Dim outputpic As New Bitmap(520, 520, System.Drawing.Imaging.PixelFormat.Format32bppPArgb)
 Dim clr As New Color
 For gen = 1 To 1000
 ' Calculate each cell's number of neighbours
 For counterx = 1 To maxx
 For countery = 1 To maxy
 If pond((counterx - 1), (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx - 1), countery) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx - 1), (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond(counterx, (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond(counterx, (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), countery) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 Next
 Next

 lblGeneration.Text = ("Generation " & generation)

 'calculates next geberation
 For counterx = 1 To maxx
 For countery = 1 To maxy
 If neighbours(counterx, countery) < 2 Or neighbours(counterx, countery) > 3 Then
 nextgen(counterx, countery) = "O"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.White)
 Next
 Next
 End If
 If neighbours(counterx, countery) = 3 Then
 nextgen(counterx, countery) = "x"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.Black)
 Next
 Next
 End If
If neighbours(counterx, countery) = 2 Then
 If pond(counterx, countery) = "x" Then
 nextgen(counterx, countery) = "x"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.Black)
 Next
 Next
 Else
 nextgen(counterx, countery) = "O"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.White)
 Next
 Next
 End If
 End If
 Next
 Next
 For counterx = 1 To maxx
 For countery = 1 To maxy
 pond(counterx, countery) = nextgen(counterx, countery)
 neighbours(counterx, countery) = 0
 Next
 Next
 generation = generation + 1
 pctDisplay.Image = outputpic
 Me.Refresh()
 'System.Threading.Thread.Sleep(1000)
 a = (e.X.ToString)

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

54

Next gen
 End Sub

 Private Sub pctDisplay_MouseDown(sender As Object, e As MouseEventArgs) Handles pctDisplay.MouseDown
 Dim a As Integer
 Dim b As Integer
 Dim blocksize As Integer = 9
 Dim counterx, countery As Integer
 ' Dim outputpic As New Bitmap(520, 520, System.Drawing.Imaging.PixelFormat.Format32bppPArgb)
 'MsgBox(e.X.ToString)
 'MsgBox(e.Y.ToString)
 a = (e.X.ToString)
 b = (e.Y.ToString)
 a = Int(a / 10)
 b = Int(b / 10)
 If pond(a, b) = "x" Then
 pond(a, b) = "O"
 Else
 pond(a, b) = "x"
 End If
 'MsgBox(a)
 'MsgBox(b)
 'MsgBox(pond(a, b))

 For x = (a * 10) To (a * 10 + 9)
 For y = (b * 10) To (b * 10 + 9)
 If pond(a, b) = "x" Then
 outputpic.SetPixel(x, y, Color.Black)
 Else
 outputpic.SetPixel(x, y, Color.white)
 End If
 Next
 Next

 'For x = 0 To maxx
 ' For y = 0 To maxy
 ' For h = (x * 10) To ((x * 10) + 9)
 ' For j = (y * 10) To ((y * 10) + 9)
 ' If pond(x, y) = "x" Then
 ' outputpic.SetPixel(h, j, Color.Black)
 ' Else
 ' outputpic.SetPixel(h, j, Color.White)
 ' End If
 ' Next
 ' Next
 ' Next
 'Next

 pctDisplay.Image = outputpic

 'PictureBox1.Image = outputpic
 End Sub

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 For counterx = 1 To maxx
 For countery = 1 To maxy
 pond(counterx, countery) = "O"
 ' neighbours(counterx, countery) = 0
 Next
 Next

 'pond(5, 5) = "x"
 'pond(6, 6) = "x"
 'pond(5, 6) = "x"
 'pond(4, 5) = "x"
 'pond(4, 4) = "x"

 For k = 1 To 500
 For l = 1 To 500
 outputpic.SetPixel(k, l, Color.White)
 Next
 Next

 pctDisplay.Image = outputpic
 End Sub
End Class

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

55

^^ LIFE!! “Life” has been created, this is the program running in action. I went online to look for
different designs that can move and found this bird design that moves either to the left or right
depending on which way the ‘beak’ is facing. The response time is perfect, the interactive part of the
program works seamlessly, and the regeneration of cells all work with the rules that have been hard
coded into the program.

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

56

Technical Solution

^^ Finishing touches to the cosmetic appearance of my project. Note the slight difference between
solution and design. As I was making the project I realised that it would be easier for me to create a
square output rather than a rectangular output, as this kept both my maximum X and Y values equal
as I was handling arrays. I do not feel that this design change has detracted from my original design,
and even though it would be relatively easy to recode a rectangular solution now I actually prefer
the aesthetic of this square.

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

57

^^ Testing beyond generation 500 which has proved successful.

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

58

^^ Here are my instructions in another form window. Linked the instructions to my main user
interface with the following code:

From main user interface to instructions:

Private Sub cmdInstructions_Click(sender As Object, e As EventArgs) Handles
cmdInstructions.Click
 Form2.Show()
 Me.Hide()
 End Sub

From Instructions back to main user interface:

 Private Sub cmdback_Click(sender As Object, e As EventArgs) Handles cmdback.Click
 Form1.Show()
 Me.Hide()
 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

59

Prototyping the Stop Button by using timer function
In order to add the stop function to my code I needed to take the main processes out of a loop and
place them onto the timer function. The timer function will fire at regular intervals and will allow the
me to attach code to this event. This means that I will be able to check for user activity such as
pressing the stop button in between steps. Using my previous method meant that when the start
button has been pressed no further user interaction would be detectable.

Prototype

Adding Functionality to Exit Button
I used the inbuilt Visual Basic Yes / No message box in order to check that the user really wanted to
terminate the execution.

Public Class Form1
 Dim count As Integer = 1

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 Timer1.Enabled = True
 End Sub

 Private Sub Timer1_Tick(sender As Object, e As EventArgs) Handles Timer1.Tick
 Label1.Text = count
 count = count + 1
 End Sub

 Private Sub Button2_Click(sender As Object, e As EventArgs) Handles Button2.Click
 Timer1.Enabled = False
 End Sub
End Class

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

60

 Private Sub cmdEXIT_Click(sender As Object, e As EventArgs) Handles cmdEXIT.Click
 Dim answer As Integer
 answer = MsgBox("Are you sure", vbQuestion + vbYesNo + vbDefaultButton2, "This
will end your session")
 If answer = vbYes Then
 Me.Close()
 End If
 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

61

Speed Variations
I wrote procedures to allow the user to fine tune the speed of generation progression. This facility is
particularly important in order to allow my software to be portable between different machines, as a
newer machine will process my code a lot quicker than an older machine and therefore the
simulation will appear to go faster or slower depending on (primarily) the class of CPU. I achieved
this by linking the speed up and slow down buttons to the timer iterval.

Private Sub cmdspeedup_Click(sender As Object, e As EventArgs) Handles
cmdspeedup.Click
 Dim timeinterval As Integer
 timeinterval = Tmrtimer.Interval
 timeinterval = timeinterval - 500
 If timeinterval < 500 Then
 timeinterval = 500
 End If
 Tmrtimer.Interval = timeinterval
 End Sub

 Private Sub cmdSLOWDOWN_Click(sender As Object, e As EventArgs) Handles
cmdSLOWDOWN.Click
 Dim timeinterval As Integer
 timeinterval = Tmrtimer.Interval
 timeinterval = timeinterval + 500
 If timeinterval > 10000 Then
 timeinterval = 10000
 End If
 Tmrtimer.Interval = timeinterval
 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

62

File Handling Prototype
In this section I will demonstrate how I added a “save” and “load” function to my code.

Prototype attempt at using stream writer. I am intending to write three elements to a text file.

As you can see from the below the text file, the first part of the prototype works.

Next I tried to read from the text file using stream reader.

Success!! It works. Next for refinements.

Imports System.IO
Public Class Form1
 Private Sub save_Click(sender As Object, e As EventArgs)
Handles save.Click
 Dim filewrite As New StreamWriter("Test.txt")
 filewrite.WriteLine("x")
 filewrite.WriteLine("o")
 filewrite.WriteLine("y")
 filewrite.Close()
 End Sub
End Class

 Dim fileread As StreamReader = New StreamReader("Test.txt")
 Dim input1, input2, input3 As String
 input1 = fileread.ReadLine
 input2 = fileread.ReadLine
 input3 = fileread.ReadLine
 fileread.Close()
 MsgBox(input1)
 MsgBox(input2)
 MsgBox(input3)

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

63

Here I allow the user to choose the name for the saved file. This will mean that the user can save
multiple versions.

Now the user can choose the filename.

Sample output from the text file

Completing the read module to recover the data and update the picture file.

Dim fname As String
 fname = InputBox("What Would You Like to Call it?")
 fname = fname & ".txt"
 Dim filewrite As New StreamWriter(fname)
 For xcount = 0 To 50
 For ycount = 0 To 50
 filewrite.WriteLine(pond(xcount, ycount))
 Next
 Next
 filewrite.Close()

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

64

Test

Saved version:

Loaded version:

Dim a As Integer
 Dim b As Integer
 Dim blocksize As Integer = 9
 Dim counterx, countery As Integer
 Dim fname As String
 fname = InputBox("Which File Would You Like To Load?")
 fname = fname & ".txt"
 Dim fileread As StreamReader = New StreamReader(fname)
 For xcount = 0 To 50
 For ycount = 0 To 50
 pond(xcount, ycount) = fileread.ReadLine
 Next
 Next
 fileread.Close()
 Dim outputline As String
 For xcount = 0 To 50
 For ycount = 0 To 50
 outputline = outputline & pond(xcount, ycount)
 Next
 Next
 For a = 0 To 50
 For b = 0 To 50
 For x = (a * 10) To (a * 10 + 9)
 For y = (b * 10) To (b * 10 + 9)
 If pond(a, b) = "x" Then
 outputpic.SetPixel(x, y, Color.White)
 Else
 outputpic.SetPixel(x, y, Color.Blue)
 End If
 Next
 Next
 Next
 Next
 pctDisplay.Image = outputpic
 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

65

As may be seen both of these screenshots are identical proving that the save and retreive function is
working effectively.

Reset Button
As I reach this point in my design I realised that a reset button will benefit the students and teacher’s
day to day use.

As part of the testing during the coding process I noticed that when I press the reset button even
though the user interface would reset the number of generations would not. I identified the bug and
fixed it. Here is my updated code:

Private Sub reset_Click(sender As Object, e As EventArgs) Handles reset.Click
 Dim a As Integer
 Dim b As Integer
 Dim blocksize As Integer = 9
 Dim counterx, countery As Integer
 For a = 0 To 50
 For b = 0 To 50
 For x = (a * 10) To (a * 10 + 9)
 For y = (b * 10) To (b * 10 + 9)
 pond(a, b) = "o"
 outputpic.SetPixel(x, y, Color.Blue)
 Next
 Next
 Next
 Next
 pctDisplay.Image = outputpic
 End Sub

 Private Sub reset_Click(sender As Object, e As EventArgs) Handles reset.Click
 Dim a As Integer
 Dim b As Integer
 Dim blocksize As Integer = 9
 Dim counterx, countery As Integer
 For a = 0 To 50
 For b = 0 To 50
 For x = (a * 10) To (a * 10 + 9)
 For y = (b * 10) To (b * 10 + 9)
 pond(a, b) = "o"
 outputpic.SetPixel(x, y, Color.Blue)
 Next
 Next
 Next
 Next
 pctDisplay.Image = outputpic
 generation = 1
 lblGeneration.Text = "Generation " & generation
 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

66

Testing for robustness with exceptional data
As part of my exceptional testing I decided to fill the whole interface with bacteria to see if my
program could handle it.

Result – Testing for robustness when coding

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

67

As can be seen the test was a success. The 2 screenshots above show the interesting patterns that I
received at generation 33 and 38.

The program created new and (in my opinion) beautiful and unexpected animations of the cells
providing evidence that my program is successful in simulating life.

Next, I tested to see if the program would be able to speed up & slow down using the allocated
buttons as well as the stop and run button. Although it’s difficult to show the results of these on
paper, I tested the results using a stopwatch and they both worked.

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

68

Next, I tested to see if the program was able to surpass 100 generations and the result was that it
was able to.
The last test I conducted of this was to see if the program reset back to its original state, and so I
stopped the program and pressed the reset button and it reset the program without an issue.

Intermediate Stage Feedback

At this stage I met with my end user to take any comments on the program so far. I thought it was
close being finished and I wanted to give my end user to have the opotuntity to have further input
into the solution. My end user (Mr Watson) was delighted with the program so far and he suggested
some further refinements. What Mr Watson requested was to have a series of presets available of
standard known patterns in the Game of Life, which would make setting the initial conditions both
easier and also would produce more meaningfull results than a random input. Mr Watson felt it
would be useful to be able to compare and contrast the various forms of “Life” that the program
produced with his class, so that he would be able to highlight the salient features of each “Life
Form”.

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

69

Prototyping the Stamp Function
In this section will show how I added preset pattern buttons to my code to try and make my user
input more intuitive. My idea was to have a series of buttons down the side of the interface which
the user may select. When the user selects the button the tip of the cursor will then deliver a
“ghost” relica of the pattern which is being introduced to allow the user to position it correctly. As
the user moves the cursor over the display the “ghost” moves with it. Here is my first attempt which
is simply 2 square pattern.

Private Sub pctDisplay_MouseMove(sender As Object, e As MouseEventArgs) Handles
pctDisplay.MouseMove
 Dim a, b As Integer
 Dim newa, newb As Integer
 a = (e.X.ToString)
 b = (e.Y.ToString)
 a = Int(a / 10)
 b = Int(b / 10)
 mousedispayblue(olda, oldb)
 mousedispayblue((olda + 1), oldb)
 olda = a
 oldb = b
 mousedispayred(a, b)
 mousedispayred((a + 1), b)
 pctDisplay.Image = outputpic
 End Sub
 Public Sub mousedispayred(dispa As Integer, dispb As Integer)
 For x = (dispa * 10) To (dispa * 10 + 9)
 For y = (dispb * 10) To (dispb * 10 + 9)
 outputpic.SetPixel(x, y, Color.Red)
 Next
 Next
 End Sub
 Public Sub mousedispayblue(dispa As Integer, dispb As Integer)

 For x = (dispa * 10) To (dispa * 10 + 9)
 For y = (dispb * 10) To (dispb * 10 + 9)
 outputpic.SetPixel(x, y, Color.Blue)
 Next
 Next
 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

70

Prototyping the Stamp Tool
Turning the stamp on using the Shape Line Button:

The ghost image is being displayed in red so now turning off the stamp using the same Button:

Partial success however, when the ghost image goes over a “choosen”/ white pixel the white pixel
does not reappear as the ghost image passes by.

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

71

Presets
Here is my solution to the disappearing pixel problem. I was initially trying handle the issue by using
the pixel colours, but eventually I resorted to a refresh from the underlying array (pond) to solve the
problem.

 Private Sub pctCopy_MouseDown(sender As Object, e As MouseEventArgs)
 Dim a As Integer
 Dim b As Integer
 Dim blocksize As Integer = 9
 Dim counterx, countery As Integer
 a = (e.X.ToString)
 b = (e.Y.ToString)
 a = Int(a / 10)
 b = Int(b / 10)
 If lineshape = True Then
 For cntr = 1 To shapecomponent(shapenumber)
 pond((a + xcoordinate(shapenumber, cntr)), (b +
ycoordinate(shapenumber, cntr))) = "x"
 Next
 For cntr = 1 To shapecomponent(shapenumber)
 mousedispaywhite((olda + xcoordinate(shapenumber, cntr)), (oldb +
ycoordinate(shapenumber, cntr)))
 Next
 Else
 If pond(a, b) = "x" Then
 pond(a, b) = "O"
 Else
 pond(a, b) = "x"
 End If
 For x = (a * 10) To (a * 10 + 9)
 For y = (b * 10) To (b * 10 + 9)
 If pond(a, b) = "x" Then
 outputpic.SetPixel(x, y, Color.White)
 Else
 outputpic.SetPixel(x, y, Color.Blue)
 End If
 Next
 Next
 End If
 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

72

Success! No more disappearing pixels.

Private Sub pctCopy_MouseMove(sender As Object, e As MouseEventArgs)
 Dim a, b As Integer
 If lineshape = False Then
 Exit Sub
 End If
 a = (e.X.ToString)
 b = (e.Y.ToString)
 a = Int(a / 10)
 b = Int(b / 10)
 For cntr = 1 To shapecomponent(shapenumber)
 updatedisplay((olda + xcoordinate(shapenumber, cntr)), (oldb +
ycoordinate(shapenumber, cntr)))
 Next
 olda = a
 oldb = b
 For cntr = 1 To shapecomponent(shapenumber)
 mousedispayred((olda + xcoordinate(shapenumber, cntr)), (oldb +
ycoordinate(shapenumber, cntr)))
 Next
 End Sub

 Public Sub updatedisplay(dispa As Integer, dispb As Integer)

 For x = (dispa * 10) To (dispa * 10 + 9)
 For y = (dispb * 10) To (dispb * 10 + 9)
 If pond(dispa, dispb) = "x" Then
 outputpic.SetPixel(x, y, Color.White)
 Else
 outputpic.SetPixel(x, y, Color.Blue)
 End If
 Next
 Next
 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

73

Adding New Preset 2
My first prest was a 3 element horizontal line. I decided to make my second a 3 element vertical line.

Note the red image is a ghost which follows the cursor tip and helps the user to postion the preset
stamp. Once the user clicks the selected pixels go white.

Having created the first preset meant that the second preset was almost already solved.

 Private Sub cmdvline_Click(sender As Object, e As EventArgs) Handles
cmdvline.Click
 lineshape = Not (lineshape)
 shapenumber = 2
 shapecomponent(2) = 3
 xcoordinate(2, 1) = 0
 ycoordinate(2, 1) = 0
 xcoordinate(2, 2) = 0
 ycoordinate(2, 2) = 1
 xcoordinate(2, 3) = 0
 ycoordinate(2, 3) = 2
 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

74

Adding New Preset 3
The third preset is called a “Baby Star”

 Private Sub cmdbs_Click(sender As Object, e As EventArgs) Handles cmdbs.Click
 lineshape = Not (lineshape)
 shapenumber = 3
 shapecomponent(3) = 5
 xcoordinate(3, 1) = 1
 ycoordinate(3, 1) = 0
 xcoordinate(3, 2) = 0
 ycoordinate(3, 2) = 1
 xcoordinate(3, 3) = 1
 ycoordinate(3, 3) = 1
 xcoordinate(3, 4) = 2
 ycoordinate(3, 4) = 1
 xcoordinate(3, 5) = 1
 ycoordinate(3, 5) = 2
 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

75

Adding New Preset 4
This preset is called an oscillator because it oscillates between two different states, this one is
commonly know as a ‘Toad’. The screenshot below shows the 2 states that the Toad oscilates
between as well as showing the preset ghost image.

 Private Sub cmdtoad_Click(sender As Object, e As EventArgs) Handles cmdtoad.Click
 lineshape = Not (lineshape)
 shapenumber = 4
 shapecomponent(4) = 6
 xcoordinate(4, 1) = 1
 ycoordinate(4, 1) = 0
 xcoordinate(4, 2) = 2
 ycoordinate(4, 2) = 0
 xcoordinate(4, 3) = 3
 ycoordinate(4, 3) = 0
 xcoordinate(4, 4) = 0
 ycoordinate(4, 4) = 1
 xcoordinate(4, 5) = 1
 ycoordinate(4, 5) = 1
 xcoordinate(4, 6) = 2
 ycoordinate(4, 6) = 1
 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

76

Adding New Preset 5
This preset is called a Glider. It is self perpetuating and will progress across the screen in a south east
direction until it reaches the screen boundary. As shown in screenshot below the glider has four
different states.

Private Sub cmdGlider_Click(sender As Object, e As EventArgs) Handles
cmdGlider.Click
 lineshape = Not (lineshape)
 shapenumber = 5
 shapecomponent(5) = 5
 xcoordinate(5, 1) = 0
 ycoordinate(5, 1) = 2
 xcoordinate(5, 2) = 1
 ycoordinate(5, 2) = 0
 xcoordinate(5, 3) = 1
 ycoordinate(5, 3) = 2
 xcoordinate(5, 4) = 2
 ycoordinate(5, 4) = 1
 xcoordinate(5, 5) = 2
 ycoordinate(5, 5) = 2
 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

77

Adding New Preset 6
This preset is called a medium sized spaceship. (There are both small and large spaceships as well).
The medium sized space ship moves from right to left and has four states (shown in the screenshot
below). It contains 15 pixels.

 Private Sub cmdmws_Click(sender As Object, e As EventArgs) Handles cmdmws.Click
 lineshape = Not (lineshape)
 shapenumber = 6
 shapecomponent(6) = 15
 xcoordinate(6, 1) = 0
 ycoordinate(6, 1) = 1
 xcoordinate(6, 2) = 0
 ycoordinate(6, 2) = 2
 xcoordinate(6, 3) = 1
 ycoordinate(6, 3) = 1
 xcoordinate(6, 4) = 1
 ycoordinate(6, 4) = 2
 xcoordinate(6, 5) = 1
 ycoordinate(6, 5) = 3
 xcoordinate(6, 6) = 2
 ycoordinate(6, 6) = 1
 xcoordinate(6, 7) = 2
 ycoordinate(6, 7) = 2
 xcoordinate(6, 8) = 2
 ycoordinate(6, 8) = 3
 xcoordinate(6, 9) = 3
 ycoordinate(6, 9) = 0
 xcoordinate(6, 10) = 3
 ycoordinate(6, 10) = 2
 xcoordinate(6, 11) = 3
 ycoordinate(6, 11) = 3
 xcoordinate(6, 12) = 4
 ycoordinate(6, 12) = 0
 xcoordinate(6, 13) = 4
 ycoordinate(6, 13) = 1
 xcoordinate(6, 14) = 4
 ycoordinate(6, 14) = 2
 xcoordinate(6, 15) = 5
 ycoordinate(6, 15) = 1
 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

78

Object Orientated Code
The next stage of my development was to change my code to add object orientation to it. I decided
to do this for several reasons. We had recently covered his topic at college and I was keen to see if
would be able to untilise this technique. Secondly, I wanted to demonstrate that I am able to
program proceeduraly and object orientedly. Using OOP would make my code more readable and
easier to maintain, and also it meant that I would be able to reduce my arrays from 2D to 1D and
change 1D arrays to non dimensioned properties.

I began by defining a class:

I amended my routines to the updated variables “pshapenumber”, “pshapecomponent”,
“pxcoordinate”, “pycoordinate”. For Example here is the routine that handles the mouse move
event, but now contains the updated variables.

Next I amended the code associated with choosing a small primitive. For example here is the code
that iniates the vertical line.

Public Class ptive

 Public pname As String
 Public pshapenumber As Integer
 Public pshapecomponent As Integer
 Public pxcoordinate(20) As Integer
 Public pycoordinate(20) As Integer

 End Class

Private Sub pctCopy_MouseMove(sender As Object, e As MouseEventArgs)
 Dim a, b As Integer
 If lineshape = False Then
 Exit Sub
 End If
 ' outputpic = pctCopy.Image
 a = (e.X.ToString)
 b = (e.Y.ToString)
 a = Int(a / 10)
 b = Int(b / 10)
 For cntr = 1 To prim.pshapecomponent
 updatedisplay((olda + prim.pxcoordinate(cntr)), (oldb +
prim.pycoordinate(cntr)))
 Next
 olda = a
 oldb = b
 For cntr = 1 To prim.pshapecomponent
 mousedispayred((olda + prim.pxcoordinate(cntr)), (oldb +
prim.pycoordinate(cntr)))
 Next
 ' pctCopy.Image = outputpic
 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

79

Note that the arrays used to be two dimensional (pxcoordinate & pycoordinate) but are now one
dimensional, and the one dimensional array e.g. pshape component is now a simple variable.
Before Object Orientation:

After Object Orientation:

I then tested the updated code and it worked. (The two new
buttons at the bottom of the screen where used to test and
verify the new class).

 Private Sub cmdvline_Click(sender As Object, e As EventArgs) Handles
cmdvline.Click
 lineshape = Not (lineshape)
 prim.pshapenumber = 2
 prim.pshapecomponent = 3
 prim.pxcoordinate(1) = 0
 prim.pycoordinate(1) = 0
 prim.pxcoordinate(2) = 0
 prim.pycoordinate(2) = 1
 prim.pxcoordinate(3) = 0
 prim.pycoordinate(3) = 2
 End Sub

 Private Sub cmdvline_Click(sender As Object, e As EventArgs) Handles
cmdvline.Click
 lineshape = Not (lineshape)
 shapenumber = 2
 shapecomponent(2) = 3
 xcoordinate(2, 1) = 0
 ycoordinate(2, 1) = 0
 xcoordinate(2, 2) = 0
 ycoordinate(2, 2) = 1
 xcoordinate(2, 3) = 0
 ycoordinate(2, 3) = 2
 End Sub

 Private Sub cmdvline_Click(sender As Object, e As EventArgs) Handles
cmdvline.Click
 lineshape = Not (lineshape)
 prim.pshapenumber = 2
 prim.pshapecomponent = 3
 prim.pxcoordinate(1) = 0
 prim.pycoordinate(1) = 0
 prim.pxcoordinate(2) = 0
 prim.pycoordinate(2) = 1
 prim.pxcoordinate(3) = 0
 prim.pycoordinate(3) = 2
 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

80

Once I had verified the method I amended the rest of my buttons as shown below.

Private Sub Button2_Click_1(sender As Object, e As EventArgs) Handles
Button2.Click
 '
 ' test of oo
**

 prim.pprim.pshapenumber = 1
 prim.pprim.pshapecomponent = 4
 prim.pprim.pxcoordinate(1) = 0
 prim.pprim.pycoordinate(1) = 0
 prim.pprim.pxcoordinate(2) = 1
 prim.pprim.pycoordinate(2) = 0
 prim.pprim.pxcoordinate(3) = 2
 prim.pprim.pycoordinate(3) = 0
 prim.pprim.pxcoordinate(4) = 3
 prim.pprim.pycoordinate(4) = 0

 MsgBox(prim.pprim.pshapenumber)

 End Sub

 Private Sub Button3_Click_1(sender As Object, e As EventArgs) Handles
Button3.Click
 MsgBox(prim.pprim.pshapenumber)
 End Sub

Private Sub cmdvline_Click(sender As Object, e As EventArgs) Handles cmdvline.Click
 lineshape = Not (lineshape)
 prim.pshapenumber = 2
 prim.pshapecomponent = 3
 prim.pxcoordinate(1) = 0
 prim.pycoordinate(1) = 0
 prim.pxcoordinate(2) = 0
 prim.pycoordinate(2) = 1
 prim.pxcoordinate(3) = 0
 prim.pycoordinate(3) = 2
 End Sub

 Private Sub cmdbs_Click(sender As Object, e As EventArgs) Handles cmdbs.Click
 lineshape = Not (lineshape)
 prim.pshapenumber = 3
 prim.pshapecomponent = 5
 prim.pxcoordinate(1) = 1
 prim.pycoordinate(1) = 0
 prim.pxcoordinate(2) = 0
 prim.pycoordinate(2) = 1
 prim.pxcoordinate(3) = 1
 prim.pycoordinate(3) = 1
 prim.pxcoordinate(4) = 2
 prim.pycoordinate(4) = 1
 prim.pxcoordinate(5) = 1
 prim.pycoordinate(5) = 2
 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

81

 Private Sub cmdtoad_Click(sender As Object, e As EventArgs) Handles
cmdtoad.Click
 lineshape = Not (lineshape)
 prim.pshapenumber = 4
 prim.pshapecomponent = 6
 prim.pxcoordinate(1) = 1
 prim.pycoordinate(1) = 0
 prim.pxcoordinate(2) = 2
 prim.pycoordinate(2) = 0
 prim.pxcoordinate(3) = 3
 prim.pycoordinate(3) = 0
 prim.pxcoordinate(4) = 0
 prim.pycoordinate(4) = 1
 prim.pxcoordinate(5) = 1
 prim.pycoordinate(5) = 1
 prim.pxcoordinate(6) = 2
 prim.pycoordinate(6) = 1
 End Sub

 Private Sub cmdGlider_Click(sender As Object, e As EventArgs) Handles
cmdGlider.Click
 lineshape = Not (lineshape)
 prim.pshapenumber = 5
 prim.pshapecomponent = 5
 prim.pxcoordinate(1) = 0
 prim.pycoordinate(1) = 2
 prim.pxcoordinate(2) = 1
 prim.pycoordinate(2) = 0
 prim.pxcoordinate(3) = 1
 prim.pycoordinate(3) = 2
 prim.pxcoordinate(4) = 2
 prim.pycoordinate(4) = 1
 prim.pxcoordinate(5) = 2
 prim.pycoordinate(5) = 2
 End Sub

 Private Sub cmdmws_Click(sender As Object, e As EventArgs) Handles cmdmws.Click
 lineshape = Not (lineshape)
 prim.pshapenumber = 6
 prim.pshapecomponent = 15
 prim.pxcoordinate(1) = 0
 prim.pycoordinate(1) = 1
 prim.pxcoordinate(2) = 0
 prim.pycoordinate(2) = 2
 prim.pxcoordinate(3) = 1
 prim.pycoordinate(3) = 1
 prim.pxcoordinate(4) = 1
 prim.pycoordinate(4) = 2
 prim.pxcoordinate(5) = 1
 prim.pycoordinate(5) = 3
 prim.pxcoordinate(6) = 2
 prim.pycoordinate(6) = 1
 prim.pxcoordinate(7) = 2
 prim.pycoordinate(7) = 2
 prim.pxcoordinate(8) = 2
 prim.pycoordinate(8) = 3
 prim.pxcoordinate(9) = 3
 prim.pycoordinate(9) = 0

 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

82

As I was amending my code I tested each procedure for functionality, here are screenshots two of the
selected test:

Number 1 testing the gliders

As can be seen from this test both my mouse down and mouse move procedures are functioning
correctly.

Number 2 testing the Spaceships

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

83

End User Testing
At this point I decided to show my nearly finished prototype to my end user (Mr Watson) for
feedback. He was very pleased with the project so far but he had one thing that he asked me to
improve. The way the project works at the moment is the user can select a primitive shape from one
of the buttons on the right to add to the environment. The problem that my end user found with this
was that in order to deselect the primitive shape the button itself had to be clicked a second time.
Whilest he felt that this wasn’t much of an issue for himself, he did feel that the students who were
new to the software might initially find difficulty with this input method.

On reflection I agreed that with my end user that the input method was not fully intuitive so I
embarked on further development in order to remedy the situation.

First thing I tried was to give a visual indication of which button had been selected in some way. I
intiatlly tried to change the appearance through the defaults such as sunken.

In this example “Baby Star” changes appearance once it has been clicked and then changes back
once it is deselected. I thought this was quite a good solution but I showed my project to someone
who had not seen it before and whilst they eventually understood the highlighting system, this
understanding was not immediate. I felt that there must be a better solution.

Next I tried changing the whole colour and texture of the button.

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

84

Whilst this was a slight improvement there was still the issue that a user had to select and then
deselect a button. Whilst I felt that I could include instruction on this I felt that actually the input
method itself was at fault since it was only partially intuitive to a user. I therefore decided to try a
different control.

After some research, I settled on a combo box. Here is my prototype:

This seemed to work a lot better than my previous method as there was no ambiguity over whether
a button has been “Selected” or not. I then showed my end user the technique and he was much
happier with it and so I changed my solution to use a combo box for preset selection.

Private Sub cmbChoice_SelectedIndexChanged(sender As Object, e As EventArgs)
Handles cmbChoice.SelectedIndexChanged
 Dim n As Integer
 n = cmbChoice.SelectedIndex
 MsgBox(n)
 If n = 0 Then
 lineshape = False
 End If
 If n = 1 Then
 lineshape = True
 prim.pshapenumber = 1
 prim.pshapecomponent = 4
 prim.pxcoordinate(1) = 0
 prim.pycoordinate(1) = 0
 prim.pxcoordinate(2) = 1
 prim.pycoordinate(2) = 0
 prim.pxcoordinate(3) = 2
 prim.pycoordinate(3) = 0
 prim.pxcoordinate(4) = 3
 prim.pycoordinate(4) = 0
 End If
 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

85

Private Sub cmbChoice_SelectedIndexChanged(sender As Object, e As EventArgs)
Handles cmbChoice.SelectedIndexChanged
 Dim n As Integer
 n = cmbChoice.SelectedIndex
 If n = 0 Then
 lineshape = False
 End If
 If n = 1 Then
 lineshape = True
 prim.pshapenumber = 1
 prim.pshapecomponent = 4
 prim.pxcoordinate(1) = 0
 prim.pycoordinate(1) = 0
 prim.pxcoordinate(2) = 1
 prim.pycoordinate(2) = 0
 prim.pxcoordinate(3) = 2
 prim.pycoordinate(3) = 0
 prim.pxcoordinate(4) = 3
 prim.pycoordinate(4) = 0
 End If

 If n = 2 Then
 lineshape = True
 prim.pshapenumber = 2
 prim.pshapecomponent = 3
 prim.pxcoordinate(1) = 0
 prim.pycoordinate(1) = 0
 prim.pxcoordinate(2) = 0
 prim.pycoordinate(2) = 1
 prim.pxcoordinate(3) = 0
 prim.pycoordinate(3) = 2
 End If

 If n = 3 Then
 lineshape = True
 prim.pshapenumber = 3
 prim.pshapecomponent = 5
 prim.pxcoordinate(1) = 1
 prim.pycoordinate(1) = 0
 prim.pxcoordinate(2) = 0
 prim.pycoordinate(2) = 1
 prim.pxcoordinate(3) = 1
 prim.pycoordinate(3) = 1
 prim.pxcoordinate(4) = 2
 prim.pycoordinate(4) = 1
 prim.pxcoordinate(5) = 1
 prim.pycoordinate(5) = 2
 End If

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

86

 If n = 4 Then
 lineshape = True
 prim.pshapenumber = 4
 prim.pshapecomponent = 6
 prim.pxcoordinate(1) = 1
 prim.pycoordinate(1) = 0
 prim.pxcoordinate(2) = 2
 prim.pycoordinate(2) = 0
 prim.pxcoordinate(3) = 3
 prim.pycoordinate(3) = 0
 prim.pxcoordinate(4) = 0
 prim.pycoordinate(4) = 1
 prim.pxcoordinate(5) = 1
 prim.pycoordinate(5) = 1
 prim.pxcoordinate(6) = 2
 prim.pycoordinate(6) = 1
 End If

 If n = 5 Then
 lineshape = True
 prim.pshapenumber = 5
 prim.pshapecomponent = 5
 prim.pxcoordinate(1) = 0
 prim.pycoordinate(1) = 2
 prim.pxcoordinate(2) = 1
 prim.pycoordinate(2) = 0
 prim.pxcoordinate(3) = 1
 prim.pycoordinate(3) = 2
 prim.pxcoordinate(4) = 2
 prim.pycoordinate(4) = 1
 prim.pxcoordinate(5) = 2
 prim.pycoordinate(5) = 2
 End If

 If n = 6 Then
 lineshape = True
 prim.pshapenumber = 6
 prim.pshapecomponent = 15
 prim.pxcoordinate(1) = 0
 prim.pycoordinate(1) = 1
 prim.pxcoordinate(2) = 0
 prim.pycoordinate(2) = 2
 prim.pxcoordinate(3) = 1
 prim.pycoordinate(3) = 1
 prim.pxcoordinate(4) = 1
 prim.pycoordinate(4) = 2
 prim.pxcoordinate(5) = 1
 prim.pycoordinate(5) = 3
 prim.pxcoordinate(6) = 2
 prim.pycoordinate(6) = 1
 prim.pxcoordinate(7) = 2
 prim.pycoordinate(7) = 2
 prim.pxcoordinate(8) = 2
 prim.pycoordinate(8) = 3
 prim.pxcoordinate(9) = 3
 prim.pycoordinate(9) = 0
 End If
 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

87

This the finished form:

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

88

Testing
Here is my Testing Table.

GUI Testing Table
Test
No.

Test Expected Results Method / test data Pass/
Fail

Screenshot

1 Game
initialisation

On Form Load
the user is
presented with a
blank 50x50 grid
with each
element of the
grid turned ‘off’.

Run the program
and observe the
start up

Pass

2 Make sure

the
instruction
screen
displays

The instructions
are displayed on
separate user
interface

Click on instructions
button view
instructions

Pass

3 Check Reset

button is
functional

User should be
presented with a
blank 50x50 grid.

The program will be
run and stopped
with a bit pattern in
place before the
reset button is
pressed

Pass

4 Check run
button is
functional

The program will
begin calculating
generations.

Program will be
loaded and a bit
pattern introduced
to the user
interface. The run
button will then be
clicked.

Pass

5 Testing Stop
button works

On clicking the
stop button the
generations
should cease
calculating.

I bit pattern will be
introduced to the
user interface
before the run
button is pressed.
As the generation
are being calculated
the stop button will
be clicked.

Fail
but
then
moved
the
loop
now
Pass

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

89

6 Check the
Exit button
message box

A message box
should appear
asking “are you
sure you want to
exit?”

The program is
loaded and then
the exit button is
clicked.

Pass

7 Check the

Exit button
works

A message box
should appear
asking “are you
sure you want to
exit?”

The program is
loaded, but this
time the program is
run before being
stopped and then
the exit button is
clicked.

Pass

8 Testing the
Yes/ No
message box
which
follows exit
click

On clicking the
no option the
message box
should disappear
and the
computer should
return to the
program

The exit button is
clicked followed by
“no”

Pass

9 Testing the
Yes/ No
message box
which
follows exit
click

On clicking the
yes option the
code should stop
running.

The exit button is
clicked followed by
“yes”

Pass

10 Check Save
button

On clicking save a
copy of the
current bit
pattern should
be saved to the
user defined text
file.

The program is
loaded and a bit
pattern created on
the user interface.
The save button is
then pressed.

Pass

11 Check Save
button

On clicking save a
copy of the
current bit
pattern should
be saved to the
user defined text
file.

The program is
loaded and a bit
pattern created on
the user interface.
This time the
program will
calculate the
generational
iterations before
being altered. The
save button is then
pressed.

Pass

12 Check Load
button

On clicking load a
copy of a saved
bit pattern
should be
displayed ready
to be run.

A bit pattern will be
introduced to the
user interface and
saved. The user
interface will be
reset and then the

Pass

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

90

saved bit pattern
will be loaded. The
loaded bit pattern
should be the same
as the saved bit
pattern.

13 Test Fast
button

On clicking the
fast button the
time between
generational
iterations should
decrease

The bit pattern will
be I traduced to the
user interface and
the run button
pressed. The fast
button will then be
pressed which
should speed up
the program by half
a second.

Pass

14 Test fast
button limit

On clicking the
fast button
multiple times
the program
should hit a
speed limit of
half a second per
cycle.

Bit pattern will be
introduced to the
user interface and
the run button
selected. The fast
button will then be
clicked three times

Pass

15 Test fast
button limit

On clicking the
fast button
multiple times
the program
should hit a
speed limit of
half a second per
cycle.

Bit pattern will be
introduced to the
user interface and
the run button
selected. The fast
button will then be
clicked four times

Pass

16 Check slow
button

On clicking the
slow button the
time between
generational
iterations should
increase

The bit pattern will
be I traduced to the
user interface and
the run button
pressed. The fast
button will then be
pressed which
should slow down
the program by half
a second.

Pass

17 Test slow
button limit

On clicking the
slow button
multiple times
the program
should hit a
speed limit of ten
seconds per
cycle.

Bit pattern will be
introduced to the
user interface and
the run button
selected. The slow
button will then be
clicked 16 times

Pass

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

91

18 Test slow
button limit

On clicking the
slow button
multiple times
the program
should hit a
speed limit of 10
seconds per
cycle.

Bit pattern will be
introduced to the
user interface and
the run button
selected. The slow
button will then be
clicked more than
16 times

Pass

19 Test that the
generation
indicator is
working

On running the
program the
number of
generations
should be
displayed in
generation text
box

Bit pattern will be
introduced to the
user interface and
the program
started. As the
generations
increase so should
the number.

Pass

20 Test that if
the cell has
one
neighbour it
will
disappear

Pass

21 Test that if
the cell has
two
neighbours is
already off it
will stay off

Pass

22 Test that if
the cell has
two
neighbours is
already on it
will stay on

Pass

23 Test that if
the cell has
three
neighbours it
will grow

Pass

24 Test that the
pattern bar
displays the
shapes

On running the
pattern bar the
pre coded
shaped are
displayed

Click on the Pattern
bar.

Pass

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

92

25 Test that the
Horizontal
line displays
its ghost

the Horizontal
line displays its
ghost

Click on the
horizontal bar the
hover the mouse of
the interface

Pass

26 Test that the

Vertical line
displays its
ghost

the Vertical line
displays its ghost

Click on the vertical
bar the hover the
mouse of the
interface

Pass

27 Test that the

Baby Star
line displays
its ghost

the Baby Star line
displays its ghost

Click on the baby
star bar the hover
the mouse of the
interface

Pass

28 Test that the

Toad line
displays its
ghost

the Toad line
displays its ghost

Click on the Toad
bar the hover the
mouse of the
interface

Pass

29 Test that the

Glider line
displays its
ghost

the Glider line
displays its ghost

Click on the Glider
bar the hover the
mouse of the
interface

Pass

30 Test that the

Space Ship
line displays
its ghost

the Space Ship
line displays its
ghost

Click on the Space
Ship bar the hover
the mouse of the
interface

Pass

31 Test that

when clicked
Horizontal is
displayed

Horizontal cells is
displayed

Click on the
interface

Pass

32 Test that

when clicked
Vertical is
displayed

Vertical cells is
displayed

Click on the
interface

Pass

33 Test that

when clicked
Baby Star is
displayed

Baby Star cells is
displayed

Click on the
interface

Pass

34 Test that

when clicked
Toad is
displayed

Toad cells is
displayed

Click on the
interface

Pass

35 Test that
when clicked
Glider is
displayed

Glider cells is
displayed

Click on the
interface

Pass

36 Test that

when clicked
Space Ship is
displayed

Space Ship cells is
displayed

Click on the
interface

Pass

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

93

Beta Testing
To make sure that my project is up to the requirements I have made, I showed my project to Mr
Watson and a selected group of year 11s, I asked them the following questionnaire.

To test my project was:

Here is what Mr Watson said about my project:

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

94

Here are the student responses:

Beta Testing Result

Overall I would judge this success criteria to be met. As you can see from the above responses Mr
Watson assessed my project at 5 out of 5 for realism. A select group of 5 year 11 students who Mr
Watson showed my project to give an average score of 3.8. Even though this last score is lower than
I would have hoped it is still over half or indeed better than 60% so I am happy with this. If I were to
develop the solution further it would be interesting to work with a group of students on improving
this point, but as I wasn’t allowed to talk to students directly I wasn’t able to do that this time.

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

95

Evalutaion
In this section I will evualate my solution.

What went well:
Although I found this project challenging I am glad that I completed it as I have substantially
improved my programing knowledge. One of the main things that I am pleased with is that I taught
myself visual basic forms. This is significantly more difficult than the console application, as there are
countless menus, sub menus, forms and properties to master. In fact, it probably took me as long to
learn the language as it did to do the project. As you will see from earlier in my project I was able to
program a simplified (non-animated) version of my project in console relatively quickly.

A further thing that I enjoyed was learning about the game of life. It is interesting to know that this
idea was first conceived of by John Conway in 1970. I really do think that the patterns the simulation
produces mimic basic life, and it is very exciting to create something that growths in unexpected
ways.

End User Sign Off

My end user was very pleased with the project and accepted the final version. Here is an email from
him.

Feedback/ Evidence

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

96

Evaluation of Success Criteria
In this section I will evaluate my solution to see how closely it matches my success criteria. As you
can see from the design section my success criteria are as follows:

1) My project’s user interface must be welcoming and easy to use in the classroom
environment.

2) My Solution should mimic the life cycle of cells in an artificial habitat, using the rules from
Conway’s Game of Life. I will measure this criteria using feedback from the year 11 students
and Mr Watson:

3) Create a fully functioning animation
4) The solution that I provide must be better at teaching the year 11 students the life cycle of

Conway’s cells as the other teaching methods (see research), I will measure this based on
feedback from the teacher Mr Watson and the year 11 students.

5) My project must be able to store user created designs
6) My solution must be robust and should not crash when being used as this would disrupt the

lesson, resulting in wasted time and ruining the classroom atmosphere.
7) My solution should be fully documented which will facilitate further development either

myself or by a 3rd party should this be required in the future.
8) My solution should engage students, I will judge these criteria based on the feedback from

my end user (Mr Watson) and the Year 11 students.
9) My solution must be easy to use. I will judge this criterion based on feedback from my end

user (Mr Watson) and the Year 11 students.
10) My solution should take up a limited amount of space on a hard drive. I am aiming for a

maximum footprint of 30mb.
11) My project must be rendered effectively using the school’s workstationsl. This will mean that

all the students will be able to use the simulation without any performance issues.
12) My solution should quick to load, I would estimate the longest time the end user (Mr

Watson) and the students will have to wait would be maximum 10 seconds.

13) My Project should generate the cells by following the set rules, regardless of the pattern or

shape created by the user.

14) Store the designs created by the user, so that the student will be able to carry on where they

left off last time they used the project.

15) My solution must run quickly enough to create persistence of vision.

16) My solution must be capable of running on the minimum specification computer that my end
user (Mr Watson) might encounter.

17) My solution must be capable of running on the school’s network, due to it having a
numerous number of security protocols.

I will now evaluate each criterion in turn to see how successful my project has been.

1) My project’s user interface must be welcoming and to be used easily in the classroom
environment.

I am very pleased with my user interface:

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

97

This is actually the first time that I have created a graphical user interface with working buttons. My
previous coding experience was one console app and the difference in end product is considerable.
Whilst I couldn’t imagine an end user who was low skilled using my solution that was console based,
I feel that I could train anyone to use the interface of my finished product. Also I have designed the
interface to be intuitive so that a person with a responsible degree of computer literacy would be
able to use it with limited or no instruction. As you can see from the development section my end
user had significant input into the design of the interface and I feel that this has really stretched my
skill set and improved the final product a lot. Overall I would say that this success criteria are met.

2) My Solution should mimic the life cycle of cells in an artificial habitat, using the rules from
Conway’s Game of Life.

As seen in the Beta Testing section. I said that this success criteria would be assessed by my end-
users. Once my project was complete I showed it to Mr Watson and a selected group of year 11s, I
asked them the following questionnaire:

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

98

Here is what Mr Watson said about my project:

Here are the student responses:

Overall I would judge this success criteria to be met. As you can see from the above responses Mr
Watson assessed my project at 5 out of 5 for realism. A select group of 5 year 11 students who Mr
Watson showed my project to give an average score of 3.8. Even though this last score is lower than
I would have hoped it is still over half or indeed better than 60% so I am happy with this. If I were to
develop the solution further it would be interesting to work with a group of students on improving
this point, but as I wasn’t allowed to talk to students directly I wasn’t able to do that this time.

3) Create a fully functioning simulation

As can be seen from my testing section and also my end user signoff the solution is fully functional
so I would say that this criterion has been met.

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

99

4) The solution that I provide must be better at teaching the year 11 students the life cycle of
Conway’s cells as the other teaching methods

This point I am not so sure of and having completed the project I feel that the criteria was a little too
ambitious. As you can see from the above questionnaire students rated my program as a 3.2 out of 5
for “helping you understand the concept of environmental factors in the growth of an organism?”
Whilst pleased with this as a result, my solution does not include any of the theory that the students
need to know about the topic so realistically can only form part of Mr Watson’s strategy for teaching
this topic. Overall I would say this success criteria were not met.

5) My project must be able to store the design created by the student

As can be seen from the development section my project has a function which will allow a user
defined pattern to be recorded and reloaded, and so I will judge this criterion to have been well met.

6) My solution must be robust and should not crash when being used

Throughout my formal testing and also my informal use my solution never showed any signs of
hanging or exiting in an unexpected manner. It has been used by several test users and none of
those reported any stability issues either, therefore I would judge this criterion to be well met.

7) My solution should be fully documented which will facilitate further development either
myself or by a 3rd party should this be required in the future.

Although I commented my code, I have not provided either a list of variables used or a list of
functions so I would say that this criterion is only partially met.

8) My solution should engage students

Anecdotally Mr Watson told me that the student who tested my project liked it. This can be
evidence by looking at the scores for the questionnaire which where all better than 50% so I would
say that this criterion has been met.

9) My solution must be easy to use.

All the students including Mr Watson all said that my project was easy to use and as a result the
success criteria was met.

10) My solution should take up a limited amount of space on a hard drive. I am aiming for a
maximum footprint of 30mb.

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

100

As may be seen from the above screenshot my finished solution had a footprint of 6.05MB so this
criterion has been met.

11) My solution should quick to load, I would estimate the longest time the end user (Mr

Watson) and the students will have to wait would be maximum 10 seconds.

At the moment my project takes over 40 seconds to load into visual studio however if I was to
compile my code into binary it would take much less time as a result. This is one of the things that I
would like to do if I were to continue with this project.

12) My Project should generate the cells by following the set rules

As can be seen from the testing section this criterion has been met.

13) Store the designs created by the user

As can be seen from the development section my project has a function which will allow a user
defined pattern to be recorded and reloaded, and so I will judge this criterion to have been well met.

14) My solution must run quickly enough to create persistence of vision.

In the end my solution didn’t meet this criterion. However, I believe this modification that I mention
later in this section using 1s and 0s instead of Os and Xs would have a significant uplift in
performance.

15) My solution must be capable of running on the school’s network

This criteria was met.

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

101

What I would change if I was to do this again:
Future development
When I was part of the way through my project I realised that I could improve its efficiency by
changing the underlying data structure. It was little too late in my schedule to change before the
project deadline so I am mentioning here as a thought for future development. When I started the
project I had to decide on a data structure to represent each pixel’s property (on/off). I decided at
the time to use an “x” for on and a “o” for off. This was a reasonably arbitrary decision at the time
although I chose the data structure as it was easier for me to understand. I had recently been
practicing with noughts and crosses programs prior to starting the game of life and I carried this data
structure over. I had heard of Booleans, which would probably have been more efficient from a data
usage point of view (one bit per pixel compared to one bite per pixel), but at the time Booleans were
new to me and so I stuck with what I knew. If I were to do this again I would investigate the use of
Boolean variables to store my data.

A further possibility for improving my code would be to use an integer to store the pixel information
instead of “x” and “o”. Although this would be less efficient from a memory usage point of view
compared to a Boolean, I could make significant efficiency savings in my coding. The existing code
which calculates each points number of neighbours looks like this:

If I had used a one and a zero to represent my data I could have replaced this with a simple addition
calculation, i.e.

For counterx = 1 To maxx
 For countery = 1 To maxy
 If pond((counterx - 1), (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx - 1), countery) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx - 1), (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond(counterx, (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond(counterx, (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), countery) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 Next
 Next

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

102

Neighbours (counter x, counter y) = pond (counter x – 1, counter y – 1) + pond (counter x – 1,
counter y) + pond (counter x – 1, counter y – 1) + pond (counter x, counter y – 1) + pond (counter x,
Counter y + 1) + pond (counter x + 1, counter y – 1) + pond (counter x + 1, counter y) + pond (counter
x + 1, counter y +1)

It most likely that this would have executed much quicker than the way that I coded it in my solution
(8 if statements). As this calculation needs to be performed 2, 500 times per generation I believe
that this improvement would significantly improve the execution time of my code. If I were to do
this project again, or update or maintain this project, I would look into the possibility of changing the
data structure.

Conclusion
Notwithstanding the developments needed to be added to my project, my project still meets the
end user’s/ Mr Watson’s criteria. I have learnt a lot about coding, cells, Conway’s theory and
learning how to use forms, the transition from console to forms was a challenge, however after not
to long I adapted and was able to produce a professional looking project that fitted the criteria
needed. After going through my feedback I can conclude that my project has been a success and I
am very happy with how the project turned out and I truly believe that my project is a unique
learning platform for students studying the life cycle of a cell according to Conway’s theory for Game
of Life.

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

103

Appendix: Full Code Listing

Imports System.IO
Public Class Form1
 'Initialise Variables
 Dim outputpic As New Bitmap(520, 520,
System.Drawing.Imaging.PixelFormat.Format32bppPArgb)
 Dim pond(51, 51) As String
 Dim maxx As Integer = 50
 Dim maxy As Integer = 50
 Dim outputline As String
 Dim neighbours(maxx, maxy) As Integer
 Dim nextgen(maxx, maxy) As String
 Dim generation As Integer = 1
 Dim blocksize As Integer = 9
 Dim olda, oldb As Integer
 Dim lineshape As Boolean = False
 Dim oldcolour(20) As String
 Dim shapecomponent(20) As Integer
 Dim xcoordinate(20, 20) As Integer
 Dim ycoordinate(20, 20) As Integer
 Dim shapenumber As Integer
 Dim prim As New ptive
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 'Set the Clock Ticking
 Tmrtimer.Enabled = True
 End Sub
 Private Sub pctDisplay_MouseDown(sender As Object, e As MouseEventArgs) Handles
pctDisplay.MouseDown
 'This handles mouse click
 Dim a As Integer
 Dim b As Integer
 Dim blocksize As Integer = 9
 Dim counterx, countery As Integer
 a = (e.X.ToString)
 b = (e.Y.ToString)
 a = Int(a / 10)
 b = Int(b / 10)
 'has a primitive shape been selected
 If lineshape = True Then
 For cntr = 1 To prim.pshapecomponent
 pond((a + prim.pxcoordinate(cntr)), (b + prim.pycoordinate(cntr))) = "x"
 Next
 For cntr = 1 To prim.pshapecomponent
 mousedispaywhite((olda + prim.pxcoordinate(cntr)), (oldb +
prim.pycoordinate(cntr)))
 Next
 'if not primitive selected
 Else
 If pond(a, b) = "x" Then
 pond(a, b) = "O"
 Else
 pond(a, b) = "x"
 End If
 For x = (a * 10) To (a * 10 + 9)
 For y = (b * 10) To (b * 10 + 9)
 If pond(a, b) = "x" Then
 outputpic.SetPixel(x, y, Color.White)
 Else
 outputpic.SetPixel(x, y, Color.Blue)
 End If
 Next
 Next
 End If
 pctDisplay.Image = outputpic
 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

104

Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 'setting up the form and array
 For counterx = 1 To maxx
 For countery = 1 To maxy
 pond(counterx, countery) = "O"
 Next
 Next
 For k = 1 To 500
 For l = 1 To 500
 outputpic.SetPixel(k, l, Color.Blue)
 Next
 Next
 pctDisplay.Image = outputpic
 For x = 1 To maxx
 For y = 1 To maxy
 neighbours(x, y) = 0
 Next
 Next
 Tmrtimer.Enabled = False
 End Sub
 Private Sub cmdInstructions_Click(sender As Object, e As EventArgs) Handles
cmdInstructions.Click
 'Click to show insructions
 Form2.Show()
 Me.Hide()
 End Sub
 Private Sub Tmrtimer_Tick(sender As Object, e As EventArgs) Handles Tmrtimer.Tick
 'Every tick of the clock update generation
 Dim clr As New Color
 'count neighbours
 For counterx = 1 To maxx
 For countery = 1 To maxy
 If pond((counterx - 1), (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx - 1), countery) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx - 1), (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond(counterx, (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond(counterx, (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), (countery - 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), countery) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 If pond((counterx + 1), (countery + 1)) = "x" Then
 neighbours(counterx, countery) = neighbours(counterx, countery) + 1
 End If
 Next
 Next
 lblGeneration.Text = ("Generation " & generation)

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

105

'calculate growth or decline of each cell
 For counterx = 1 To maxx
 For countery = 1 To maxy
 'decline
 If neighbours(counterx, countery) < 2 Or neighbours(counterx, countery) > 3 Then
 nextgen(counterx, countery) = "O"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.Blue)
 Next
 Next
 End If
 'growth
 If neighbours(counterx, countery) = 3 Then
 nextgen(counterx, countery) = "x"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.White)
 Next
 Next
 End If
 'static
 If neighbours(counterx, countery) = 2 Then
 If pond(counterx, countery) = "x" Then
 nextgen(counterx, countery) = "x"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.White)
 Next
 Next
 Else
 nextgen(counterx, countery) = "O"
 For subcounterx = (10 * counterx) To (10 * counterx + blocksize)
 For subcountery = (10 * countery) To (10 * countery + blocksize)
 outputpic.SetPixel(subcounterx, subcountery, Color.Blue)
 Next
 Next
 End If
 End If
 Next
 Next
 'reset neighbours array
 For counterx = 1 To maxx
 For countery = 1 To maxy
 pond(counterx, countery) = nextgen(counterx, countery)
 neighbours(counterx, countery) = 0
 Next
 Next
 'update display
 generation = generation + 1
 pctDisplay.Image = outputpic
 Me.Refresh()
 End Sub
 Private Sub cmdEXIT_Click(sender As Object, e As EventArgs) Handles cmdEXIT.Click
 'exit software
 Dim answer As Integer
 answer = MsgBox("Are you sure", vbQuestion + vbYesNo + vbDefaultButton2, "This will end
your session")
 If answer = vbYes Then
 Me.Close()
 End If
 End Sub
 Private Sub cmdStop_Click(sender As Object, e As EventArgs) Handles cmdStop.Click
 'halt generations
 Tmrtimer.Enabled = False
 End Sub
 Private Sub cmdspeedup_Click(sender As Object, e As EventArgs) Handles cmdspeedup.Click

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

106

Private Sub cmdspeedup_Click(sender As Object, e As EventArgs) Handles cmdspeedup.Click
 'speed up simulation
 Dim timeinterval As Integer
 timeinterval = Tmrtimer.Interval
 timeinterval = timeinterval - 500
 If timeinterval < 500 Then
 timeinterval = 500
 End If
 Tmrtimer.Interval = timeinterval
 End Sub
 Private Sub cmdSLOWDOWN_Click(sender As Object, e As EventArgs) Handles
cmdSLOWDOWN.Click
 'slow down simulation
 Dim timeinterval As Integer
 timeinterval = Tmrtimer.Interval
 timeinterval = timeinterval + 500
 If timeinterval > 10000 Then
 timeinterval = 10000
 End If
 Tmrtimer.Interval = timeinterval
 End Sub
 Private Sub cmdsave_Click(sender As Object, e As EventArgs) Handles cmdsave.Click
 'save current pattern
 Dim fname As String
 fname = InputBox("What Would You Like to Call it?")
 fname = fname & ".txt"
 Dim filewrite As New StreamWriter(fname)
 For xcount = 0 To 50
 For ycount = 0 To 50
 filewrite.WriteLine(pond(xcount, ycount))
 Next
 Next
 filewrite.Close()
 End Sub
 Private Sub cmdLOAD_Click(sender As Object, e As EventArgs) Handles cmdLOAD.Click
 'load a preprepared pattern from file
 Dim a As Integer
 Dim b As Integer
 Dim blocksize As Integer = 9
 Dim counterx, countery As Integer
 Dim fname As String
 fname = InputBox("Which File Would You Like To Load?")
 fname = fname & ".txt"
 Dim fileread As StreamReader = New StreamReader(fname)
 For xcount = 0 To 50
 For ycount = 0 To 50
 pond(xcount, ycount) = fileread.ReadLine
 Next
 Next
 fileread.Close()
 Dim outputline As String
 For xcount = 0 To 50
 For ycount = 0 To 50
 outputline = outputline & pond(xcount, ycount)
 Next
 Next
 For a = 0 To 50
 For b = 0 To 50
 For x = (a * 10) To (a * 10 + 9)
 For y = (b * 10) To (b * 10 + 9)
 If pond(a, b) = "x" Then
 outputpic.SetPixel(x, y, Color.White)
 Else
 outputpic.SetPixel(x, y, Color.Blue)
 End If
 Next

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

107

pctDisplay.Image = outputpic
 End Sub
Private Sub reset_Click(sender As Object, e As EventArgs) Handles reset.Click
 'reset display
 Dim a As Integer
 Dim b As Integer
 Dim blocksize As Integer = 9
 Dim counterx, countery As Integer
 For a = 0 To 50
 For b = 0 To 50
 For x = (a * 10) To (a * 10 + 9)
 For y = (b * 10) To (b * 10 + 9)
 pond(a, b) = "o"
 outputpic.SetPixel(x, y, Color.Blue)
 Next
 Next
 Next
 Next
 pctDisplay.Image = outputpic
 generation = 1
 lblGeneration.Text = "Generation " & generation
 End Sub
 Private Sub pctDisplay_MouseMove(sender As Object, e As MouseEventArgs) Handles
pctDisplay.MouseMove
 'update cursor trail
 Dim a, b As Integer
 'no primitve selected
 If lineshape = False Then
 pctDisplay.Image = outputpic
 Exit Sub
 End If
 'if primitive selected
 a = (e.X.ToString)
 b = (e.Y.ToString)
 a = Int(a / 10)
 b = Int(b / 10)
 For cntr = 1 To prim.pshapecomponent
 updatedisplay((olda + prim.pxcoordinate(cntr)), (oldb +
prim.pycoordinate(cntr)))
 Next
 olda = a
 oldb = b
 For cntr = 1 To prim.pshapecomponent
 mousedispayred((olda + prim.pxcoordinate(cntr)), (oldb +
prim.pycoordinate(cntr)))
 Next
 pctDisplay.Image = outputpic
 pctDisplay.Image = outputpic
 End Sub
 Public Sub mousedispayred(dispa As Integer, dispb As Integer)
 'plot red mouse trail
 For x = (dispa * 10) To (dispa * 10 + 9)
 For y = (dispb * 10) To (dispb * 10 + 9)
 outputpic.SetPixel(x, y, Color.Red)
 Next
 Next
 End Sub
 Public Sub mousedispayblue(dispa As Integer, dispb As Integer)
 'reset mouse trail
 For x = (dispa * 10) To (dispa * 10 + 9)
 For y = (dispb * 10) To (dispb * 10 + 9)
 outputpic.SetPixel(x, y, Color.Blue)
 Next
 Next
 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

108

Private Sub pctDisplay_MouseLeave(sender As Object, e As EventArgs) Handles
pctDisplay.MouseLeave
 'when mouse leaves display reset trail
 mousedispayblue(olda, oldb)
 mousedispayblue((olda + 1), oldb)
 mousedispayblue((olda + 2), oldb)
 pctDisplay.Image = outputpic
 End Sub
 Private Sub cmdShapeLine_Click(sender As Object, e As EventArgs)
 'primitive shape horizontal line
 Dim a, b As Integer
 lineshape = Not (lineshape)
 shapenumber = 1
 shapecomponent(1) = 3
 xcoordinate(1, 1) = 0
 ycoordinate(1, 1) = 0
 xcoordinate(1, 2) = 1
 ycoordinate(1, 2) = 0
 xcoordinate(1, 3) = 2
 ycoordinate(1, 3) = 0
 End Sub
 Private Sub Button3_Click(sender As Object, e As EventArgs)
 'button click update
 For counterx = 1 To maxx
 For countery = 1 To maxy
 pond(counterx, countery) = "O"
 Next
 Next
 For k = 1 To 500
 For l = 1 To 500
 outputpic.SetPixel(k, l, Color.Blue)
 Next
 Next
 For x = 1 To maxx
 For y = 1 To maxy
 neighbours(x, y) = 0
 Next
 Next
 End Sub
 Private Sub pctCopy_MouseDown(sender As Object, e As MouseEventArgs)
 'copy image on mouse down
 Dim a As Integer
 Dim b As Integer
 Dim blocksize As Integer = 9
 Dim counterx, countery As Integer
 a = (e.X.ToString)
 b = (e.Y.ToString)
 a = Int(a / 10)
 b = Int(b / 10)
 If lineshape = True Then
 For cntr = 1 To shapecomponent(shapenumber)

pond((a + xcoordinate(shapenumber, cntr)), (b +
ycoordinate(shapenumber, cntr))) = "x"

 Next

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

109

 Private Sub pctCopy_MouseMove(sender As Object, e As MouseEventArgs)
 'copy image when mouse move
 Dim a, b As Integer
 If lineshape = False Then
 Exit Sub
 End If
 a = (e.X.ToString)
 b = (e.Y.ToString)
 a = Int(a / 10)
 b = Int(b / 10)
 For cntr = 1 To shapecomponent(shapenumber)
 updatedisplay((olda + xcoordinate(shapenumber, cntr)), (oldb +
ycoordinate(shapenumber, cntr)))
 Next
 olda = a
 oldb = b
 For cntr = 1 To shapecomponent(shapenumber)
 mousedispayred((olda + xcoordinate(shapenumber, cntr)), (oldb +
ycoordinate(shapenumber, cntr)))
 Next
 End Sub
 Public Sub mousedispaywhite(dispa As Integer, dispb As Integer)
 'add new pixel to display
 For x = (dispa * 10) To (dispa * 10 + 9)
 For y = (dispb * 10) To (dispb * 10 + 9)
 outputpic.SetPixel(x, y, Color.White)
 Next
 Next
 End Sub
 Private Sub pctCopy_MouseLeave(sender As Object, e As EventArgs)
 'copy image when mouse leave
 mousedispayblue(olda, oldb)
 End Sub
 Private Sub Button5_Click(sender As Object, e As EventArgs)
 'primitive shape horizontal line
 lineshape = Not (lineshape)
 shapenumber = 1
 shapecomponent(1) = 4
 xcoordinate(1, 1) = 0
 ycoordinate(1, 1) = 0
 xcoordinate(1, 2) = 1
 ycoordinate(1, 2) = 0
 xcoordinate(1, 3) = 2
 ycoordinate(1, 3) = 0
 xcoordinate(1, 4) = 3
 ycoordinate(1, 4) = 0
 End Sub
Private Sub cmdvline_Click(sender As Object, e As EventArgs)
 'primitive shape vertical line
 lineshape = Not (lineshape)
 shapenumber = 2
 shapecomponent(2) = 3
 xcoordinate(2, 1) = 0
 ycoordinate(2, 1) = 0
 xcoordinate(2, 2) = 0
 ycoordinate(2, 2) = 1
 xcoordinate(2, 3) = 0
 ycoordinate(2, 3) = 2
 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

110

Private Sub cmdbs_Click(sender As Object, e As EventArgs)
 'primitive shape Baby Star
 lineshape = Not (lineshape)
 shapenumber = 3
 shapecomponent(3) = 5
 xcoordinate(3, 1) = 1
 ycoordinate(3, 1) = 0
 xcoordinate(3, 2) = 0
 ycoordinate(3, 2) = 1
 xcoordinate(3, 3) = 1
 ycoordinate(3, 3) = 1
 xcoordinate(3, 4) = 2
 ycoordinate(3, 4) = 1
 xcoordinate(3, 5) = 1
 ycoordinate(3, 5) = 2
 End Sub
 Private Sub cmdtoad_Click(sender As Object, e As EventArgs)
 lineshape = Not (lineshape)
 'primitive shape Toad
 shapenumber = 4
 shapecomponent(4) = 6
 xcoordinate(4, 1) = 1
 ycoordinate(4, 1) = 0
 xcoordinate(4, 2) = 2
 ycoordinate(4, 2) = 0
 xcoordinate(4, 3) = 3
 ycoordinate(4, 3) = 0
 xcoordinate(4, 4) = 0
 ycoordinate(4, 4) = 1
 xcoordinate(4, 5) = 1
 ycoordinate(4, 5) = 1
 xcoordinate(4, 6) = 2
 ycoordinate(4, 6) = 1
 End Sub
 Private Sub cmdGlider_Click(sender As Object, e As EventArgs)
 lineshape = Not (lineshape)
 'primitive shape Glider
 shapenumber = 5
 shapecomponent(5) = 5
 xcoordinate(5, 1) = 0
 ycoordinate(5, 1) = 2
 xcoordinate(5, 2) = 1
 ycoordinate(5, 2) = 0
 xcoordinate(5, 3) = 1
 ycoordinate(5, 3) = 2
 xcoordinate(5, 4) = 2
 ycoordinate(5, 4) = 1
 xcoordinate(5, 5) = 2
 ycoordinate(5, 5) = 2
 End Sub
 Private Sub cmdmws_Click(sender As Object, e As EventArgs)
 lineshape = Not (lineshape)
 'primitive shape Medium Space ship
 shapenumber = 6
 shapecomponent(6) = 15
 xcoordinate(6, 1) = 0
 ycoordinate(6, 1) = 1
 xcoordinate(6, 2) = 0
 ycoordinate(6, 2) = 2
 xcoordinate(6, 3) = 1
 ycoordinate(6, 3) = 1
 xcoordinate(6, 4) = 1
 ycoordinate(6, 4) = 2
 xcoordinate(6, 5) = 1
 ycoordinate(6, 5) = 3
 xcoordinate(6, 6) = 2
 ycoordinate(6, 6) = 1
 xcoordinate(6, 7) = 2
 ycoordinate(6, 7) = 2
 xcoordinate(6, 8) = 2
 ycoordinate(6, 8) = 3
 xcoordinate(6, 9) = 3
 ycoordinate(6, 9) = 0
 End Sub

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

111

Private Sub cmbChoice_SelectedIndexChanged(sender As Object, e As EventArgs) Handles
cmbChoice.SelectedIndexChanged
 'combo box selection
 Dim n As Integer
 n = cmbChoice.SelectedIndex
 If n = 0 Then
 lineshape = False
 End If
 If n = 1 Then
 lineshape = True
 prim.pshapenumber = 1
 prim.pshapecomponent = 4
 prim.pxcoordinate(1) = 0
 prim.pycoordinate(1) = 0
 prim.pxcoordinate(2) = 1
 prim.pycoordinate(2) = 0
 prim.pxcoordinate(3) = 2
 prim.pycoordinate(3) = 0
 prim.pxcoordinate(4) = 3
 prim.pycoordinate(4) = 0
 End If
 If n = 2 Then
 lineshape = True
 prim.pshapenumber = 2
 prim.pshapecomponent = 3
 prim.pxcoordinate(1) = 0
 prim.pycoordinate(1) = 0
 prim.pxcoordinate(2) = 0
 prim.pycoordinate(2) = 1
 prim.pxcoordinate(3) = 0
 prim.pycoordinate(3) = 2
 End If
 If n = 3 Then
 lineshape = True
 prim.pshapenumber = 3
 prim.pshapecomponent = 5
 prim.pxcoordinate(1) = 1
 prim.pycoordinate(1) = 0
 prim.pxcoordinate(2) = 0
 prim.pycoordinate(2) = 1
 prim.pxcoordinate(3) = 1
 prim.pycoordinate(3) = 1
 prim.pxcoordinate(4) = 2
 prim.pycoordinate(4) = 1
 prim.pxcoordinate(5) = 1
 prim.pycoordinate(5) = 2
 End If
 If n = 4 Then
 lineshape = True
 prim.pshapenumber = 4
 prim.pshapecomponent = 6
 prim.pxcoordinate(1) = 1
 prim.pycoordinate(1) = 0
 prim.pxcoordinate(2) = 2
 prim.pycoordinate(2) = 0
 prim.pxcoordinate(3) = 3
 prim.pycoordinate(3) = 0
 prim.pxcoordinate(4) = 0
 prim.pycoordinate(4) = 1
 prim.pxcoordinate(5) = 1
 prim.pycoordinate(5) = 1
 prim.pxcoordinate(6) = 2
 prim.pycoordinate(6) = 1
 End If

Jonathan Maud Candidate Number: 0154 Centre Number: 64395

112

If n = 5 Then
 lineshape = True
 prim.pshapenumber = 5
 prim.pshapecomponent = 5
 prim.pxcoordinate(1) = 0
 prim.pycoordinate(1) = 2
 prim.pxcoordinate(2) = 1
 prim.pycoordinate(2) = 0
 prim.pxcoordinate(3) = 1
 prim.pycoordinate(3) = 2
 prim.pxcoordinate(4) = 2
 prim.pycoordinate(4) = 1
 prim.pxcoordinate(5) = 2
 prim.pycoordinate(5) = 2
 End If
 If n = 6 Then
 lineshape = True
 prim.pshapenumber = 6
 prim.pshapecomponent = 15
 prim.pxcoordinate(1) = 0
 prim.pycoordinate(1) = 1
 prim.pxcoordinate(2) = 0
 prim.pycoordinate(2) = 2
 prim.pxcoordinate(3) = 1
 prim.pycoordinate(3) = 1
 prim.pxcoordinate(4) = 1
 prim.pycoordinate(4) = 2
 prim.pxcoordinate(5) = 1
 prim.pycoordinate(5) = 3
 prim.pxcoordinate(6) = 2
 prim.pycoordinate(6) = 1
 prim.pxcoordinate(7) = 2
 prim.pycoordinate(7) = 2
 prim.pxcoordinate(8) = 2
 prim.pycoordinate(8) = 3
 prim.pxcoordinate(9) = 3
 prim.pycoordinate(9) = 0
 End If
 End Sub
 Public Sub updatedisplay(dispa As Integer, dispb As Integer)
 'update display
 For x = (dispa * 10) To (dispa * 10 + 9)
 For y = (dispb * 10) To (dispb * 10 + 9)
 If pond(dispa, dispb) = "x" Then
 outputpic.SetPixel(x, y, Color.White)
 Else
 outputpic.SetPixel(x, y, Color.Blue)
 End If
 Next
 Next
 End Sub
End Class

