
Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 1 of 94

Can an AI learn to play Super Mario bros.
for the NES?
Owen Crucefix

Candidate Number: 9479

Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 2 of 94

Contents
Table of Figures .. 4

Research ... 5

Introduction ... 5

What needs to be researched? ... 5

What is Super Mario Bros? ... 5

Mario’s Move set .. 5

What types of neural networks are there? .. 6

Artificial Neural Network ... 6

Convolutional Neural Network ... 7

Recurrent Neural Network .. 7

What types of Algorithms can neural networks use? .. 7

Gradient Descent ... 7

Evolutionary/Genetic Algorithm ... 8

How will the problem be emulated/What programming language should be used? 8

Image Recognition/Python .. 9

Using an Emulator/Lua .. 9

Documents ... 11

Super Mario Bros Instruction Manual (US Version) ... 11

Table of Sources ... 12

Summary of research .. 14

Analysis ... 14

What type of AI should be used? ... 14

What method of emulation should be used? ... 14

Class diagram of a single neural network .. 15

Data-Flow Diagram ... 16

Level 0 .. 16

Level 1 .. 17

Volumes of Data ... 17

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 3 of 94

Data Dictionary for what is stored ... 17

Flow Chart of Proposed System ... 18

OOP in Lua ... 19

How the emulator interacts with the lua script .. 19

Controller input ... 20

Mario’s movement capabilities ... 20

Jumping .. 20

Running .. 20

List of Requirements ... 21

Design ... 22

User Interface... 22

UML Class Diagram ... 24

FCEUX Functions ... 24

Data Storage .. 24

PseudoCode of Different Functions ... 27

Reading data for a map .. 27

Creating a new neuron ... 28

Creating a new neural network ... 28

Playing the game ... 28

Checking for Inputs.. 30

Running inputs .. 30

Calculate Fitness .. 31

Sorting the neural networks by fitness values .. 32

Evolving a Generation .. 33

Mutating a network .. 35

Random Function ... 35

Testing Strategy .. 36

Table of tests (includes unit tests and IO tests) .. 36

Testing .. 41

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 4 of 94

Testing Playlist.. 41

Testing Table .. 41

Beta Testing ... 49

How well did the AI work? ... 49

Evaluation ... 54

Have the requirements been met? ... 55

How could the outcome be improved if the problem was revisited? 56

Feedback from the end user .. 57

Code Dump ... 58

Table of Figures

Figure 1 Promo Image of Super Mario Bros ... 5

Figure 2 Example of Layers in an ANN ... 6

Figure 3 Basic algorithm showing how an evolutionary neural network works 8

Figure 4 Example Image of FCEUX running Super Mario Bros 10

Figure 5 An outline of a class diagram for a neural network 15

Figure 6 Simplified outline of a class diagram for a neural network........................ 16

Figure 7 Level 0 Data Flow Diagram for the system .. 16

Figure 8 Level 1 Data Flow Diagram for the system .. 17

Figure 9 Flow Chart of the first generation of neural networks in the system 18

file:///C:/Users/Owen/Desktop/NEA/Can%20an%20AI%20learn%20to%20play%20Super%20Mario%20Bros.docx%23_Toc20954211
file:///C:/Users/Owen/Desktop/NEA/Can%20an%20AI%20learn%20to%20play%20Super%20Mario%20Bros.docx%23_Toc20954212
file:///C:/Users/Owen/Desktop/NEA/Can%20an%20AI%20learn%20to%20play%20Super%20Mario%20Bros.docx%23_Toc20954213
file:///C:/Users/Owen/Desktop/NEA/Can%20an%20AI%20learn%20to%20play%20Super%20Mario%20Bros.docx%23_Toc20954215
file:///C:/Users/Owen/Desktop/NEA/Can%20an%20AI%20learn%20to%20play%20Super%20Mario%20Bros.docx%23_Toc20954217
file:///C:/Users/Owen/Desktop/NEA/Can%20an%20AI%20learn%20to%20play%20Super%20Mario%20Bros.docx%23_Toc20954218
file:///C:/Users/Owen/Desktop/NEA/Can%20an%20AI%20learn%20to%20play%20Super%20Mario%20Bros.docx%23_Toc20954219

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 5 of 94

Research

Introduction

The aim of this investigation is to build an AI that can interact with a Super Mario

Bros. game and find out whether or not it can learn to play the game successfully.

This investigation was initially requested Alex Turner who has a long interest in

Super Mario Bros. and knows how simple the game is and wanted to know if an AI

could learn to play the game.

What needs to be researched?

I will be investigating whether or not an AI can learn to play Super Mario Bros so I

need to know what Super Mario Bros is, how the game works and what kind of AI

should be built to play it.

What is Super Mario Bros?

Super Mario Bros was a video game

developed by Nintendo and launched for

the Nintendo Entertainment System (NES)

(also known as The Famicon in Japan) in

1985.

In the game you play as Mario who must

make it from one end of the stage to the

other. Along the way you must overcome

many obstacles ranging from platforming

jumps to different enemies. There are also collectables and power-ups Mario can

collect to help him beat each stage that can either give him more hits before death

or increase the amount of lives Mario has, if Mario runs out of lives the game ends.

There are 32 levels split across 8 worlds with 4 levels each.

Mario’s Move set

Movement

Mario can walk in both to the left and to the right. Mario can also run in these

directions when holding down the run button.

Jumping

Mario’s main ability is the ability to jump, he can jump a variable height depending

on how long the jump button is held down for. Mario’s jump is used to climb over

obstacles, stomp on enemies and also to hit blocks in order to break them or gain an

item from them.

Figure 1 Promo Image of Super Mario Bros

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 6 of 94

Items/Powerups

Throughout Super Mario Bros. there are multiple different powerups and items. The

main two are the Super Mushroom; which makes Mario larger, allows him to break

blocks and lets him take one more hit before dying, and the Fire Flower, which does

everything the Super Mushroom does, but also allows Mario to shoot fireballs at

enemies by pushing the run button. There is also the Starman which allows Mario to

become invincible so he can’t be hurt by enemies.

What types of neural networks are there?

There are 3 main options for the type of neural networks that can be used:

Artificial Neural Network, Convolutional Neural Network and Recurrent

Neural Network

Artificial Neural Network

Artificial Neural Networks (ANN) are a type of network that is modelled after the

human brain. It is comprised of neurons and neurons. It learns from past data in

order to improve the network and give predictions. It is most commonly used for

random function approximation, where it randomly applies a function to data but

slowly learns by calculating errors between the predicated and actual results in order

to produce the predicated result.

Artificial Neural networks are built up of three types of layers. The first layer is the

input layer, this will receive data through various neurons that will then send the

data through connected neurons to the next layer. The second type of layer is the

hidden layer, there can be multiple hidden layers to a neural network all connected

to each other in order. These layers will then

perform various mathematical operations to the

inputs and recognise the patterns that might be

formed. Finally there is the output layer, this layer

is just for returning the final output from the

system. neuron

Each neuron in the system will have different

weights, these weights specify how important

each neuron is. A Transfer function will calculate

the total weight of the input by adding up all the

weights of the neurons that received an input.

Finally a method called Backpropagation is used to calculate what neurons might

have contributed to the error the most and adjust their weights accordingly.

Figure 2 Example of Layers in an ANN

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 7 of 94

Convolutional Neural Network

Convolution Neural Networks (CNN) are a type of deep learning algorithm that are

used for image recognition. They work by taking an image as an input and then

learning the different features of the images using certain filters. These filters

perform dot products on the image in order to break it down and find patterns.

Recurrent Neural Network

Recurrent Neural Networks (RNN) work over a period of time and are used to predict

the next input based on the previous one. The general structure involves receiving

the first input and applying it to the first layer in the network. Then the output from

this layer is used as the input for the next state. Each layer is exactly the same so

the all have the same weight. At the end all the information is joined together and

the error is calculated from the actual result and the predicted result.

What types of Algorithms can neural networks use?

Gradient Descent

The idea behind a Gradient Descent algorithm is to minimise the error in each

parameter. This is done by iterating over a parameter and slowly moving down the

gradient of error in order to find the lowest point or the error where there is the

least error. Each time the function iterates it calculates the new error and works out

what the gradient of the error line is now based on the previous results. It then uses

this to adjust the parameters and the direction in which the training will continue. It

will stop once the error has reached a low enough point known as the stopping

criteria. This algorithm is very useful for larger neural networks as it only needs to

store gradient vectors for each parameter instead of storing the entire matrix of

information. The downside to this algorithm is that it is very slow for long, narrow

structures of error as it will take more iterations to find the actual minimum value.

Over time gradient descent has been improved with new algorithms such as the

Quasi-Newton method, which builds up approximations for matrices composed of

second derivatives of the loss function in order to approximate the smallest error

margin, but it still has the same concept of the Gradient Descent algorithm which is

to adjust parameters according to how large the error is and improve in the direction

of the smallest error.

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 8 of 94

Evolutionary/Genetic Algorithm

An evolutionary algorithm is based off of the biological concept of “Survival of the

fittest” and it works by having a population of networks that are randomly generated

and have them perform a task. A fitness score is then calculated based on how well

each network performed the task. The networks are then ranked from highest

scoring to lowest scoring. Then a new generation of networks is created by taking

two or more networks with similar scores and “breeding” them to create a network

made up of the neurons from the parents. Mutation is then applied to some of the

networks where they will receive or lose random additional neurons. The cycle will

then repeat again with this generation until a network is produced that can perform

the task nearly perfectly. Often the top scoring network of a generation will be in

the next generation in case no new networks can out-perform it so the highest score

for the generation is at least as good as the last generation. Evolutionary Neural

Networks are very useful for more complicated problems that might have a changing

environment as the network can adapt to its environment and change without the

need for large amounts of new training data. The downside to this type of algorithm

is that it is very slow to train as it requires the problem to be executed several times

for each generation.

How will the problem be emulated/What programming language should be used?

For emulating the problem, I have two options:

Figure 3 Basic algorithm showing how an evolutionary neural network works

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 9 of 94

Image Recognition/Python

Use image recognition on a game of Super Mario Bros and send inputs to a

controller when certain objects are detected on screen. This could be done easily

using Python because there are libraries (for instance OpenCV) that can be used to

detect different colours in an image and give the neural network an idea as to what

the level looks like. This would make it easier to build up an image of everything on

the screen at once without having to worry about creating a data structure to store

the image as it can just be stored as colour values. Python would also be a great

language to use as it supports Object-Oriented programming which would be a great

way to handle the problem. The downside to this method is that certain objects in

the game have very similar colours so the neural network might not be able to tell

the difference between them, for example a Goomba (enemy) has a very similar

colour to brick block so the neural network might not see Goombas as a threat or it

might start to see brick blocks as enemies and try to avoid them. The other

downside is that there might be input lag between the Python script and the

controller so inputs might be late.

Using an Emulator/Lua

Using an emulator and a ROM file for the game I can have direct access to the RAM

for a game of Super Mario Bros. My chosen emulator would be FCEUX because it

allows for custom Lua scripts to be run and is well documented for the different

commands that can be used by

the emulator. Lua is an easy to

use language which while does

not explicitly support Object-

Oriented programming can

simulate objects and classes to

the same effect. If I used an

emulator it would make it really

easy to access all of the data in

the game and could create an

image of the environment with a

100% accuracy as it wouldn’t

depend on any image recognition.

The downside to this is that I

would have to create a class and

method to extract the data from

the RAM and build the map to use

which would take more time. One

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 10 of 94

other downside to Lua is that it’s random function doesn’t always work and that

would mean building my own random function from the ground up, however this

would not take too long to do as random functions are quite simple.

Figure 4 Example Image of FCEUX running Super Mario Bros

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 11 of 94

Documents

Super Mario Bros Instruction Manual (US Version)

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 12 of 94

Table of Sources

Item Source Link/Reference

Super

Mario

Bros

Promo

Image

Official

Nintendo

Store page

https://www.nintendo.co.uk/Games/NES/Super-Mario-Bros--

803853.html

ANN

Diagra

m

Analytics

Vidhya - How

does Artificial

Neural

Network

(ANN)

algorithm

work?

Simplified! By

Tavish

Srivastava

https://www.analyticsvidhya.com/blog/2014/10/ann-work-

simplified/

Super

Mario

Bros

Instruct

ion

Manual

Original by

Nintendo

Images from

Legendsofloc

alization.com

https://legendsoflocalization.com/media/super-mario-

bros/manuals/Super-Mario-Bros-Manual-US.pdf

FCEUX

Docume

ntation

FCEUX.com http://www.fceux.com/web/help/fceux.html

FCEUX

Exampl

e image

emulatorsplay

.com

http://emulatorsplay.blogspot.com/2012/08/fceux-emulator-

for-playing-nintendo.html

Evolutio

nary

Neural

 Electricity

Price

Forecasting

https://www.researchgate.net/publication/4315571_Electricity

_Price_Forecasting_Using_Evolved_Neural_Networks

http://emulatorsplay.blogspot.com/2012/08/fceux-emulator-for-playing-nintendo.html
http://emulatorsplay.blogspot.com/2012/08/fceux-emulator-for-playing-nintendo.html

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 13 of 94

Networ

k

diagram

Using Evolved

Neural

Networks By

D. Srinivasan

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 14 of 94

Summary of research

From my research I have found out that Super Mario Bros is a simple game with

easy to learn controls that rewards the player for collecting items and beating levels

but punishes the player for not avoiding enemies or performing platforming

correctly. I have also found out about several types of neural networks so that I can

find a model that can solve the problem presented to me by Alex in order to get an

AI to learn to play and beat Super Mario Bros. Another area I have researched is the

method of emulation for the problem, I have identified two different methods and

the programming languages that would be needed for both of them.

Analysis

What type of AI should be used?

From looking at the problem on the surface I have decided that an evolutionary

algorithm would be best suited to the problem. This is because the environment

constantly changes in Super Mario Bros so the AI will need to be able adapt to its

environment easily. An evolutionary algorithm makes this easier because it doesn’t

have defined inputs and slowly evolves over time creating the inputs based on its

environment.

What method of emulation should be used?

From my research I have decided that the system will be created using an emulator

and written in Lua. This is because I believe it will be easier to create a map of the

tile data directly from the game’s RAM than to use some form of image recognition

to detect what is on screen. I also believe that it won’t take too long to create the

map and as such that isn’t much of a drawback. The fact that I will have access to

the entire RAM will also allow for different options when calculating fitness and

rewards for the network as I can use data such as the player’s score, their exact

position in a level and whether or not they have gained a powerup in order to give

bonuses to a network. The emulator I will be using is FCEUX Version 2.2.3 for

Windows and has a built-in compiler for Lua scripts along with a few built in

functions for things like accessing memory and creating inputs. FCUEX also allows

you to have control over every single frame meaning there will be no input lag for

the controller and I will be able to analyse everything that happens in the game

without missing any data.

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 15 of 94

Class diagram of a single neural network

When analysing the problem, I decided to make a small diagram to give an outline

as to the components that would need to be created for a single neural network in

the system.

The neural network would be composed of neurons and a map. The map will store

the data for each of the current tiles on screen and will provide and easy way of

locating what type of tile is in each coordinate. The neurons will have an input and

an output, the input will have a coordinate and a tile type associated with it so that

it can send information when its assigned tile type is found at its coordinates. The

output will then refer to an input on the controller and when data is sent from the

input in the neuron it will send an input to the controller.

After this analysis of the original diagram I decided that the input and the output

might not need to be their own classes and could simply be properties of a neuron

simplifying the class diagram to this:

Figure 5 An outline of a class diagram for a neural network

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 16 of 94

Figure 6 Simplified outline of a class diagram for a neural network

Data-Flow Diagram

In order to help understand how an evolutionary neural network would work for this

system I have broken down how the data would be handled by the system in a data-

flow diagram.

Level 0

Figure 7 Level 0 Data Flow Diagram for the system

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 17 of 94

Level 1

Volumes of Data

The system I will produce does not need to store much data. The population of the

current generation of neural networks will need to be stored. This will be done by

storing the coordinates of every neuron in the network in relationship to the map

along with the type of input it is. The fitness value will also be stored with a neural

network if it has already been calculated. This will allow easy access to view an

individual network as well as allowing training to be handled over multiple sessions

as it will save the current generation at the end of a session and will be able to load

the same generation upon the next start-up.

Data Dictionary for what is stored

Reference Name Data Type Length Occurrence Source

1 CoordinateX Integer 0-32 1x per

neuron

Neuron

Figure 8 Level 1 Data Flow Diagram for the system

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 18 of 94

2 CoordinateY Integer 0-32 1x per

neuron

Neuron

3 Output String 6 1x per

neuron

Neuron

4 TileType Integer 1-2 1x per

neuron

Neuron

5 Fitness Integer Unlimited 1x per

network

Neural

Network

6 NetworkID Integer 0-29 1x per

network

Neural

Network

Flow Chart of Proposed System

Now that I know what data will be transferred and what needs to be stored and

need to think about how the system will function. This can be easily outlined with a

simple flow chart so I created a flow chart to show how the system would handle

the first generation.

Figure 9 Flow Chart of the first generation of neural networks in the system

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 19 of 94

OOP in Lua

Lua is not explicitly an OOP language however it does support the OOP paradigm

through the use of tables and meta tables. It is very confusing syntax in order to set

it up but once it is setup for a class it functions like any other OOP language. In

order to help understand how the syntax works I will have an example of class

instantiation below.

local ExClass = {Property1 = 0} –This creates the initial table that the class will be

built off of with its properties listed inside.

ExClass.__index = ExClass – This line means if a value that is not in table is

attempted to be accessed it will be redirected back to itself and create the entry.

Function ExClass.New() –Start of the constructor

local self = setmetatable({},ExClass) –This is the line that does most of the

magic; it creates a blank metatable or object that then inherits all of the

properties and methods from the table ExClass and the assigns the keyword

“self” to be used to access it.

self.Property1 = 1 –Standard contructor code goes here making sure to use

the self prefix to ensure you are changing the property of the object

return self –Returns the metatable to the object

end –Closes the function

--Then for creating a method for the class

Function method1:() –Methods use a “:” instead of a “.” That would be normally

used because it means that the self parameter is automatically added so the

metatable can be accessed.

 --method code

end

How the emulator interacts with the lua script

Because lua is a scripting language it is generally not made to be compiled but

instead interpreted by a program that wants to run the script. The FCEUX emulator

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 20 of 94

has a built in lua interpreter meaning the script will have direct access to the

emulators memory and will be able to execute commands within the emulator.

Controller input

FCEUX allows you to perform inputs automatically through the use of input tables.

An input table states all the possible inputs from a controller and whether or not

they are being held down. In theory this allows for inputs to be changed every single

frame however in practice because the inputs need a frame to refresh, they can only

be done every other frame. For example, A is held down on frame 1 but if A is held

down on frame 2 it is not registered as a new input therefore nothing changes,

however if I is not held down on frame 2 and then is held down on frame 3 it will

register as two separate inputs.

Mario’s movement capabilities

Jumping

Mario can change his jump height by

holding down the jump button for

longer. Through testing I have found out

Mario can reach his maximum jump

height of 67 pixels after 29 frames of

uaholding down the button.

Running

Mario can run by holding down the run button and a direction but he has to

accelerate to his maximum speed. Through testing I have discovered that it takes

Mario 18 frames to accelerate to his maximum speed.

Figure 10 Example image of Mario's maximum jump height
(Actual measurements were taken using the game's memory
location for height)

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 21 of 94

List of Requirements

0. Form a map of the level

0.1. Read the RAM for tile data

0.2. Form an ordered array from the tile data

0.3. Make the map move as Mario moves

1. Create neural network

1.1. Create Neurons with an input, made of coordinates and a tile type, and

an output

1.2. Store data for a neural network as a single string in a uniform fashion

to make it easier to read when accessing previous networks

1.3. Interpret the data string for a neural network

2. Evolve Generation

2.1. Create an ordered list of all neural networks for the current generation

based on fitness values

2.2. Remove the bottom 50% scoring neural networks

2.3. Keep the top scoring neural network for the next generation

2.4. Breed remaining neural networks until the desired number of networks

for the next generation exist

2.4.1 Pick out two neural networks that will be used as parents

2.4.2 Pick random neurons from the two networks for the new

network

2.4.3 Mutate the new network by adding a random amount of

new neurons

3. Play Game

3.1. Load a pre-existing save state at the start of the selected level from a

list

3.2. Check for any inputs from neurons

3.3. Perform inputs into the game

3.4. Check if the game is ready to end via either no inputs or Mario dying

3.5. Calculate Fitness value for a neural network based on the different

scoring methods: Distance, Speed and Coins collected

4. Random Function

 4.1. Random function generates a new seed every time it is used

 4.2 Random function generates integers between an upper and lower bound

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 22 of 94

Design

User Interface

Upon Running the program, the following Interface should be displayed to the user

Depending on which button is

chosen the method in which

fitness is calculated will be

changed

Once one of the options

is selected the next

window will be displayed

Depending on which button is

chosen the level that will be

loaded for the AI to play on

will be changed

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 23 of 94

Once the parameters have been chosen the user should be prompted to either load

a population or create a new one and will be asked for the required inputs for both

and a cancel button to send them back to the menu.

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 24 of 94

UML Class Diagram

After I started the design process, I realised that the map class would be redundant

so I changed it to simply be a property of the Network Class.

FCEUX Functions

The FCEUX emulator that I’m using to run the game and the program comes with its

own built in functions for managing the emulator.

The functions I will be using are listed below along with a description of what they

do:

• Memory.ReadByte(MemoryAddress) – Returns an integer value from 0-255

that represents the data stored in RAM at the specified memory address

• Joypad.Write(Controller,InputTable) – Writes the inputs specified in the

InputTable to the controller specified. Allows for spoofing inputs from a

controller.

• Emu.FrameAdvance() – Advances the game to the next frame

• Gui.Box(X1,Y1,X2,Y2,Colour) – Draws a box on the UI from the coordinates

(X1,Y1) to (X2,Y2) in the colour specified where Colour is a hex

representation of a colour

• savestate.load(savestate.object(state slot)) – Loads a save state from the slot

specified.

Data Storage

The data that needs to be stored by the program is:

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 25 of 94

• The data for each neural network

o The Input and output of neurons

o The fitness scores

• The name of the population

• The number of generations passed

The data will be stored in text files with the following format

The name of the population will be the file name

The first line of the file will be an integer which will refer to the number of

generations that have passed for that population.

The second line will refer to the number of networks in the population

Each line after that will refer to a Network

A network will be stored as string of numbers.

The first 2 digits will refer to the number for neurons in the network.

Then all the neurons will be listed in order with 6 digits for each neuron.

The neurons are stored with the first 2 digits for the X coordinate of the input and

the next 2 digits as the Y coordinate of input and the 5th digit refers to the “ID” of

the output according to this table.

1 “A”

2 “B”

3 “Up”

4 “Down”

5 “Left”

6 “Right”

The 6th and final digit of a neuron will refer to the tile type that it detects, either a

block/ground as a 1 or an empty space as a 2.

Then after the neurons the Fitness value will be stored as a 5 digit integer from

00000 – 99999.

For Example A network might be stored as: 401152113113203033105096100104

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 26 of 94

Which would represent a network with a fitness value of 104 and the following

neurons:

InputX InputY Output Tile Type

1 15 “B” Block

13 11 “Up” Empty

3 3 “Up” Block

5 9 “Right” Block

Whilst this method of storage might seem complicated at first it allows for an easy

and compact storage system using a simple decoding algorithm:

File  OPENFILE(PopulationName & “.txt”,”r”)

GenerationNumber  File.Read()

NoOfNetworks  File.Read()

OutputTable  [“A”,”B”,”Up”,”Down”,”Left”,”Right”]

FOR i = 1, NoOfNetworks DO

 Network  File.Read()

 NoOfNeurons = Network[1] //Indexing from 1 as that’s what lua does

 PosCounter  2

 For j = 1, NoOfNeurons DO

CurrentGeneration[i].Neurons[j].InputX 

Network[PosCounter,PosCounter +1]

 PosCounter += 2

CurrentGeneration[i].Neurons[j].InputY 

Network[PosCounter,PosCounter +1]

PosCounter += 2

CurrentGeneration[i].Neurons[j].Ouput 

OutputTable[Network[PosCounter]]

PosCounter += 1

CurrentGeneration[i].Neurons[j].TileType  Network[PosCounter]

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 27 of 94

PosCounter += 1

 NEXT

 CurrentGenerations[i].Fitness = Int(Network[PosCounter,PosCounter+4])

NEXT

PseudoCode of Different Functions

Reading data for a map

Creates the image of the level that represents what the AI can “see”

InternalDisplay  Array[0,12][0,31]

VisualDisplay  InternalDisplay

CurrentTile  1280

FOR i = 0,1 DO

 FOR j = 0,12 DO

 FOR k = (16*i),(16*(i+1)-1) DO

 InternalDisplay[j][k] = ReadMemory(CurrentTile)

//Built in function that reads the memory location specified

CurrentTile += 1

 NEXT

 NEXT

NEXT

//Creating an offset for showing where Mario is

Offset  0 : INTEGER

FOR i = 0,12 DO

 FOR j = 0,15 DO

 Offset = CalculateOffset()

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 28 of 94

//A function that will read different memory address and perform Maths on them to

find the position of Mario in relation to the edge of the map

 VisualDisplay[i][j] -> InternalDisplay[i][Offset]

 NEXT

NEXT

Creating a new neuron

SUB New(InputX,InputY,Output,TileType)

 Self.InputX  InputX

 Self.InputY  InputY

 OutputTable  [“A”,”B”,”Up”,”Down”,”Left”,”Right”]

 Self.Output  OutputTable[Output]

 Self.TileType  TileType

END SUB

Creating a new neural network

Neurons  ARRAY : Neuron

Fitness  0

FOR i = 1,RandInt(1,3) DO

Neurons[i]  NEW

Neuron(RandInt(1,16),RandInt(1,13),RandInt(1,6),RandInt(1,2))

NEXT

Playing the game

Has each network in a generation play the game until it either dies or gets stuck

FOR i =1,Length(CurrentGeneration) DO

 PlayingNetwork  CurrentGeneration[i]

LoadSaveState(“State1”)

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 29 of 94

Playing  True

Inputs  {}

NoInputCounter  0

JumpCounter  0

FramCounter  0

DO WHILE Playing

 PlayingNetwork.UpdateMap()

 Inputs  PlayingNetwork.CheckForInputs()

 HasInputs  False

 FOR j = 1,6 DO

 If Inputs[i] == True THEN

 HasInputs True

 NoInputCounter  0

 END IF

 NEXT

 IF NOT HasInputs THEN

 IF NoInputCounter >= 20 THEN

 Playing  False

 ELSE

 NoInputCounter += 1

 END IF

 ELSE

 IF Inputs[“A”] == True THEN

 JumpCounter += 1

 ELSE

 JumpCounter  0

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 30 of 94

 END IF

 PlayingNetwork.RunIntputs(Inputs,JumpCounter)

 END IF

 FrameCounter += 1

 AdvanceFrame() //Built in functions that advances to the next frame

 LOOP

 PlayingNetwork.Fitness  CalculateFitness(FrameCounter)

NEXT

Checking for Inputs

Checks to see if any inputs should be run

FUNCTION CheckForInputs()

 OutputTable = {“A” = False,”B” = False,”Up” = False,”Down” = False, ”Left”

= False, ”Right” = False}

FOR i = 1,Length(self.Neurons) DO

IF VisualDisplay[Neurons[i].GetInputX][Neurons[i].GetInputY] == 0

AND Neurons[i].GetTileType == 2 THEN

 OutputTable[Neurons[i].GetOutput()] = True

ELSEIF VisualDisplay[Neurons[i].GetInputX][Neurons[i].GetInputY] !=

0 AND Neurons[i].GetTileType == 1 THEN

 END IF

NEXT

RETURN OutputTable

END FUNCTION

Running inputs

Puts any inputs that have been detected into the controller

SUB RunInputs(Inputs, ByRef JumpCounter)

 IF JumpCounter .> 29 THEN

 Inputs{“A”} = False

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 31 of 94

 JumpCounter  0

 END IF

 Joypad.Write(1,Inputs) //Built in function that writes the inputs in the table to

the controller

END SUB

Calculate Fitness

Scores each network based on their performance

//Names used in reading memory in this function are placeholders for what the

actual memory addresses used will be referring to

FUNCTION CalculateFitness(FrameCounter,Goal)

 Fitness  0

 IF Goal == 1 THEN

Distance  ReadMemory(CurrentScreen)*60 +

ReadMemory(XPositionOnCurrentScreen)

 ELSEIF Goal == 2 THEN

Distance  ReadMemory(CurrentScreen)*60 +

ReadMemory(XPositionOnCurrentScreen)

 Speed  Distance*20 / FrameCounter

 Fitness += Speed

 ELSEIF Goal == 3 THEN

Fitness += 10*ReadMemory(CoinCount)

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 32 of 94

 END IF

 RETURN Fitness

END FUNCTION

Sorting the neural networks by fitness values

A quick sort based off of the fitness values of each network in a generation

QuickSortByFitness(1, Length(CurrentGeneration))

SUB QuickSortByFitness(LO, HI)

x  LO

y  HI

mid  CurrentGeneration((x + y) / 2).getFitness()

DO WHILE x <= y

 DO WHILE CurrentGeneration(x).getFitness() > mid

 x  x + 1

 LOOP

 DO WHILE mid > CurrentGeneration(y).getFitness()

y  y - 1

 LOOP

 IF x <= y THEN

 TempFitness <- CurrentGeneration(x).getFitness()

 CurrentGeneration(x).setFitness(CurrentGeneration(y).getFitness())

 CurrentGeneration(y).setFitness(TempFitness)

 x  x + 1

 y  y - 1

 END IF

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 33 of 94

LOOP

IF LO < y THEN

QuickSortByFitness(LO, y)

END IF

If HI > x Then

QuickSortByFitness(x, HI)

END IF

END SUB

Evolving a Generation

Creates a new generation of networks by breeding two from the previous generation

together

NumOfNetsInGen <- Length(CurrentGeneration)

NextGeneration <- ARRAY[NumOfNetsInGen]

Fitnesses <- ARRAY[1,Length(CurrentGeneration)]

FOR i = 1 to Length(CurrentGeneration)

 Fitnesses[i] = CurrentGeneration[i].GetFitness()

NEXT

QuickSortByFitness(Fitness, 1, Length(Fitnesses), CurrentGeneration)

FOR i = Length(CurrentGeneration)/2, Length(CurrentGeneration) DO

 CurrentGeneration[i] <- NULL

NEXT

NextGeneration[1] <- CurrentGeneration[1]

FOR i = 2, NumOfNetsInGen DO

 FirstPartner = CurrentGeneration[Random(1,Length(CurrentGeneration))]

 PartnerFound <- False

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 34 of 94

 SecondPartner : NeuralNetwork

 DO

SecondPartner =

CurrentGeneration[Random(1,Length(CurrentGeneration))]

IF SecondPartner = FirstPartner THEN

 PartnerFound False

ELSE IF CurrentGeneration(SecondPartner) –

CurrentGeneration(FirstPartner) < 3 AND

CurrentGeneration(SecondPartner) – CurrentGeneration(FirstPartner) >

-3 THEN

 PartnerFound <- True

ELSE

PartnerFound <- False

LOOP UNTIL PartnerFound

NextGeneration[i]  NEW NeuralNetwork

FOR j = 1,Length(NextGeneration[i].Neurons DO

NextGeneration[i].Neurons[j]  NULL

NEXT

NextGeneration[i].Neurons  FirstPartner.GetNeurons() +

SecondPartner.GetNeurons())

NextGeneration[i].Mutate()

NEXT

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 35 of 94

Mutating a network

Adds or removes a small amount of neurons in a network, creates the variation

between generations.

SUB Mutate()

FOR i = 1,RandInt(1,4)

 MutationType  RandInt(1,4)

 IF MutationType = 4 THEN

 Self.Neurons[RandInt[1,Length(Neurons)]  NULL

 ELSE

Self.Neurons[Length(Neurons)+1]  NEW

Neuron(RandInt(1,16),RandInt(1,13),RandInt(1,6),RandInt(1,2)

)

 END IF

NEXT

END SUB

Random Function

Generates a random integer value between two bounds

Seed = (Seed * 722233 + 3459329) MOD (2^31 -1)

GeneratedValue = Seed MOD((UpperBound+1)-LowerBound)+LowerBound

RETURN Generated Value

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 36 of 94

Testing Strategy

Table of tests (includes unit tests and IO tests)

No. Description Data Type Expected result

1 Data has been

read from RAM.

Test using an

easy to

understand

variable e.g Coin

count.

 The data found in the specified memory

location will be displayed in either the

console or on screen

2 A normal level

can be displayed

on the UI

Typical A small 32*13 grid with Grey squares for

empty spaces in the level, white squares

for spaces with a tile in it

3 The map is

empty when no

level is loaded

Erroneous A small 32*13 grid is displayed but all

squares are grey.

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 37 of 94

4 The map loads

correctly for an

unused level in

the game’s files

Extreme 32*13 grid is displayed and has the

correct colours and therefore works for

any level.

5 The map display

moves as Mario

moves left to

right

 Every 16 pixels or 1 tile Mario moves the

map moves 1 grid space in the direction

he moves.

6 Creation of a

neuron in a

network. Test by

running the

network creation

subroutine and

then output the

neurons’

properties.

 The Neuron should have an Xcoordinate

from 1-32, a Y coordinate from 1-13, a

valid output and a valid tile type for

detection.

7 Networks can be

stored in a

single string.

 Network is created and is saved into a

text file as a single string

8 Networks can be

decoded from

the string

they’re stored

as.

 A text file that contains a network is

opened and a new network is created

that is the same as the previous one that

was saved.

9 Sort algorithm

that sorts

networks based

on a single value

in the network

works

 An unsorted list of networks is inputted

and a sorted list is outputted.

10 A generation can

have the bottom

50% removed

 The list of networks is outputted being

half the length it was originally.

11 Top scoring

network is saved

for the next

generation

 Before the evolving algorithm is run the

next generation should contain 1 network

that is identical to the top scoring one

from the previous generation

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 38 of 94

12 Breeding

networks works

based on the

two parent

networks

 After one iteration off breeding the new

generation contains a network with

neurons chosen from the two parent

networks (up to 3 more neurons maybe

added due to mutation)

13 A save state can

be loaded

Typical A new save state can be created and

loaded

14 Check for

neuron inputs

that are active

 Any inputs from neurons that are active

will be output to the console.

15 Automatic

controller inputs

will work

 Mario will move will the controller inputs

that have been specified

16 Next network is

loaded when

Mario dies

 When Mario dies the current network is

closed and saved and the save state is

loaded with a new network active.

17 Next network is

loaded when

there are no

inputs for 60

frames/1 second

 After 60 frames of doing nothing the

current network is closed and saved and

the save state is loaded with a new

network active.

18 Fitness is

calculated after

a network’s

game ends

(Based on

Distance)

 When a game ends a fitness value is

outputted to the console.

19 Fitness is

calculated after

a network’s

game ends

(Based on

Speed)

 When a game ends a fitness value is

outputted to the console.

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 39 of 94

20 Fitness is

calculated after

a network’s

game ends

(Based on Coins

collected)

 When a game ends a fitness value is

outputted to the console.

21 The cancel

button on any

input sends the

user back to the

Creating/Loading

menu (As all

inputs come

from that menu)

 The user is sent back to the

Creating/Loading menu when pushing

cancel when asked for any input (New

Pop. Name, Pop. Size, Loading name,

Generation to load)

22 Loading a

population from

a file

Typical The population saved in the file with the

name selected is loaded

23 Trying to load a

population from

a file that

doesn’t exist

Erroneous If the file does not exist then the user is

given an error message telling them it

doesn’t exist and

24 Leaving the field

blank

Erroneous The user is asked to input a name again

25 Loading a file

that only has 1

generation

(Generation 0)

Extreme The population saved in the file with the

name selected is loaded.

26 Generation

Number Input

exists for a

population

Typical The population is loaded correctly

27 Generation does

not exist for the

population

inputted

Erroneous The user given an error message telling

them that the population doesn’t exist or

the generation doesn’t exist for that

population

28 The Generation

input is left

Erroneous The user is asked to input a the number

for the generation they would like to load

again

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 40 of 94

blank or is not a

number

29 The Generation

input is 0

Extreme The population is loaded correctly

30 A new

population will

be created with

the name the

user inputs into

the input box

Typical The population is created with the

selected name

31 The new

population box is

left blank

Erroneous The user is asked to input the name

again.

32 The name

inputted is the

same as an

already existing

population

Extreme A new population is created overwriting

the old one with the same name (The

user is warned about this from the input

box)

33 The Size of a

new population

is inputted

Typical A new population with the specified size

is created.

34 A size of 2 or

less is entered,

the input is not

a string or the

field is left blank

Erroneous The user is asked to input the size again

35 A size of 3 is

entered

Extreme A new population with a size of 3 is

created

36 The top fitness

of a generation

is saved to a

population’s

“stats” file

 There is a file saved with the population’s

files that contains 1 fitness value per line

and is as long as there are generations of

that population

37 The random

function

generates a new

random seed

each time it

 Each time a random number is generated

the new seed is printed and none of

them should be identical

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 41 of 94

generates a

random number.

38 Each of the 3

levels can be

loaded

 When a level is chosen that level is then

loaded for the population

39 Random

Function

generates

random

numbers

between an

upper and lower

bound

 Random numbers are generated that are

between the upper and lower bound and

can be both

Testing

Testing Playlist

Many of the tests required video evidence and these have been compiled into a

YouTube playlist for easy viewing.

https://www.youtube.com/playlist?list=PLLZ_69SDcy1JXYc2mnDZzuaB0wv2P

Et-E

Testing Table

No. Description Data

Type

Expected result Pass/Fail Evidence

1 Data has been

read from RAM.

Test using an

easy to

understand

variable e.g Coin

count.

 The data found

in the specified

memory location

will be displayed

in either the

console or on

screen

Pass Video “Test #1” from

testing playlist

https://www.youtube.com/playlist?list=PLLZ_69SDcy1JXYc2mnDZzuaB0wv2PEt-E
https://www.youtube.com/playlist?list=PLLZ_69SDcy1JXYc2mnDZzuaB0wv2PEt-E

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 42 of 94

2 A normal level

can be displayed

on the UI

Typical A small 32*13

grid with Grey

squares for

empty spaces in

the level, white

squares for

spaces with a

tile in it

Pass Video “Test #2” from

testing playlist

3 The map is

empty when no

level is loaded.

Test by using

loading screen

as no level is

loaded on during

loading screens.

Erroneous A small 32*13

grid is displayed

but all squares

are grey.

Pass

4 The map loads

correctly for an

unused level in

the game’s files

Extreme 32*13 grid is

displayed and

has the correct

colours and

therefore works

for any level.

Pass Video “Test #4” from

testing playlist

5 The map display

moves as Mario

moves left to

right

 Every 16 pixels

or 1 tile Mario

moves the map

moves 1 grid

space in the

direction he

moves.

Pass Video “Test #2” from

testing playlist

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 43 of 94

6 Creation of a

neuron in a

network. Test by

running the

network creation

subroutine and

then output the

neurons’

properties.

 The Neuron

should have an

Xcoordinate

from 1-32, a Y

coordinate from

1-13, a valid

output and a

valid tile type for

detection.

7 Networks can be

stored in a

single string.

 Network is

created and is

saved into a text

file as a single

string

Pass Video “Tests #7 and #8”

from testing playlist

8 Networks can be

decoded from

the string

they’re stored

as.

 A text file that

contains a

network is

opened and a

new network is

created that is

the same as the

previous one

that was saved.

Pass Video “Tests #7 and #8”

from testing playlist

9 Sort algorithm

that sorts

networks based

on a single value

in the network

works

 An unsorted list

of networks is

inputted and a

sorted list is

outputted.

Pass Video “Test #9” from

testing playlist

10 A generation can

have the bottom

50% removed

 The list of

networks is

outputted being

Pass Video “Test #10” from

testing playlist

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 44 of 94

half the length it

was originally.

11 Top scoring

network is saved

for the next

generation

 Before the

evolving

algorithm is run

the next

generation

should contain 1

network that is

identical to the

top scoring one

from the

previous

generation

Pass Video “Test #11” from

testing playlist

12 Breeding

networks works

based on the

two parent

networks

 After one

iteration of

breeding the

new generation

contains a

network with

neurons chosen

from the two

parent networks

(up to 3 more

neurons maybe

added due to

mutation)

Pass Video “Test #12” from

testing playlist

13 A save state can

be loaded

 A Save state will

load

Pass Video “Test #13” from

testing playlist

14 Check for

neuron inputs

that are active

 Any inputs from

neurons that are

active will be

output to the

console.

Pass Video “Test #14” from

testing playlist

15 Automatic

controller inputs

will work

 Mario will move

will the

controller inputs

Pass Video “Test #15” from

testing playlist

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 45 of 94

that have been

specified

16 Next network is

loaded when

Mario dies

 When Mario dies

the current

network is

closed and

saved and the

save state is

loaded with a

new network

active.

Pass Video “Tests #16 and #17”

from testing playlist

17 Next network is

loaded when

there are no

inputs for 60

frames/1 second

 After 60 frames

of doing nothing

the current

network is

closed and

saved and the

save state is

loaded with a

new network

active.

Pass Video “Tests #16 and #17”

from testing playlist

18 Fitness is

calculated after

a network’s

game ends

(Based on

Distance)

 When a game

ends a fitness

value is

outputted to the

console.

Pass Video “Test #18” in the

testing playlist

19 Fitness is

calculated after

a network’s

game ends

(Based on

Speed)

 When a game

ends a fitness

value is

outputted to the

console.

Pass Video “Test #19” in the

testing playlist

20 Fitness is

calculated after

a network’s

 When a game

ends a fitness

value is

Pass Video “Test #20” in the

testing playlist

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 46 of 94

game ends

(Based on Coins

collected)

outputted to the

console.

21 The cancel

button on any

input sends the

user back to the

Creating/Loading

menu (As all

inputs come

from that menu)

 The user is sent

back to the

Creating/Loading

menu when

pushing cancel

when asked for

any input (New

Pop. Name, Pop.

Size, Loading

name,

Generation to

load)

Pass Video “Test #21” in the

testing playlist

22 Loading a

population from

a file

Typical The population

saved in the file

with the name

selected is

loaded

Pass Video “Tests #25 and #29”

in the testing playlist

23 Trying to load a

population from

a file that

doesn’t exist

Erroneous If the file does

not exist then

the user is given

an error

message telling

them it doesn’t

exist and

Pass Video “Tests #23 and #24”

in the testing playlist

24 Leaving the field

blank

Erroneous The user is

asked to input a

name again

Pass Video “Tests #23 and #24”

in the testing playlist

25 Loading a file

that only has 1

generation

(Generation 0)

Extreme The population

saved in the file

with the name

selected is

loaded.

Pass Video “Tests #25 and #29”

in the testing playlist

26 Generation

Number Input

Typical The population

is loaded

correctly

Pass Video “Tests #22 and #26”

in the testing playlist

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 47 of 94

exists for a

population

27 Generation does

not exist for the

population

inputted

Erroneous The user given

an error

message telling

them that the

population

doesn’t exist or

the generation

doesn’t exist for

that population

Pass Video “Test #27” in the

testing playlist

28 The Generation

input is left

blank or is not a

number

Erroneous The user is

asked to input a

the number for

the generation

they would like

to load again

Pass Video “Test #28” in the

testing playlist

29 The Generation

input is 0

Extreme The population

is loaded

correctly

Pass Video “Tests #25 and #29”

in the testing playlist

30 A new

population will

be created with

the name the

user inputs into

the input box

Typical The population

is created with

the selected

name

Pass Video “Tests #30 and #33”

in the testing playlist

31 The new

population box is

left blank

Erroneous The user is

asked to input

the name again.

Pass Video “Test #31” in the

testing playlist

32 The name

inputted is only

1 character long

Extreme A new

population is

created with a 1

character name

Pass Video “Test #32” in the

testing playlist

33 The Size of a

new population

is inputted

Typical A new

population with

the specified

size is created.

Pass Video “Tests #30 and #33”

in the testing playlist

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 48 of 94

34 A size of 2 or

less is entered,

the input is not

a string or the

field is left blank

Erroneous The user is

asked to input

the size again

Pass Video “Test #34” in the

testing playlist

35 A size of 3 is

entered

Extreme A new

population with

a size of 3 is

created

Pass Video “Test #35” in the

testing playlist

36 The top fitness

of a generation

is saved to a

population’s

“stats” file

 There is a file

saved with the

population’s files

that contains 1

fitness value per

line and is as

long as there are

generations of

that population

Pass Video “Test #36” in the

testing playlist

37 The random

function

generates a new

random seed

each time it

generates a

random number.

 Each time a

random number

is generated the

new seed is

printed and

none of them

should be

identical

Pass

38 Each of the 3

levels can be

loaded

 When a level is

chosen that level

is then loaded

for the

population

Pass Video “Test #38” in the

testing playlist

39 Random

Function

generates

random

numbers

 Random

numbers are

generated that

are between the

upper and lower

Pass

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 49 of 94

between an

upper and lower

bound

bound and can

be both

Beta Testing

I asked a third party to use the program for me and then interviewed them about

their experience.

Did you find the program easy to use?

“The program was clear and easy to understand but it could have used some more

explanation as to what some of the more technical terms mean, for instance, What

does it mean by the number of members in a population?”

Was the UI easy to understand?

“The UI was very simple and easy to understand but a bit bland and boring to look

at.”

Did you have any problems with the program when you tried to use it?

“The program worked perfectly as intended however it was very slow to train and I

had to leave it running for a long time to get any results. I did try to break the

program by putting garbage data into any inputs but it didn’t break at all when I

tried to break it.”

How well did the AI work?

To test whether or not an AI would be able to learn to play Super Mario Bros. I

trained 9 different AIs, 1 of each reward type on 3 vastly different levels, and

created a graph for each detailing their performance over time. (Note the Y axis is

an arbitrary fitness value and the actual numbers don’t reflect how the AIs compared

to each other.)

The 3 levels were: 1-1 – a standard overworld level with nothing special about it, 1-4

– A castle level with lots of traps and a boss fight at the end, and 7-2 – an

underwater level filled with enemies and where the game controls very differently.

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 50 of 94

The 3 reward types were: Distance – To test if the AI would be able to learn to

reach the goal (the standard objective), Speed – To test if the AI could learn to do it

fast, and Coins Collected – To see if the AI could learn the layout of a level and find

the most amount of coins.

In general, each AI was able to learn to perform its task to a high standard given a

enough time to train. The main exception to this being the AIs trained on speed. All

of the speed AIs never learned to finish the level they were playing, usually making

it about three quarters of

the way through the level

before deciding that it took

too long to do the last

quarter and giving up.

Speed however was shown

to have one of the more

gradual increases in

performance over time.

The level the AIs had the hardest time with was the underwater level. In this level

Mario controls differently when the A button is pushed instead of jumping Mario will

swim upwards a small amount and can do this multiple times without touching the

ground. This led the AI to swimming up to the top of the level and just staying up

there most of the time as it couldn’t quite get the hang of swimming properly, this

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 51 of 94

meant the AI had a hard

time beating the level as

it got stuck one walls that

blocked the top of the

level. Despite this the AI

was still able to improve

greatly on this stage,

when being rewarded for

distance or coins

collected, and made a lot

of progress being able to

avoid the enemies and

water currents that make

the level difficult.

The most interesting reward type was the coins collected. As coins are stored in the

game’s memory as just another object the AI was not able to tell the coins apart

from anything else. This meant that instead of reacting to coins and collecting them

the AI would instead learn the layout of a level and find the best route to collect the

most amount of coins

in a level. For

example, in 1-1 the AI

would hit all of the

blocks early on in the

level, collecting the

coins within them, and

would then move onto

a hidden room that

contains a large

amount of coins. This

reward system worked

best in levels that had

more coins.

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 52 of 94

However, the AI broke

when trying to learn to

collect coins in 1-4 as

there are only 4 coins in

the whole level and they

are all at the very end.

This mean that the AI

never learnt anything

instead opting to create

the most minimal

network possible that

didn’t do anything. This

demonstrates that the AI

does need to be

rewarded in any capacity

to be able to learn.

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 53 of 94

Below are the graphs for the rest of the AIs not shown above.

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 54 of 94

75

76

77

78

79

80

81

82

83

84

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

7-2 Speed

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 55 of 94

Evaluation

Have the requirements been met?

Req. # Requirement Is the requirement

met?

Testing Ref.

0.1 Read the RAM for tile data Yes Test #1

0.2 Form an ordered array from

the tile data

Yes Test #2

0.3 Make the map move as Mario

moves

Yes Test #5

1.1 Create Neurons with an input,

made of coordinates and a tile

type, and an output.

Yes Test #6

1.2 Store data for a neural

network as a single string in a

uniform fashion to make it

easier to read when accessing

previous networks

Yes Test #7

1.3 Interpret the data string for a

neural network

Yes Test #8

2.1 Create an ordered list of all

neural networks for the

current generation based on

fitness values

Yes Test #9

2.2 Remove the bottom 50%

scoring neural networks

Yes Test #10

2.3 Keep the top scoring neural

network for the next

generation

Yes Test #11

2.4 Breed remaining neural

networks until the desired

number of networks for the

next generation exist

Yes Test #12

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 56 of 94

3.1 Load a pre-existing save state

at the start of the selected

level from a list

Yes Test #13

3.2 Check for any inputs from

neurons

Yes Test #14

3.3 Perform inputs into the game Yes Test #15

3.4 Check if the game is ready to

end via either no inputs or

Mario dying

Yes Tests #16 and

#17

3.5 Calculate Fitness value for a

neural network based on the

different scoring methods:

Distance, Speed and Coins

collected

Yes Tests #18-#20

4.1 Random function generates a

new seed every time it is used

Yes Test #37

4.2 Random function generates

integers between an upper

and lower bound

Yes Test #39

How could the outcome be improved if the problem was revisited?

The program and algorithm are able to create an AI that can learn to play Super

Mario Bros. and can easily adapt to any scenario that is thrown at it. However there

is one main constraint with the program and that is the amount of time it takes to

train the AI, so if the problem were to be revisited would focus on finding solution to

make the training shorter. This could be done by making it so multiple Networks in a

generation are able to play at the same time and are all able to feed back to the

program at the same time so that a whole generation could be finished in the time it

would normally take a single network to play. Another method of approaching this

problem would be to add more complexity to the networks. This would mean that

they would be able to handle more complex problems with less training therefore

reducing the time taken to train.

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix
Candidate Number: 9479
Centre Number: 64395

Godalming College
 Page 57 of 94

Feedback from the end user

I gave Alex a copy of the program and also showed him some of the AIs I had

created or testing and then asked him what he thought of the program and whether

it met his requirements.

“The program was clear and easy to understand with a simple and easy to use UI.

Whilst the AIs take a very long time to train it was easy to see clear improvements

happening slowly over time and from the examples you showed me I could see the

AI would develop. There were some technical terms that were hard to understand

and could have used some explaining like explaining what a member in a population

is. The program also never broke when I used it. Overall this program has helped a

lot with my investigation to see if an AI can learn to play Super Mario Bros.”

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 58 of 94

Code Dump
require("iuplua") --Library that controls the GUI

local RandomGen = {} --Start of class definition of RandomGen class - RandomGen is a class that is used for creating random

integers

RandomGen.__index = RandomGen

function RandomGen.New() --Constructor for RandomGen class

 local self = setmetatable({},RandomGen)

 self.seed = 0

 return self

end

function RandomGen:setSeed(NewSeed)

 self.seed = NewSeed

end

function RandomGen:generateRandom(LowerBound,UpperBound) --Method for RandomGen objects that generates a random

integer between the two bounds (inclusive)

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 59 of 94

 local NextSeed = 0

 if LowerBound == nil then -- Allows for not having a lower bound

 LowerBound = 1

 end

 if UpperBound == nil then -- Allows for not having an upper bound

 UpperBound = 2

 end

 NextSeed = (self.seed * 722233 + 3459329) % (2^31-1) --Generates a new seed based on the previous seed

 self:setSeed(NextSeed)

 NextSeed = NextSeed%((UpperBound+1) - LowerBound) + LowerBound --Calculates the integer that is to be generated between

the two bounds

 return NextSeed

end

--End of the class definition for RandomGen class

RandGen = RandomGen.New() --Creates a Random numbe generating function

RandGen:setSeed(os.time()) --Sets the starting seed based off of the system clock

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 60 of 94

local Neuron = {} --Start of the class definition for the Neuron class

Neuron.__index = Neuron

function Neuron.New(X,Y,Output,Type) --Constructor for the Neuron class

 local self = setmetatable({}, Neuron)

 local PossibleOutputs = {"A","B","up","down","left","right"}

 self.InputX = X --Sets up the Object's properties based off of the values given at object creation

 self.InputY = Y

 self.Output = PossibleOutputs[Output]

 self.TileType = Type

 return self

end

--Accessor methods for the Neuron class

function Neuron:getInputX()

 return self.InputX

end

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 61 of 94

function Neuron:getInputY()

 return self.InputY

end

function Neuron:getOutput()

 return self.Output

end

function Neuron:getTileType()

 return self.TileType

end

--End of the class definition for Neuron class

local Network = {} -- Start of the class definition for the Network class

Network.__index = Network

function Network.New() -- Constructor for the Network class

 local self = setmetatable({},Network)

 self.Neurons = {}

 self.Map = {}

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 62 of 94

 self.Fitness = 0

 self:setUpMap()

 return self

end

--Accessor method for Network class

function Network:getFitness()

 return self.Fitness

end

function Network:genZeroSetUp() --Used when creating a new population and there are no parent networks that have been bred

 local X

 local Y

 local Out

 local Type

 --Generates random values for each of the properties of the 3 neurons that a network will start with

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 63 of 94

 for i = 1,3 do

 X = RandGen:generateRandom(1,16)

 Y = RandGen:generateRandom(1,13)

 Out = RandGen:generateRandom(1,6)

 Type = RandGen:generateRandom(1,2)

 self.Neurons[i] = Neuron.New(X,Y,Out,Type)

 --print("Neuron ".. i .. " created" .. X .. Y .. Out .. Type)

 end

end

function Network:setUpMap() --Lua doesn't allow tables to have a pre-defined size so this function does that for the map table

 TempMap = {}

 for i = 1,13 do

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 64 of 94

 TempMap[i] = {}

 self.Map[i] = {}

 for j = 1,32 do

 TempMap[i][j] = 0

 end

 for j = 1,16 do

 self.Map[i][j] = 0

 end

 end

end

function Network:UpdateMap() --Updates what Mario can see each frame based on his posistion and then displays it on screen

 local NextTileAdress = 1280

 local PosOffset = 0

 local Colour = ""

 for i = 0,1 do

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 65 of 94

 for j = 1,13 do

 for k = ((16*(i))),(16*(i+1)-1) do

 TempMap[j][k] = memory.readbyte(NextTileAdress) --Reads the memory addresses for the tiles

 NextTileAdress = NextTileAdress + 1

 end

 end

 end

 for i = 1,13 do

 for j = 0,15 do

 PosOffset = (((j + math.floor((memory.readbyte(0x0086)-40)/16))%32)+(16*(memory.readbyte(0x006D)%2)))%32 --Does

the maths to calculate offset based on Mario's posistion

 self.Map[i][j+1] = TempMap[i][PosOffset]

 Colour = self:squareColour(i,PosOffset)

 gui.box(j*2,i*2+40,(j+1)*2,(i+1)*2+40,Colour)

 end

 end

end

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 66 of 94

function Network:squareColour(Row,Column) --Determines the colour of the next tile to be displayed

 if (TempMap[Row][Column] == nil) then --If there is an error loading data for the map the tiles that could not be loaded will be

displayed red

 return "#FF0000"

 elseif (TempMap[Row][Column] ~= 0) then --Wherever there is not an empty tile it is displayed as being white on the map

 return "#FFFFFF"

 else --If a tile is empty it is displayed as being grey on the map

 return "#505050"

 end

end

function Network:Mutate() --The function that controls the mutation of a network where a random amount of neurons are either

added or removed from a network

 local NeuronAmount = #self.Neurons --Stores the length of the Neurons table to be able to keep track of the changing amount of

neurons when mutating

 local MutationAmount = RandGen:generateRandom(0,3)

 local MutationType

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 67 of 94

 while MutationAmount > 0 do

 MutationType = RandGen:generateRandom(1,2) --1 = Add Neuron, 2 = Remove Neuron

 if MutationType == 1 then

 self.Neurons[NeuronAmount] =
Neuron.New(RandGen:generateRandom(1,16),RandGen:generateRandom(1,13),RandGen:generateRandom(1,6),RandGen:generat

eRandom(1,2))

 NeuronAmount = NeuronAmount + 1

 else

 if #self.Neurons > 1 then --Prevents mutation making a network useless by removing all neurons

 self.Neurons[RandGen:generateRandom(1,NeuronAmount)] = nil

 for i = 1,NeuronAmount do --Removes nil values from the table as Lua assumes a table terminates where the first nil value is

even if there are more values after it

 if self.Neurons[i] == nil then

 self.Neurons[i] = self.Neurons[i+1]

 self.Neurons[i+1] = nil

 end

 end

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 68 of 94

 end

 NeuronAmount = NeuronAmount - 1

 end

 MutationAmount = MutationAmount - 1

 end

end

function Network:checkForInputs() --The function that checks if any of the neurons in a network have activated on a frame

 --The table of inputs that is possible for the controller. Note: some of the inputs are not possible to be used be the AI as they do

not affect gameplay

 local OutputTable = {up = false, down = false, right = false, left = false, start = false, select = false, start = false, A = false, B =

false}

 for i = 1,#self.Neurons do

 if self.Map[self.Neurons[i]:getInputY()][self.Neurons[i]:getInputX()] ~= 0 and self.Neurons[i].TileType == 1 then --If "TileType"

is 1 then it checks if there is anything at the location the neuron points to

 OutputTable[self.Neurons[i]:getOutput()] = true

 elseif self.Map[self.Neurons[i]:getInputY()][self.Neurons[i]:getInputX()] == 0 and self.Neurons[i].TileType == 2 then --If

"TileType" is 2 then it checks if the location the neuron points to is empty

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 69 of 94

 OutputTable[self.Neurons[i]:getOutput()] = true

 end

 end

 return OutputTable

end

function Network:runInputs(Inputs,JumpCounter) --Runs the inputs for a particular frame

 --Mario's maximum jump height takes 29 frames to reach and if the A button is held down he cannot jump again

 --so every 30 frames that the A button is held down for there is one frame where it is not held down to allow Mario to jump

multiple times

 if JumpCounter > 29 then

 Inputs["A"] = false

 JumpCounter = 0

 end

 joypad.write(1,Inputs)

 return JumpCounter

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 70 of 94

end

function Network:calculateFitness(FrameCounter,Distance,Goal) --Calculates the fitness value of a network once it has finished

playing

 local Fitness = 0

 local Speed = 0

 if Goal == 1 then --Trained for distance

 Fitness = math.floor((Distance*60))

 elseif Goal == 2 then --Trained for speed

 Fitness = math.floor((Distance*60/FrameCounter))

 elseif Goal == 3 then --Trained for coins collected

 Fitness = 10*memory.readbyte(0x075E)

 else

 print("Error calculating fitness: Unknown Goal")

 end

 self.Fitness = Fitness

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 71 of 94

end

--End of the class definition of the Network class

Population = {} --Start of the class definition for the Population class

Population.__index = Population

function Population.New(GenNo,PopulationSize,Name,Goal) --Constructor for the Population Class

 local self = setmetatable({},Population)

 self.CurrentGeneration = {}

 self.PreviousGeneration = {}

 self.GenerationNo = 0

 self.PopulationName = ""

 self.GenerationNo = GenNo

 self.PopulationName = Name

 self.Goal = Goal

 if GenNo == 0 then --If the generation of a population is zero then there will be no networks to load so new ones have to be

created

 self:createGenZero(PopulationSize)

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 72 of 94

 end

 return self

end

function Population:createGenZero(PopSize)--Creates new networks for a new population

 for i = 1,PopSize do

 self.CurrentGeneration[i] = Network.New()

 self.CurrentGeneration[i]:genZeroSetUp()

 end

 StatsFile = io.open(self.PopulationName .. "Stats.txt","w") --Creates the stats file where fitness values are saved so they can be

evaluated later

 io.output(StatsFile)

 io.close(StatsFile)

end

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 73 of 94

function Population:playGame() --The function that controls all the actions that occur when the AI is playing

 for i = 1,#self.CurrentGeneration do --Repeats for all the networks in a population

 local PlayingNetwork = self.CurrentGeneration[i]

 local Playing = true

 local Inputs = {}

 local NoInputCounter = 0

 local JumpCounter = 0

 local FrameCounter = 0

 local PossibleInputs = {"A","B","up","down","left","right"}

 local LastXPos = 0

 local Rightmost = 1

 memory.writebyte(0x075E,0) --Sets the coin count in memory to 0 as in some of the savestates used the coin count does not

start at 0

 savestate.load(LevelStart) --Loads the savestate

 while (Playing) do --Each iteration of this loop is 1 frame of gameplay

 PlayingNetwork:UpdateMap()

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 74 of 94

 Inputs = PlayingNetwork:checkForInputs()

 HasInputs = false

 for j = 1,8 do

 if Inputs[PossibleInputs[j]] == true then

 HasInputs = true

 end

 end

 ---Failure conditions, if there are no inputs or Mario is dead or Mario has not moved horizontally then the counter increments,

 --if the counter reaches 60 (Equivalent to 1 second as the game runs at 60 FPS) then the network stops playing

 if not HasInputs or memory.readbyte(0x000E) == 11 or LastXPos == memory.readbyte(0x0086) then

 if NoInputCounter >= 60 then

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 75 of 94

 Playing = false

 print("Stop playing")

 else

 NoInputCounter = NoInputCounter + 1

 end

 else

 NoInputCounter = 0

 end

 --Checks how many frames Mario has been jumping for

 if Inputs["A"] == true then

 JumpCounter = JumpCounter + 1

 else

 JumpCounter = 0

 end

 JumpCounter = PlayingNetwork:runInputs(Inputs,JumpCounter)

 FrameCounter = FrameCounter + 1

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 76 of 94

 LastXPos = memory.readbyte(0x0086)

 emu.frameadvance()

 if (memory.readbyte(0x006D)*256 + memory.readbyte(0x0086)) > Rightmost then --Calculates the furthest to the right Mario

has gotten, used for Distance and Speed based fitness

 Rightmost = memory.readbyte(0x006D)*256 + memory.readbyte(0x0086)

 end

 end

 print("Network ".. i .. " done")

 PlayingNetwork:calculateFitness(FrameCounter,Rightmost,self.Goal)

 end

end

function Population:sortByFitness(LO,HI) --Does a quick sort to sort the list of networks in a population by their fitness values

 local LowPointer = LO

 local HighPointer = HI

 local Mid = self.CurrentGeneration[math.ceil((LowPointer +HighPointer)/2)]:getFitness()

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 77 of 94

 local TempNetwork

 while LowPointer <= HighPointer do

 while self.CurrentGeneration[LowPointer]:getFitness() > Mid do

 LowPointer = LowPointer + 1

 end

 while self.CurrentGeneration[HighPointer]:getFitness() < Mid do

 HighPointer = HighPointer - 1

 end

 if LowPointer <= HighPointer then

 TempNetwork = self.CurrentGeneration[LowPointer]

 self.CurrentGeneration[LowPointer] = self.CurrentGeneration[HighPointer]

 self.CurrentGeneration[HighPointer] = TempNetwork

 LowPointer = LowPointer + 1

 HighPointer = HighPointer - 1

 end

 end

 if LO < HighPointer then

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 78 of 94

 self:sortByFitness(LO,HighPointer)

 end

 if HI > LowPointer then

 self:sortByFitness(LowPointer,HI)

 end

end

function Population:evolvePopulation() --Evolves the population based on fitness scores

 local NextGeneration = {}

 local FirstPartner = Network.New()

 local SecondPartner = Network.New()

 local FirstPartnerNum

 local SecondPartnerNum

 local PartnerNotFound = true

 local NeuronCounter = 1

 local BadNet1 --Two lower scoring networks are kept for breeding to help reduce the odds of achieving a local maximum

 local BadNet2

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 79 of 94

 local BadNet1Num = RandGen:generateRandom(math.ceil((#self.CurrentGeneration)/2),#self.CurrentGeneration) --Gets a

random integer from that is greater than half the size of the population

 local BadNet2Num = RandGen:generateRandom(math.ceil((#self.CurrentGeneration)/2),#self.CurrentGeneration)

 local HasNoNeurons = true

 local OutputToNum = {A = 1, B = 2, up = 3, down = 4, left = 5, right = 6}

 while BadNet1Num == BadNet2Num do

 BadNet2Num = RandGen:generateRandom(math.ceil((#self.CurrentGeneration)/2),#self.CurrentGeneration)

 end

 BadNet1 = self.CurrentGeneration[BadNet1Num]

 BadNet2 = self.CurrentGeneration[BadNet2Num]

 self:sortByFitness(1,#self.CurrentGeneration) --Sorts the population

 for i = math.ceil((#self.CurrentGeneration)/2),#self.CurrentGeneration do --Removes the bottom 50% of networks

 self.CurrentGeneration[i] = nil

 end

 self.CurrentGeneration[#self.CurrentGeneration + 1] = BadNet1

 self.CurrentGeneration[#self.CurrentGeneration + 1] = BadNet2

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 80 of 94

 NextGeneration[1] = self.CurrentGeneration[1] --Keeps the top scoring network from the previous generation so that the

population doesn't evolve backwards

 for i = 2,(#(self.CurrentGeneration)-1)*2 do

 FirstPartnerNum = RandGen:generateRandom(1,#(self.CurrentGeneration))

 PartnerNotFound = true

 while PartnerNotFound do

 SecondPartnerNum = RandGen:generateRandom(1,#(self.CurrentGeneration))

 if FirstPartnerNum == SecondPartnerNum then

 PartnerNotFound = true

 else

 PartnerNotFound = false

 end

 end

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 81 of 94

 FirstPartner = self.CurrentGeneration[FirstPartnerNum] --Take 2 random networks from the remaining 50% of the population to

breed together

 SecondPartner = self.CurrentGeneration[SecondPartnerNum]

 NextGeneration[i] = Network.New()

 HasNoNeurons = true

 NeuronCounter = 1

 while HasNoNeurons do

 for j = 1,#FirstPartner.Neurons do --Saves a random number of the neurons from the first partner for the new network

 if RandGen:generateRandom(1,2) == 2 then

 NextGeneration[i].Neurons[NeuronCounter] = Neuron.New(FirstPartner.Neurons[j].InputX, FirstPartner.Neurons[j].InputY,

OutputToNum[FirstPartner.Neurons[j].Output], FirstPartner.Neurons[j].TileType)

 NeuronCounter = NeuronCounter + 1

 HasNoNeurons = false

 end

 end

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 82 of 94

 for j = 1,#SecondPartner.Neurons do --Saves a random number of the neurons from the second partner for the new network

 if RandGen:generateRandom(1,2) == 2 then

 NextGeneration[i].Neurons[NeuronCounter] = Neuron.New(SecondPartner.Neurons[j].InputX,

SecondPartner.Neurons[j].InputY, OutputToNum[SecondPartner.Neurons[j].Output], SecondPartner.Neurons[j].TileType)

 NeuronCounter = NeuronCounter + 1

 HasNoNeurons = false

 end

 end

 end

 NextGeneration[i]:Mutate()

 end

 self.CurrentGeneration = NextGeneration

 StatsFile = io.open(self.PopulationName .. "Stats.txt","a") --Saves the best fitness score of a generation to the stats file for that

population

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 83 of 94

 io.output(StatsFile)

 io.write(self.CurrentGeneration[1]:getFitness().."\n")

 io.close(StatsFile)

 self.GenerationNo = self.GenerationNo + 1

end

function Population:savePopulation() --Saves the data of a population to a text file

 local File = io.open(self.PopulationName .. self.GenerationNo .. ".txt", "w")

 local OutputToNum = {A = 1, B = 2, up = 3, down = 4, left = 5, right = 6}

 io.output(File)

 io.write(#(self.CurrentGeneration) .. '\n') --Saves the amount of networks in the population as the top line of the file

 --For each network they are saved in format, Amount of neurons in the network, For each neuron, XCoordinate, YCoordinate,

Output, TileType

 --Each network takes up 1 line in the text file

 for i = 1,#(self.CurrentGeneration) do

 if #(self.CurrentGeneration[i].Neurons) <= 9 then

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 84 of 94

 io.write("0" .. #(self.CurrentGeneration[i].Neurons))

 else

 io.write(#(self.CurrentGeneration[i].Neurons))

 end

 for j = 1,#(self.CurrentGeneration[i].Neurons) do

 if self.CurrentGeneration[i].Neurons[j].InputX <= 9 then

 io.write("0".. self.CurrentGeneration[i].Neurons[j].InputX)

 else

 io.write(self.CurrentGeneration[i].Neurons[j].InputX)

 end

 if self.CurrentGeneration[i].Neurons[j].InputY <= 9 then

 io.write("0".. self.CurrentGeneration[i].Neurons[j].InputY)

 else

 io.write(self.CurrentGeneration[i].Neurons[j].InputY)

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 85 of 94

 end

 io.write(OutputToNum[self.CurrentGeneration[i].Neurons[j].Output])

 io.write(self.CurrentGeneration[i].Neurons[j].TileType)

 end

 io.write('\n')

 end

 io.close(File)

end

function Population:loadPopulation() -- Loads a population from a text file

 local File = io.open(self.PopulationName .. self.GenerationNo .. ".txt","r")

 io.input(File)

 local NumOfNetworks = io.read() --Stores the amount of the networks in the population

 local NumOfNeurons = 0

 local NetworkAsString = ""

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 86 of 94

 local PosCounter

 local X

 local Y

 local Output

 local Type

 --Loads each network 1 at a time based on how they are stored above

 for i = 1,NumOfNetworks do

 self.CurrentGeneration[i] = Network.New()

 PosCounter = 1

 NetworkAsString = io.read()

 NumOfNeurons = tonumber(NetworkAsString:sub(PosCounter,PosCounter+1))

 PosCounter = PosCounter +2

 for j = 1,NumOfNeurons do

 X = tonumber(NetworkAsString:sub(PosCounter,PosCounter+1))

 PosCounter = PosCounter + 2

 Y = tonumber(NetworkAsString:sub(PosCounter,PosCounter+1))

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 87 of 94

 PosCounter = PosCounter + 2

 Output = tonumber(NetworkAsString:sub(PosCounter,PosCounter))

 PosCounter = PosCounter + 1

 Type = tonumber(NetworkAsString:sub(PosCounter,PosCounter))

 PosCounter = PosCounter + 1

 self.CurrentGeneration[i].Neurons[j] = Neuron.New(X,Y,Output,Type)

 end

 end

 io.close(File)

end

Goal = iup.Alarm("Super Mario Bros. AI","What goal would you like to optimise the AI for?","Distance","Speed","Coins") --User

chooses what the goal of the AI is

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 88 of 94

Level = iup.Alarm("Super Mario Bros. AI","What level would you like the AI to play?","1-1","1-4","7-2") --User chooses what level

they want the AI to learn to play (Overworld,Castle,Underwater)

if Level == 3 then --Due to the way the savestates are stored if the underwater level is chosen the savestate that needs to be

loaded is 5 instead of 3

 Level = 5

end

LevelStart = savestate.object(Level) --Creates the savestate object so that it can be loaded later

savestate.load(LevelStart)

Loading = true

while Loading do

 Loading = false

 Load = iup.Alarm("Super Mario Bros. AI","Would you like to load an AI or create a new one?","Load","Create New") --Usr chooses

if they ant to load a population or make a new one

 if Load == 1 then

 err, filename = iup.GetParam("Super Mario Bros. AI", filename,"What is the name of the population you would like to load?

%s\n","")

 if err == false then --User pushes the cancel buttton, so it goes back to the last menu

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 89 of 94

 Loading = true

 elseif filename == "" or filename == nil then --Checks if the filename is invalid

 iup.Message("Super Mario Bros. AI","Invalid name")

 Loading = true

 else

 local LoadingGen = true

 while LoadingGen do

 err, gennum = iup.GetParam("Super Mario Bros. AI", gennum,"What generation number would you like to load? %s\n","")

 gennum = tonumber(gennum)

 LoadingGen = false

 if err == false then

 Loading = true

 elseif type(gennum) ~= "number" then

 LoadingGen = true

 iup.Message("Super Mario Bros. AI","Please input a number ")

 elseif gennum < 0 then

 LoadingGen = true

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 90 of 94

 iup.Message("Super Mario Bros. AI","Please input a number that is greater than or equal to zero")

 else

 TestFile = io.open(filename..gennum..".txt","r")

 if TestFile == nil then

 Loading = true

 iup.Message("Super Mario Bros. AI","Could not find the saved population with the name: "..filename..gennum..".txt") --If

the file does not exist then the user recieves this message

 else

 io.input(TestFile)

 local size = io.read()

 size = tonumber(size)

 io.close(TestFile)

 local MainAI = Population.New(gennum,size,filename,Goal)

 MainAI:loadPopulation()

 while true do --The main loop for a loaded population

 MainAI:playGame()

 MainAI:evolvePopulation()

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 91 of 94

 MainAI:savePopulation()

 end

 end

 end

 end

 end

 elseif Load == 2 then

 local InvalidName = true

 while InvalidName do

 err, AIName = iup.GetParam("Super Mario Bros. AI", AIName,"What would you like to name the population? %s\n","") --User

inputs a name

 InvalidName = false

 if err == false then --If cancel is pushed, goes back a menu

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 92 of 94

 Loading = true

 elseif AIName == "" or AIName == nil then

 InvalidName = true

 else

 local NewSize = true

 while NewSize do

 err, Size = iup.GetParam("Super Mario Bros. AI", Size,"How many members would you like in your new populaiton?

%s\n","") --User inputs a number for the size of the population they want

 Size = tonumber(Size)

 NewSize = false

 if err == false then

 Loading = true

 elseif type(Size) ~= "number" then

 NewSize = true

 iup.Message("Super Mario Bros. AI","Please input a number ")

 elseif Size < 3 then

 NewSize = true

 iup.Message("Super Mario Bros. AI","Please input a number that is greater than or equal to 3")

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 93 of 94

 else

 local MainAI = Population.New(0,Size,AIName,Goal)

 MainAI:savePopulation()

 while true do--The main loop for a new population

 MainAI:playGame()

 MainAI:evolvePopulation()

 MainAI:savePopulation()

 end

 end

 end

 end

 end

 end

end

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395

Godalming College

Owen Crucefix

Candidate Number: 9479
Centre Number: 64395
Godalming College

 Page 94 of 94

