
17

Godalming College
Computing NEA

Gravitational Field
Visualisation and
Educational Aid

James Hancock (9433)

1

Table of Contents

Contents
Table of Contents ... 1

Introduction .. 5

Investigative Methods .. 5

Questionnaires .. 6

For students .. 6

For teachers .. 6

Questionnaire Analysis ... 7

Discussion with a teacher ... 9

What utilities are in existence already? .. 10

Notable Simulations .. 14

Textbooks .. 16

Experiences in direct tuition ... 19

What are Energy and Potential Energy? ... 19

What is Gravitation and Gravitational Potential Energy? ... 20

Research Sources ... 23

Analysis .. 24

Previous System Questions ... 24

Current System Analysis ... 25

IPSO Diagrams ... 26

IPSO For a textbook based system .. 26

IPSO For a computerised question system ... 26

Document Specification .. 27

Data Flow Diagrams .. 28

Summary of Research and Analysis ... 30

Requirements ... 31

Simulation/Model Requirements ... 31

Learning Resource Requirements ... 32

Database requirements .. 33

2

Justification Of Requirements ... 34

Simulation/model Requirements .. 34

Learning resource requirements... 34

Database requirements .. 35

Design ... 36

Form Design .. 36

Home Form ... 36

Form Navigation .. 36

Login Form .. 37

Account and results .. 38

Test Result Upload .. 38

UML Class Diagram For the simulation ... 39

Algorithms ... 40

Sum of gravitational Forces .. 40

Recursively Generating Field lines .. 40

Compression of the test mass list ... 41

External Libraries and modules ... 41

Data Flow Diagrams .. 42

Data flow with a student user ... 42

Data flow with a teacher user ... 42

Data Dictionaries ... 43

Students Table .. 43

Teacher Table .. 43

Classes Table ... 43

Results Table ... 43

Database Design.. 44

Entity Relationship Diagram.. 44

DDL string for database... 44

SQL string for queries .. 44

Regex expressions for validating strings ... 46

Alpha Testing Strategy ... 48

Testing outline .. 48

Input Testing Strategy ... 48

input testing datasets ... 48

Input testing table ... 49

3

Flow of Control Testing Strategy ... 50

Flow control within simulation ... 50

Flow control within Account use .. 50

Process Testing Strategy ... 52

Storage Testing Strategy ... 57

Database creation ... 57

Inserting into the database ... 59

Beta Testing Strategy ... 61

Questionnaire For students .. 61

Questionnare For teachers ... 62

Technical Solution .. 63

Home Form ... 63

Layout Creation ... 63

Navigation ... 67

Simulation ... 69

Login System ... 83

Register System ... 85

Account ... 86

Database ... 87

Results ... 96

Tests .. 98

Alpha Testing.. 99

Input Testing ... 99

Flow of Control Testing ... 100

Variable passing test for student user .. 100

Variable passing test for Teacher user .. 100

Process Testing ... 100

Calculation of Gravitational Potential ... 100

Calculation Of Gravitational Force .. 100

Summation of Forces .. 101

Other Algorithmic Functions ... 101

Visual Testing .. 101

Storage Testing ... 102

Location Testing for student registering ... 102

Location Testing for teacher registering ... 103

4

Requirements Testing ... 104

Simulation/Model Requirements ... 104

Learning Resource Requirements ... 105

Database Requirements .. 105

Beta Testing ... 107

Results from Beta Testing Questionnaires .. 107

User feedback ... 108

Evaluation .. 109

Appendix .. 111

Testing Video .. 111

Input testing .. 111

Process Testing ... 114

Storage Testing ... 119

5

Introduction

The aim of this project is to create a visualisation and classroom aid for teaching or independently learning

about gravitational potential. With set questions for testing a students comprehension, the results from

such questions would be accessible to a teacher through a database.

The proposed audience for this project is Advanced Level Physics Students aged 16 to 18, or similarly able

students abroad. However these foreign students would have to understand English as the resource will

not be multi-lingual.

While this product will be useable as a learning and educational tool it should also be accurate enough for

use in scientific fields and should be of aid in an investigation. This will require the inclusion of tools for

examining and potentially modifying the program.

Investigative Methods

I will determine the specification and requirements for the programme mainly through questionnaires,

which will allow me to receive responses from large numbers of people. The advantages of a large data set

are the improved accuracy of my results and they will be representative of more people as a result. The

recording of all responses reduces the chance of answers being lost or misinterpreted. However, there is a

chance that some people will not return the surveys, or they will be lost.

The requirements for an educational end user will be discovered through face to face communication with

physics teachers and students. The advantage of this method is it allows more questions to be asked which

means that a greater understanding of the users’ needs can be gained, lowering the chance of a

misunderstanding skewing the needs. While time consuming this is necessary to create a comprehensive

list of the end user’s requirements.

The requirements for the system will be developed through the observation of other open-source utilities,

which will enable me to find the strengths and shortcomings of each resource. This process with allow me

to ensure that my system is effective at solving the issues discovered within other resources. While time

consuming to conduct this process is not only beneficial to overall effectiveness it will also provide

inspiration for the design of my system.

I will also inspect existing educational tools such as textbooks and websites, while also gaining experience

in actual instructed lessons for comparison. This will show me the details that are essential for students to

understand this concept, as well as the possible methods of tuition that should be implemented into the

system so it is reflective of real lessons.

6

Questionnaires

The following questionnaires will be given to potential users of the system to determine the product’s

necessity. This will allow me to narrow the field of people for which a face to face discussion would be

more appropriate. They will be distributed via email and social media for ease.

FOR STUDENTS

1. What is the highest level of physics you have studied?

Below GCSE □ GCSE □ AS physics □ A2 physics □ Degree □

Means that the participants can be categorized allowing me to gain an understanding of my

target audience. And the results from people who have not studied the topics in question can be

ignored

2. What would you rate your understanding of work done and potential energy?

Poor □ Below Average □ Average □ Above Average □ Strong □

Shows the need of the product and how much background information the resource requires.

3. Have you ever struggled with understanding gravitational potential?

Yes □ No □

 Asks again if the resource would be required

4. Would a clear visualisation of gravitational potential assist in your understanding?

Yes □ No □

FOR TEACHERS

1. What level of physics do you teach?

Below GCSE □ GCSE □ AS physics □ A2 physics □ Degree □

2. What would you rate the understanding of work done and potential energy in your classes?

Poor □ Below Average □ Average □ Above Average □ Strong □

3. Have you ever struggled with getting students to understand gravitational potential?

Yes □ No □

4. Would a clear visualisation of gravitational potential assist in your teaching?

Yes □ No □

7

Questionnaire Analysis

A sample size of 30 physics students and 5 physics teachers was used in the questionnaire.

While not immediately beneficial, this enables the removal of irrelevant results as GCSE and below students

will have little to no knowledge of the subject area and their results are not applicable as a consequence.

Conversely a university student would be expected to have a wide understanding of the subject area and

the result may not be of use to them. The majority of results are based in the AS and A2 range as these

include the target audience for the product.

While the GCSE teacher may seem irrelevant they may also have experience teaching at A level standard

and therefore the result cannot be discarded.

0

10

20

30

40

50

60

70

Below GCSE GCSE AS A2 University

P
er

ec
en

ta
ge

Level of study/instruction

Students Teachers

0

2

4

6

8

10

Poor Below
Average

Average Above
Average

Strong

Students current
understanding

Students

0

0.5

1

1.5

2

2.5

Poor Below
Average

Average Above
Average

Strong

Teachers view of their
classes' understanding

Teachers

8

The opposing skews of these two graphs show imposing views of the understanding of gravitational

potential. A possible reason for this could be the time at which the questionnaire was asked, before the

students had started learning gravitational potential.

This would mean that students are confident in their knowledge of potentials before college and are

perhaps unaware of the complexities of the subject. Therefore, it may be wiser to focus on the results from

the teacher’s questionnaire – as they have the ability to say how the understanding has been for previous

classes over past years. The results clearly show the teachers believe that understanding has been slightly

below average.

The results from this question were clear: both students and teaching have encountered difficulties

learning/getting students to understand gravitational potential. This shows the need for a clear resource

for assisting in improving the comprehension of gravitational potential.

The student’s results suggest that they would benefit from a visual representation of the problem, and that

they would use a resource if there was one. However, the consensus from the teacher’s results is that one

0 2 4 6 8 10 12 14 16

Yes

No

Have particpants experienced difficulties
understanding/teaching gravitational potential?

Teachers Students

Would a clear
visualisation assist in

your learning?

Yes No

Would a clear
visualisation assist with

your teaching?

Yes No

9

is unnecessary. Could this be due to the small sample size? Should this just be used as an extra-curricular

learning resource?

Discussion with a teacher

To assist in designing and recognising the successfulness of the product I approached Mr G. Weston, a

physics teacher at a local college, who agreed some preliminary requirements with the notion of utilising

such a product within lesson time.

Here is a summary of the conversation exchanged:

After explaining my intentions to produce a product to aid in visualising gravitational fields Mr

Weston was quick to suggest the different aspects that my system should include. He stated that

a visualisation of gravitational potentials would be especially useful and that any system must be

able to show the gravitational force at a point within a system.

When queried further about how such a visualisation would look Mr Weston was able to refer me

to other similar programs that were used for alternate similar purposes, such as the electric field

equivalent, where potentials were shown by equipotential lines of in growing rings around the

system of charges, and the electric force was displayed by a combination of vector arrows. He also

thought that a representation that showed the potential wells could also be useful.

Mr Weston was also quick to point out the need for such a product as many of his students had

struggled to understand the concepts involved in the first time and that his quick ‘scribbles’ on the

whiteboard were crude images that hardly aided in his demonstrations. While he occasionally used

the electric field equivalent to model the gravitational system, he had generally found that this

was detrimental and only served to confuse his students, who had not yet learnt about electric

fields.

Moving on it was noted that the majority of his lessons were a combination of lecture followed by

textbook questions, and that this repetitive nature was believed to be a little dull and monotonous

for the students. Perhaps a variation in this method could be refreshing for the students. The

conversation then progressed to online learning, where he mentioned that his physics department

was making a definitive effort to more to more online learning and improving the online resources

available. The reasoning for this was that an increased quality of resources would encourage more

online learning and more independence from the students. With the current facilities available

there is a lot of frustration stemming from the ineffectiveness of the products, and that it was not

uncommon that a student would use this as an excuse for not completing the set work.

10

What utilities are in existence already?

By searching online for gravitational potential visualisation some of the easily found tools are:

Isaac Physics – Sound explanations on both gravity and gravitational potential with the occasional diagram.

Explanations are generally in the structure of brief introduction, equations given, aspects of equations

explained. Information is ordered in a manner to improve understanding with gradual increments into the

depth of the subject covering a wide range of information. There are the generally 1-2 questions at the end

of each chapter. However, if the questions are not understood there are no hints in this section and no

easy way to see the method through which the answer has been obtained.

Isaac Physics was a learning tool used during physics lessons in my previous year, and the consensus was

that it was not user-friendly, the hints were unhelpful, and the vague message received through an

incorrect answer did not benefit questions. In summary this is a very useful revision and practice resource

but not suited for learning or teaching, and only beneficial once an understanding of the topic has been

gained.

On the other hand Isaac Physics was very helpful for teachers as it allowed for work to be set over a large

set of topics, and returned a summary of the classes answers showing which questions were perceived to

be hard and many students struggled with, Allowing for corrections to be made during lesson time.

Figure 1: Isaac Physics

11

Khan Academy – With each subject and topic broken down into individual sections Khan academy provides

a useful teaching, learning and subject reinforcement tool. Combined with useful diagrams and YouTube

videos this creates a helpful learning tool. However, on this particular topic the information regarding

potentials further away from a planet’s surface was lacking and the sole diagram is not perfectly clear.

Figure 2: Khan Academy

12

Phys.Libretexts.org – Coherent yet simple explanations, derived from a different point of view to other

resources that makes sense and benefit the reader. Plenty of equations are laid out in a sensible manner,

however much information seems to be missing.

There are some graphs and visualisations, yet these are not clear, and frankly not aesthetically pleasing,

and therefore unlikely to benefit a reader to a sufficient level. There are brief explanations on two body

systems, yet this section completely lacks any images and feels poor in comparison to earlier information.

Figure 3: phys.libretexts.org

Wikipedia – Detailed and expansive resource, with beneficial diagrams. Yet unspecific target audience

could lead to confusion for readers of different abilities. Concise descriptions transfer large amounts of

knowledge with links to further reading. However, the discouragement of the use of Wikipedia due to the

inaccurate information the site can hold – as a result of its editable web pages – means that Wikipedia is

unsuitable for educational needs.

Figure 4: Wikipedia

13

TexasGateway.org – Designed as a lesson with clear learning objectives, formulated from well dictated

sections that link together ideas. Some diagrams and models but nothing particularly helpful with some

worked question examples. Educates gravitational potential at short and long ranges covering multiple

formulae. Though paragraphs tend to be excessively wordy which hinders the teaching capabilities of the

piece as it is harder to read.

Figure 5: Texasgateway

During a brief researching session on the internet there were no clear models or visualisations of

gravitational potential.

14

Notable Simulations

PhET Charges and Fields – While a different topic to gravitational potential this model is still a valid

example. It is simple and easy to understand without prior knowledge, this is something that should be

included in any educational model as a student should be able to use this by themselves. The toggleable

options for voltage and values add layers of depth to the model that allow a user to start from a simpler

model and build up. The inclusion of a measuring tool to calculate to electric field strength at any point is

also a noteworthy addition as it means that a user can see how the field strength varies.

Figure 6: PhET Charges and Fields example 1

The user can also use the measuring tool to visualise equipotential lines at any point before combining with

the values feature to see the calculated field strength of that equipotential as seen in example 2.

Additionally the user can use a sensor to see how the field will affect a particle at any position, simply

displaying a resultant force arrow with length proportional to the force experienced.

15

Figure 7: PhET Charges and Fields example 2

FlashPhysics Electric Field – A simple to use model with multiple pre-sets and clearly labelled options.

Options are divided into auto-plotting functions, mouse controls, charge addition/modification/removal

and sample charges. This allows simple navigation and use of the product.

Figure 8: FlashPhysics 1

The equipotential auto-plotting facility is simple to use and easy to tell what is happening with the colour

code. However, there is no key for the colour code so the magnitude of the potential must be inferred. It

is also difficult to get a clear spread due to the random nature of its operation which leads to solid rings of

colour. This can be accomplished through the mouse control version and clicking where you want an

equipotential, however there are no instructions for this, and it is not immediately obvious.

Other options include showing field vectors, field lines and a test charge. The field vectors are an interesting

inclusion as it displays not only the resultant vector from every charge present, but the vectors caused by

each charge present in the system.

Figure 9: FlashPhysics 2

16

 Textbooks

Within the textbook there were limited diagrams helping to explain the concept with a clear favouritism

towards graphs. A few of the diagrams that have been selected are here as follows:

Figure 10: Textbook example diagram 1

The preceding diagram is used within the textbook to help show Newton’s Law of Gravitation showing

how each mass feels a force direction towards the other. There are a few other diagrams along with this

showing that no matter the masses of the two bodies the force between them will always be equal.

The next diagram shows the direction of the field lines going into a single mass, the dotted line around the

outside is an equipotential line. This shows that the radial field decreases with the distance away from the

centre of mass.

Figure 11: Textbook example diagram 2

17

Figure 12: Textbook example graph

The graph above shows how the time period of an orbit relates to the average distance form the sun and

compares it to a graph or orbital velocity against orbital distance. The textbook then goes on to link into

Kepler’s equations which describe the relationship between time period and orbital radius.

The following is an example of an explanation given by the textbook that should be sufficient to give a

student a solid understanding of escape velocities, the user should also be aware of the formulae used to

calculate the escape velocity.

Figure 13: Textbook example explanation

18

The textbook has a large range of questions in each topic, the following is a screenshot of a section of these

questions. There are a variety of written response and calculation based questions designed to aid a users

development as they progress through the chapter.

Figure 14: Textbook example questions

19

Experiences in direct tuition

My experiences in direct tuition could be best described as mixed. Within the first 5 minutes of starting the

topic we were told most students in our class would not understand the concept this time. The inverse

square law fields were taught separately in the hopes that we (the students) would understand the second

time and be able to retroactively learn gravitational fields. Giving the impression that in order to achieve

good marks we would have to put in large amounts of hours to teach ourselves.

Alongside a few hastily drawn (and redrawn) diagrams on the whiteboard we were taught a simple

derivation of the gravitational force exerted on a mass. When teaching the connection between potential

energy and force we were taught a simpler method of combining equations rather that the real calculus

methods that are technically correct. While not required for our course the calculus is not beyond A level

standards and it would have been nice to see a proper derivation as in some cases it may further

understanding of a subject.

All definitions and laws were correctly stated and ingrained throughout the lesson as would be expected.

In the successive lessons potential gradients and escape velocities were covered before leading on to the

link between gravitational force and centripetal motion, an important part of astronomy. In my opinion

the coverage of potential gradients and escape velocities were too brief and this left multiple students

confused and without a proper understanding. That particular lesson comprised a lot of textbook based

work where details are easy to gloss over and students get distracted. On the over hand the link to

centripetal motion was thoroughly explained and in a detailed manner which had the opposite, positive

effect as one would expect.

In summary the tuition could have been more detailed in parts and would have benefitted from a few more

accurate diagrams.

What are Energy and Potential Energy?

Energy is the capacity to doing work, it may exist in various forms such as potential, kinetic, thermal,

electrical, chemical and nuclear. The law of the conservation of energy states that ‘the total energy of an

isolated system remains constant’; this law means that energy can neither be created nor destroyed, only

transformed or transferred from one form to another.

Work is done on an object when a force acting on it makes it move, and as a result energy is transferred to

the object.

Energy as a result, is inextricably linked to work which leads to the Work-Energy Principle. This states that

an increase in the kinetic energy of a rigid body is caused by an equal amount of positive work done by the

resultant force acting on the body. And conversely, a decrease in kinetic energy is caused by an equal

amount of negative work done by the resultant force.

𝜟𝑬 = 𝒘

Potential energy is the energy of an object due to it’s position.

The total mechanical energy of an object is the sum of its potential energies, and kinetic energy.

20

WHAT IS GRAVITATION AND GRAVITATIONAL POTENTIAL ENERGY?

Gravitation is the movement, or a tendency to move, towards a centre of gravity. The gravitational force

is a force that attracts any two massive objects. Newton’s law of gravitation proposes ‘every particle

attracts any other particle with a gravitational force whose magnitude is given by:

𝑭 = 𝑮
𝒎𝟏𝒎𝟐

𝒓𝟐

Where m1 and m2 are the masses of the particles and r is the distance between them. G is the gravitational

constant 6.67 x10-11 Nm2/kg2

The principle of gravitational superposition says a net effect is the sum of the individual effects. For a given

group of particles the net gravitational force exerted on any one of them is:

F1 = F1-2 + F1-3 + F1-4 + … + F1-n

This can be expressed as the vector sum: ∑ (𝑭𝟏→𝒊)
𝒏

𝒊=𝟐

A Gravitational Field is a region of space around a mass in which another body experiences a force of

gravitational attraction.

The gravitational field around a mass is radial, meaning it always acts towards the

centre of a mass.

The gravitational field strength = Force Due to Gravity / Mass

𝒈 = 𝑭/𝒎 = 𝑮𝑴/𝒓𝟐

Figure 15: Radial Field

At the earths surface we can assume a uniform field

where the force due to gravity has a value of 9.8 ms-2.

However this value is only accurate near the earth so

this approximation has limits.

Figure 16: Uniform Field

Gravitational Potential Energy is the work done

against gravity to raise a mass to a given height. In a uniform field the gravitational potential energy, Ug, is

simply equal to the mass x force of gravity * height.
∆U = mg∆h

21

Where h is the height above the point taken to be at a potential energy of 0J.

Potential is defined as the potential energy / mass.

Gravitational Potential is the work done to move a mass from infinity to a given point in a gravitational

field per unit mass.

As distance from the centre of mass increases the gravitational

potential approaches 0J, as the mass is moved closer to infinity.

Lines of equal gravitational potential can be shown radiating

outward from the centre of mass. These equipotential lines will

become more spaced for the same change in potential energy

due to the inverse square relationship.

Potential gradients

Figure 17: Equipotential lines surrounding the earth

Another way of showing this is through potential wells where a mass

is shown at the bottom of each ‘well’ and the size of the well is directly

proportional to the potential energy of a test mass at set distances

from each mass.

Figure 18: Planetary Potential Wells

To calculate the gravitational potential energy at a point in a gravitational field you need to integrate the

gravitational force, Fg, with respect to distance.

𝑈𝑔 = ∫ 𝐹𝑔
∞

0
𝜕𝑟 = ∫

𝐺𝑀𝑚

𝑟2

∞

0
𝜕𝑟

𝑈𝑔 = −
𝐺𝑀𝑚

𝑟

As gravitational potential is equal to the gravitational potential energy per unit mass:

22

𝑈𝑔 =
𝑉𝑔

𝑚
= −

𝐺𝑀

𝑟

So we get our final equation:

𝑉𝑔 = −
𝐺𝑀

𝑟

23

Research Sources

Type Name of Source Summary of information Relevant sections

Book AQA Physics A Level 2nd Edition
Author: Jim Breithaupt
ISBN: 978-0-19-835187

General subject knowledge and definitions. Section 7,
21.1-21.5,
Pages 336-353

Book Extended Fundamentals of Physics Fourth Edition
Authors: David Halliday, Robert Resnick, Jearl Walker

More in depth subject knowledge and derivations.
Pages 192-194,
420-423

Book Hodder AQA A level year 2 textbook --- ---

Website http://hyperphysics.phy-astr.gsu.edu/hbase/Mechanics/lagpt.html

Lagrange Points, Three body Equipotential Surfaces and
Equipotential Contours.

n/a

Website https://isaacphysics.org/concepts/cp_gravitational_field
https://isaacphysics.org/concepts/cp_potential#acc_cp_potential
_relating_field_potential

Great database of information and equations laid out in
comprehensible manner.

n/a

Website https://phys.libretexts.org/Bookshelves/Astronomy_and_Cosmology
_TextMaps/Supplemental_Modules_(Astronomy_and_Cosmology)/
Astronomy/Gravity/1.3%3A_Working_with_Gravity%3A_Potential_Energy

Explanation of gravitation and potentials from a university
physics professor.

n/a

http://hyperphysics.phy-astr.gsu.edu/hbase/Mechanics/lagpt.html
https://isaacphysics.org/concepts/cp_gravitational_field
https://isaacphysics.org/concepts/cp_potential#acc_cp_potential_relating_field_potential
https://isaacphysics.org/concepts/cp_potential#acc_cp_potential_relating_field_potential
https://phys.libretexts.org/Bookshelves/Astronomy_and_Cosmology_TextMaps/Supplemental_Modules_(Astronomy_and_Cosmology)/Astronomy/Gravity/1.3%3A_Working_with_Gravity%3A_Potential_Energy
https://phys.libretexts.org/Bookshelves/Astronomy_and_Cosmology_TextMaps/Supplemental_Modules_(Astronomy_and_Cosmology)/Astronomy/Gravity/1.3%3A_Working_with_Gravity%3A_Potential_Energy
https://phys.libretexts.org/Bookshelves/Astronomy_and_Cosmology_TextMaps/Supplemental_Modules_(Astronomy_and_Cosmology)/Astronomy/Gravity/1.3%3A_Working_with_Gravity%3A_Potential_Energy

24

Analysis

Previous System Questions

Questions typically listed in small exercises, containing 4-6 questions; generally split into 3 parts. These

questions generally increase in difficulty, refining the techniques and solidifying the knowledge learnt. The

last questions should challenge the students.

Figure 19: Isaac Physics Model Question

Textbook previous questions

25

Current System Analysis

A lesson can typically be divided into 4 parts. Firstly at the start of the lesson a student receives their

marked work from the previous week, and a brief discussion of the questions that were deemed to more

challenging by the classes results, addressing typical sources of errors and poor methods.

Then the teacher would introduce the next aspect of the topic and explain the key principles, generally

with the aid of a PowerPoint. This informs the student of the knowledge they need to learn and practice.

In order to teach this the teacher generally works through the PowerPoint, sometimes drawing additional

diagrams and showing the origination of certain formula to improve student comprehension.

However, it is not uncommon to see teachers skipping multiple ‘unnecessary’ slides in the PowerPoint

which are supposedly unimportant. This suggests that the PowerPoints are out of date.

 Following this a teacher will work through some simpler problems to show how the formulas learnt can

be applied to the issues. These problems are generally very simple and require little to no rearranging of

formulas.

Finally, to finish a lesson the students will work through the example questions, generally from the

textbook, which gradually increase in difficulty. Within a section there is a small variety of questions which

are then expanded on during the topics summary questions.

To cement learning a teacher will generally set homework, ranging between 5 and 20 questions which is

expected to take about 45 minutes to an hour. Covering a variety of question types and difficulties.

Homework is generally set every lesson and the work from the previous week is marked manually by the

teacher and returned to the student.

Each teacher keeps a record of which the homework results in each class, which stores the result the

student has attained and the week the homework was set. If the student has not done that homework

then that week is simply left blank allowing the teacher to see how many homework’s the student has not

completed.

It is then up to the student to maintain each topic in preparation for a test or the final exam, with a

possibility of revision lessons for some topics depending on the rate at which work had been covered.

26

IPSO Diagrams

IPSO FOR A TEXTBOOK BASED SYSTEM

Input Process

Student completes the questions, presumably with
detailed workings that outline the processes used
to reach their answer.

In order to mark the homework, the student will
generally bring their work in to be marked by a
teacher.
In some cases answers are contained at the end of
the textbook so the students are able to confirm
their answers independently

Storage Output

The textbook stores the questions and in some
cases the answers.
The student has to store their work.
If answers are not available it is likely the teachers
will also have a copy of work outlining the correct
answers

After marking the students results are calculated
and a judgement on their comprehension can be
made.
Leading to actions.

IPSO FOR A COMPUTERISED QUESTION SYSTEM

Input Process

Student completes the questions on their account,
and enters their answer into the system, until a
correct answer is entered

The system compares the answer entered with the
correct answer and returns whether it is correct or
not.

Storage Output

The system stores:

• The number of answers entered
(attempts) for each question.

• Whether the student answered each
question correctly.

• Which student each set of results
corresponds to.

All results are outputted in a tabulated format that
is easy to read, and colour coded for how well each
student did. This is only visible to the teacher.

For each question the student receives feedback
on whether their answer is correct, and where the
error(s) may lie.

27

DOCUMENT SPECIFICATION

Volumetric For a Computerised based system (Isaac Physics)

Document Description System Document Name Sheet

Isaac Physics Question Current
System

1 n/a 1

Stationery ref. Size No. of parts Method of preparation

Physics Question n/a Online Webpage

Filing Sequence Medium Prepared by

 Computer Cambridge University

Frequency of Preparation Retention Period Location of File

n/a Isaac Physics Link

 Minimum Maximum Average Growth Rate/fluctuations

n/a Unlimited 1 per person Dependent on use.

Users/Receipts Purpose Frequency of use

students Homework / Exam Preparation Very Frequent

Data Dictionary

 Ref Name Data Type Occurrence Source of Data

1 Question String Once per question Isaac Physics example question

2 Gravitational
Constant

Single Once per question
sheet

Isaac Physics example question

3 Solar Mass Single Question Specific Isaac Physics example question

4 Hint 1
(topics)

URL(s) Question Specific Isaac Physics example question

5 Hint 2 (goal) String Question Specific Isaac Physics example question

6 Hint 3 (Useful
equations)

String Question Specific Isaac Physics example question

7 Hint 4
(Diagram)

Image Question Specific Isaac Physics example question

8 Hint 5 (Video) URL Question Specific Isaac Physics example question

https://isaacphysics.org/questions/kepleriii_num?board=gravity_orbits

28

Volumetric For a textbook based system

Document Description System Document Name Sheet

Textbook questions Current
System

1 n/a 1

Stationery ref. Size No. of parts Method of preparation

Physics Question < A4 4 Textbook

Filing Sequence Medium Prepared by

Every time set Paper/Digitised Book Hodder Education

Frequency of Preparation Retention Period Location of File

Once a year 0. Copies are generally scanned in
and posted online.

Classroom, eBook

 Minimum Maximum Average Growth Rate/fluctuations

1 ~60 1 per person Depends on the number of students.

Users/Receipts Purpose Frequency of use

Students Homework Once for homework,
more for revision is
required.

Data Dictionary

Ref Name Data Type Occurrence Source of Data

1 Question String Once per question Hodder Education Physics year 2 textbook

2 Gravitational
Constant

Single Once per question
sheet

Hodder Education Physics year 2 textbook

Data Flow Diagrams

In the current system each homework must be manually set by the teacher during lesson time. This involves

the teacher finding the location of the homework sheet, which is stored in either a book or on the teachers

computer.

29

In the case of the homework being located in a book the teacher will tell the student the book title, page

numbers and questions. Expecting the student to look up the questions and return the following week with

the answers. In rare occasions a teacher may scan a copy of the homework page and upload it to the college

website, where the students can access the image, which generally stored in a PDF format.

If the homework sheet is located in the teacher’s computer files, then the teacher must first print off

around 20 copies of the sheet before handing them out to each individual student. This is more convenient

for the student but at the expense of the teacher’s time.

30

Summary of Research and Analysis
The results of my Surveys, Experiences and Conversations with relevant people in the subject field

combined with research into the current state of learning resources have shown there is a clear need for a

resource that displays and helps students understand the concept of gravitational potentials.

From my analysis it is also clear that a system that can help explain parts of the physics specification whilst

also digitising the system would be beneficial to both students and teachers of the subject. Enabling

teachers to reduce time wasted and spend longer on the more challenging areas of the syllabus, deepening

the students understanding to both the course and explaining the finer details that would may improve

the students grade.

However due to the complexity of the problem the visualisation element of the simulation must be clear

and clearly explained or self explanatory for it to be useable, in both a class environment and outside in

independent study.

31

Requirements
SIMULATION/MODEL REQUIREMENTS

1. The model should be easily to use:

1.1 The simulation interface should be well designed and organised in a logical manner.

1.2 The interface controls should be named so that their purpose is immediately understandable

without prior knowledge.

1.3 Each control should have a brief description with instructions on how to use it.

1.4 Any inputs should be validated or the available values should be limited to prevent a system

malfunction.

2. The visualisation should be immediately understandable with the information available within the

system:

2.1 The model must be clear and obvious what it is supposed to be visualising.

2.2 The gravitational field strength must be correctly calculated for any point within the

gravitational field.

2.3 The gravitational potential must be correctly calculated for any point within the gravitational

field.

2.4 The Gravitational potential function should produce concentric equipotential lines that are

appropriate for the system that has been created.

2.5 The Create Field Line function should produce a set of gravitational field lines that correctly

demonstrate the field of the created system.

2.6 The test mass function should correctly show the movement of masses in the field due to the

gravitational field.

2.7 The model should be beneficial in the classroom and at home.

32

LEARNING RESOURCE REQUIREMENTS

1. Should be educational, useable in a classroom and beneficial to students.

1.1 The information should cover the entirety of the subjects specification.

1.2 The detail of the information must be sufficient to leave the students with a strong

understanding of the subject.

2. There should be suitably challenging questions for the students to answer

2.1 The Questions should have a range of difficulties to develop the users skills.

2.1.1 All students should be able to answer the easiest questions

2.1.2 The most challenging questions should be testing for the majority of students, and

should require the adaptation of principles along with a depth of subject knowledge

to answer.

2.1.3 Over a range of questions students should be prepared for all common exam question

scenarios.

3. There should be a form of feedback available so that the students can view their progress, and

what aspects they need to revise.

3.1 The students should be able to see the percentage they have achieved on each test.

3.2 The students should receive a feedback message from their teacher.

33

DATABASE REQUIREMENTS

1. Database should be designed logically:

1.1 All tables within the database should be fully normalised:

1.1.1 Tables should only contain atomized values.

1.1.2 Values stored within the same column should be of the same domain and data type.

1.1.3 All columns should be appropriately named so that they are self explanatory and any

inter-tabular links are evident without using the design.

1.1.4 The order in which data is stored should not matter.

1.2 All data stored within the database should be relevant in some respect.

2. The system must be able to interact with the database.

2.1 The database must be created correctly:

2.1.1 Each table must be created with the correct name.

2.1.2 Each table must have the correct number of fields.

2.1.3 Primary keys and partial keys must be defined correctly for each table

2.1.4 Each field must be correctly named.

2.1.5 Each field must have the correct data type.

2.2 The database should be able to store all necessary values:

2.2.1 When an account is created the correct details should be correctly stored within the

students or teacher table.

2.2.2 When a students class code is changed this alteration should be reflected in the

database.

2.2.3 When a teacher adds a students homework the results table should be correctly filled

in.

2.2.4 When a teacher adjusts a students feedback the changes must be altered correctly in

the feedback.

2.3 The database should be able to answer a variety of queries:

2.3.1 All and any data required to fulfil data fields within the system should be gathered by

the system.

2.3.2 Teachers must be able to view the feedback they have left the students in their class.

2.3.3 Teachers should be able to view and alter the data involving the students within their

class.

2.3.4 Any changes made to the data within the system should be reflected in the database.

34

Justification Of Requirements

SIMULATION/MODEL REQUIREMENTS

As the model/simulation is mainly purposed to be a learning aid it must be simple for a student to

understand without any prior knowledge of the subject or program. To achieve this each inputs and options

should be distinctly named and categorized into like functions. These inputs must be validated and

controlled as the model should always work independent of any mis-input.

All of the functions in the simulation must be able to produce the correct output image and calculate the

correct values independent of the scenario created by the user. The produced output images must be

accurate and easily understandable to the user.

To ensure the tool is usable in a classroom environment all the processing must be completed in real time

so that there is little to no delay before an output is produced. This ensures that the product can be used

during a demonstration. To aid its ease of use each control should be responsive and sensical so that

multiple scenarios can be quickly established.

To be beneficial and therefore worth using the model must be clear and quickly understandable. Clear

consideration should be taken to optimise the model and design for learning.

LEARNING RESOURCE REQUIREMENTS

The learning resource should be split into 2 distinct aspects: a relevant information source for educating

and furthering understanding of the subject content, along with a large variety of appropriate practice

questions.

The information lesson source should be designed so that it is compatible with normal educational use. For

this reason it must be easy for students to use independent of their teachers. The source must be thorough

enough so that the students have a complete understanding of the subject, yet easy and simple to

understand so that it is beneficial to all students. This source should also include worked exemplars of

common questions to demonstrate a strong method of answering calculation questions.

The practice questions should be reminiscent of the questions available in textbooks and exams with an

emphasis on exam style. There should be a variety of questions so that a student can reinforce their

understanding of the learnt concept, developing deeper links and improving their skills so that they are

able to answer the majority of questions on the topic confidently.

For the students to adequately understand their progress it is essential that a form of feedback be available

to them, so that they can gauge their understanding and know which areas need improvement.

35

DATABASE REQUIREMENTS

The database must be logically and efficiently designed to improve the effectiveness of the system and to

make it easier to alter and improve in the future, as the system updates and evolves. To do this the data

base should be fully normalised, and effectively labelled tables should be used to store relevant data only.

The database must be robust and reliable as the system relies on it. As well as being able to quickly answer

a small number of specific pre-defined queries to improve the usability of the system.

These pre-defined queries should return any data requested by the system. If at any point the system needs

to examine the database and query for an array of information, for example if the system needs to know

all the students in a single class, then a suitable query should be selected and run. It is required that this

query returns the correct results.

During parts of the program values may be changed and these changes must be reflected in the database

so that it is kept up to data and works as it should. This may involve classes being changed or new accounts

being created. Or if feedback is being added or altered then it should only affect the student who’s

feedback it is, and no other data should be affected accidentally.

Data gathered from the database should also be displayed in a sensible and visually effective manner so

that it is evident what data is on show and what its purpose is.

36

Design

Form Design

The form will be coded using windows basic in visual studio making use of the windows form application

environment, enabling the use of multiple forms and easy design applications.

HOME FORM

The home form should be simple and lay out all the options a user can use. To do this I will make use of the

Toolstrip tool available. By populating this toolstrip with a combination of buttons and ‘comboboxes’ I will

be able to create an accessible toolbar which is easy and simple to use.

FORM NAVIGATION

The Lessons tab will be created using a combobox

that displays all the available lessons split into their

respective topics, making it easy for a user to access

specific areas of the subject. Each of the drop-down items will take you to the relevant information.

For the rest of the tabs a button will provide the appropriate service as a single click will open an alternate

form which contains the information for that particular section. For example clicking on the quiz section

will take the user to where they can complete the quiz.

While not logged in the Results and Account tab will both take you to the Login/Register Form, as both of

them require the user to be logged in on order to access the available information.

These tabs will be available in every form allowing the quick movement between pages.

37

LOGIN FORM

The login system must be clear and self explanatory. To make the use of the system clear the display will

have a toggle to switch between Logging in and registering.

The login page should be simple and obvious, it should contain fields asking for the users Username and

Password. This must be laid out simply and in a sensible manner. In the registering option it must contain

the same as the login page but the user should be asked to confirm their chosen password and extra fields

such as their name, surname, email, and an optional field containing the students Teacher (or class code

for simplicity)

It should also be evident whether the user is electing to log in as a student or as a teacher.

The registry form needs to have fields for all required data variables, such as forename and surname. It

needs to be possible to register as both a student and a teacher.

38

ACCOUNT AND RESULTS

In the account page it should display the users information, and offer the ability amend the class field to

enable a student user to add themselves to the relevant class. These changes should be mirrored in the

database to keep the system up to date.

Once logged in all users will be able to access the results page. For a student user the results page should

automatically bring up all the quizzes they have completed, along with the percentage of marks they gained

and the feedback left for them if there is any.

For a teacher the results form will first ask the teacher to fill out an SQL query in the form of selecting items

from drop down lists, providing infallible validation of the data entry. The teacher should be able to filter

to select specific classes, homework or students; and should be able to select as many items as required.

Once the search button is used the program should automatically run the desired SQL search and return

all the wanted data in a presentable format.

TEST RESULT UPLOAD

The test upload should offer teachers the ability to select a student from their class and a test from the

available tests. And to input the students score and feedback to save it on the system. This will enable the

teacher to create multiple different SQL queries to add data to the results page of the database.

Once the user selects the add result button the entered data should be added if it is valid.

39

UML Class Diagram For the simulation

The simulation is a large aspect of the system as a whole and to ensure that it is operational and effective

it must be programmed in a structured manner. The object oriented paradigm is ideal for this type of

system as it enables multiple ‘objects’ to be created and destroyed which each independently store their

variables.

In the situation it is logical that each mass (planet) placed in the system is its own object; as this enables

multiple masses to be easily created each with the same methods which would simplify calculations later

on.

A testmass is inherently similar to a mass, it being of constant mass 1 kg, while a placed mass should be

able to take a variety of values. However a lot of the same methods will be required so the testmass class

should inherit these from the planet class.

To aid and benefit calculations the fieldpoint and fieldproperty classes are required to simplify the

calculations and processes needed to produce an accurate model.

The environment class is shown to inherit from the picturebox object. This is a included object within visual

basic windows forms and enables visual representation. Here I am adapting the picturebox class to fulfil

my needs.

The Fieldproperty class should never be able to exist by itself as it should always be linked to a point in a

field. Here it can be seen that the fieldpoint class and the testmass class are composed of multiple

fieldproperty so that the fieldproperty cannot exist without its ‘parent’ class.

Each class is implemented within the simulation to produce the desired outcome. While the simulation

could be another class in the system it will be defined as a module where each of the separate classes are

defined as it was deemed more appropriate for the system.

40

Algorithms

SUM OF GRAVITATIONAL FORCES

Procedure SumOfGravitationalForce(Force1Magnitude:Integer,
Force1Direction:Single, Force2Magnitude:Integer, Force2Direction:Single)
 HorizontalForce Force1Magnitude*Cos(Force1Direction) +
Force2Magnitude*cos(Force2Direction)
 VerticalForce Force1Magnitude*Sin(Force1Direction) +
Force2Magnitude*Sin(Force2Direction)

 NewForceMagnitude sqrt(HorizontalForce^2 + verticalforce^2)
 Newforcedirection CalculateDirection
End Procedure

To sum two vector forces they first need to be broken down into their separate x and y components. Once

broken down the different components can be summed together to find the resultant components, then

using Pythagoras’ theorem the magnitude of the resultant force can be found.

Finally to calculate the direction of the force the arctan of the vertical component over the horizontal

component will return the angle from the horizontal. Once a correction has been applied; otherwise a force

down and left will appear to have the same angle as a force heading up and right.

RECURSIVELY GENERATING FIELD LINES

Procedure CreateForceLine(Planets:Planet, CurrentPoint:Point)
 NewPoint CalculateNewPoint(Planets)
 If NewPoint <> CurrentPoint Then
 CreateForceLine(Planets, NewPoint)
 End If
End Procedure

The aim of the procedure is to create a field line by gradually stepping out from the mass. A set of starting

points will be generated and stored as a variable within each mass. Then one at a time these points will be

passed into the ‘CreateForceLine’ procedure.

Then the gravitational field at that point will be calculated. By keeping the magnitude of the field the same

and reversing the direction a ‘inverse force can be calculated’. If by using this force we step out to a new

point, which if treated as a vector the force would have pointed to, the process can be repeated using this

new point.

This will continue until the gravitational field strength is reduced to a point where the point passed in points

to itself, meaning the cycle has ended.

41

COMPRESSION OF THE TEST MASS LIST

During the runtime of the program the test mass list will be populated with test masses, however test

masses will be deleted if certain conditions are met which would leave blank values in the middle of the

list.

So that it is clear where the next value should be added it is important to compress the list so that all the

values are at the start of the list, and to keep note of where the next free index is.

Procedure CompressList(Mylist:List(of something), NextIndex:Integer,
RemoveCount:Integer)
 If RemoveCount > 0 Then
 ShiftTo 0
 ShiftFrom 0
 While ShiftTo < NextIndex – RemoveCount
 While MyList(ShiftFrom) Is Nothing And ShiftFrom < MyList.Length
 ShiftFrom ShiftFrom + 1
 End While
 If ShiftTo <> ShiftFrom Then
 MyList(ShiftTo) = MyList(ShiftFrom)
 NextIndex NextIndex + 1

End If
ShiftTo ShiftTo + 1
ShiftFrom ShiftFrom + 1

 End While
 End If
End Procedure

Each time a value is deleted within in the list then the remove count is incremented by 1 externally to this

procedure. Therefore the system knows it needs to perform a compression.

By starting at the beginning of the list the program cycles through each index until it finds an ‘empty’ index

incrementing both shift to and shift from. Once an ‘empty’ index has been found the program increments

shift from until a ‘full’ index is found.

Then using the values stored in shift to and shift from it switches the full index into the position of the

empty index. The list cycles through until all full indexes are consecutively at the start.

External Libraries and modules

1. Imports ADOX
2. Imports System.Data.OleDb

The ADOX and OLEDB libraries are necessary to enable the database system to work. The function of the

ADOX library is expose additional objects for creating, modifying, and deleting schema objects; such as

tables and procedures. It also includes security objects to maintain users and groups and to grant and

revoke permissions on objects.

The OLEDB library allows me to interact with the SQL database, for my specific uses I am using the

OLEDBcommand, OLEDBconnection, OLEDBdataapapter and OLEDBdatareader classes which enable me to

establish a connection to a SQL database, before writing, modifying or selecting data using a SQL command.

42

The data adapter and data reader classes respectively enable me to format tables of data or read specific

rows of data.

Data Flow Diagrams

DATA FLOW WITH A STUDENT USER

A student user will have access to the question and simulation aspects of the system. For a students results

to be stored they will have to have an account in the database. Therefore data will pass between the

Username and Password storage and the user.

In order to answer the questions the student must have access to them and so access to the question bank

will be necessary.

The student also needs to be linked to the class table, in order for this to occur the student should have to

enter the unique class code. This requires that data flows between the classes table and the students table.

Finally once the student has finished the questions/quiz the full results will be stored in the results table,

accessible by the student and their teacher.

DATA FLOW WITH A TEACHER USER

43

A teacher will also have an account in the system that will be linked to a number of classes, a one-to-many

relationship. This means that the teacher will receive and send data to the username and password storage.

So that the login system can work.

The teacher also needs access to their entire class data. In order for this to occur data will pass from the

teacher table to the system so the teacher knows which classes the teacher is linked to. Then all the

relevant data from the class table must be delivered to the teacher user.

A teacher user should be able to leave feedback for the students. This feedback will be stored in the results

table and a student should be notified when feedback has been left. To notify a student access to the

students table – where the student’s email is stored – will be important.

Data Dictionaries

STUDENTS TABLE

Data Name Data Type

Student Code Integer

Forename String

Surname String

Email String

Password String

Date Joined Date

TEACHER TABLE

Data Name Data Type

Teacher Code Integer

Forename String

Surname String

Email String

Password String

CLASSES TABLE

Data Name Data Type

Class Code Integer

TeacherCode String

RESULTS TABLE

Data Name Data Type

Homework Code Integer

Student Code Integer

Percentage Integer

Feedback String

44

Database Design

ENTITY RELATIONSHIP DIAGRAM

DDL STRING FOR DATABASE

Firstly the DDL string to create the Student table must create fields for student’s code, class, forename and

surname, along with their email, a password and the date they joined the system. The primary key must

be the student code and each field should have the correct data type. Therefore the DDL string will look

like this:

"CREATE TABLE [Students] ([StudentCode] INT CONSTRAINT PrimaryKey PRIMARY KEY,
[StudentClass] INT, [Forename] Varchar(25), [Surname] Varchar(25), [Email] Varchar(25),
[Password] Varchar(25), [DateJoined] DATE)"

Then the teacher table must have the primary key TeacherCode, and fields to include a user’s forename,

surname, email and password. The teacher table DDL will be:

"CREATE TABLE [Teachers] ([TeacherCode] INT CONSTRAINT PrimaryKey PRIMARY KEY,

[Forename] Varchar(25), [Surname] Varchar(25), [Email] Varchar(25), [Password]

Varchar(25))"

Then the Classes link table should be created with the classcode as the primary key and also contain a field

for the teacher code so that each class links to 1 teacher.

"CREATE TABLE [Classes] ([Classcode] INT CONSTRAINT PrimaryKey PRIMARY KEY,

[TeacherCode] INT)"

The results table must have a composite key to link the students and their results for each homework. This

will be a combination of the student’s code and the Test code.

"CREATE TABLE [Results] ([StudentCode] INT CONSTRAINT PrimaryKey PRIMARY KEY, [TestCode]

INT CONSTRAINT PrimaryKey PRIMARY KEY, [Percentage] INT, [Feedback] Varchar)"

Finally the tests table must have an entry for each test, and hold the number of questions a test contains:

"CREATE TABLE [Tests] ([TestCode] INT CONSTRAINT PrimaryKey PRIMARY KEY, [Questions]

INT)"

SQL STRING FOR QUERIES

In order for the login system to work the program must be able to gather all username and password pairs

from the database; the SQL query for this will look like:

45

"SELECT UserCode, Password FROM Students”

“SELECT TeacherCode, Password FROM Teachers”

When a student user accesses their account page then they should be able to change their Class code,

however they should first be able to view their current class code, the SQL query for this should be:

"SELECT StudentClass FROM Students WHERE Students.StudentCode = @condition"

When the user inputs the Class they want to be a part of it needs no be included in the database Student

table under StudentClass, to accomplish this a suitable SQL query would be:

"UPDATE Students SET [StudentClass] = @data WHERE [StudentCode] = @condition"

The results system shall require the Testcode, Percentage and Feedback fields from the results table,

however for a student it should only return the particular students results. While a teacher should be able

to access their relevant classes results. Therefore the SQL Query would look like:

For the students:

"SELECT HomeworkCode, Percentage, Feedback FROM Results WHERE Results.StudentCode =

@condtion"

For the teachers the system should present a dropdown menu with all the teachers classes, allowing them

to select one, and then select an individual student or an individual test to review the students individual

scores or the classes scores on the test. This should be straightforward and easy to use. To retrieve these

lists of data the following queries are appropriate:

"SELECT Students.Forename, Students.Surname FROM ((Students INNER JOIN Classes ON

Students.StudentClass = Classes.ClassCode) INNER JOIN Teachers ON Classes.TeacherCode =

Teachers.TeacherCode)"

or to gather the testcodes of each test in the database:

"SELECT TestCode FROM Tests"

Once these fields have been gathered the user is required to check a single checkbox and then press the

query button, and the system should gather all the data relevant to the selected case.

Case 1: Viewing a single students results

Here to gather a single students test results the system must have the students name to apply the condition

to the SQL:

"SELECT Results.HomeworkCode, Results.Percentage, Results.Feedback FROM Students INNER

JOIN Results ON Students.StudentCode = Results.StudentCode WHERE Students.Forename =

@forename AND Students.Surname = @surname;"

The students name may be gathered from the selected dropdown list item as that is the student whose

results the teacher has asked for, the above query will return the desired result when a students forename

is passed into the @forename and their surname into the @surname.

46

Case 2: Viewing a single tests results

To view all the results of a single test completed by everyone in a teachers class the testcode and the

classcode of the teacher must be known.

"SELECT Students.Forename, Students.Surname, Results.Percentage, Results.Feedback
FROM ((Students INNER JOIN Results ON Students.StudentCode = Results.StudentCode) INNER
JOIN Tests ON Results.HomeworkCode = Tests.TestCode) INNER JOIN (Classes INNER JOIN
Teachers ON Classes.TeacherCode = Teachers.TeacherCode) ON Students.StudentClass =
Classes.Classcode
WHERE Teachers.TeacherCode = @teachercode AND Tests.TestCode = @testcode"

The students forename, surname, percentage on the test and their individual feedback for a single test will

be retrieved by the Select SQL statement, which required that the student is part of the teachers class. The

teachers code is passed into the @teachercode and the desired testcode is passed into @testcode

A teacher should also be able to add feedback onto a students results. By using a event handler the system

can tell when a cell in the results grid has experienced a change in value, and by filtering through the

columns it is easy to validate that the feedback has been changed.

Then by gathering the testcode and the students name from either the dropdown lists or the same row of

the results grid the following SQL condition can be met.

"UPDATE ((Tests INNER JOIN Results On Tests.TestCode = Results.HomeworkCode) INNER JOIN
Students On Results.StudentCode = Students.StudentCode) Set Results.Feedback = '" &
feedback &"' WHERE Tests.TestCode = @testcode And Students.Forename = @forename And
Students.Surname = @surname"

REGEX EXPRESSIONS FOR VALIDATING STRINGS

When registering an account the user is asked to input their forename, surname, email and two matching

passwords. A simple way to validate the entrees is using regular expressions to check the entered

characters.

The entered forename and surname should be strings that only contain upper and lower case letters. The

regular expression to validate this would be:

 "^[A-Za-z]+$".

Which returns true when passed through the Regex.IsMatch function (with the string to

be tested) if all the characters in the string are upper or lower case letters.

The email is must contain a domain name and address, and should be in the format:

first@second.third. In order to test for this:

 "^([0-9a-zA-Z]([-\.\w]*[0-9a-zA-Z])*@([0-9a-zA-Z][-\w]*[0-9a-zA-Z]\.)+[a-zA-

Z]{2,9})$"

Which returns false if the string does not contain a combination of letters or dots, followed by an @ sign

and then followed by a combination of letters and dots. Enabling the system to quickly test the validity of

an email address.

mailto:first@second.third

47

The password does not need a validation using regex as it can contain any character, and must simply

match the other entered password. It could easily be appended so that there is a minimum length that the

password can be.

Finally when the teacher is adding a test results the system should only accept a string which contains only

numbers.

Which is simply:

"^[0-9]+$"

This will aid in robustness as it will prevent crashes when converting to an integer.

48

Alpha Testing Strategy

Testing outline

Test Description Purpose

1. Input Testing Validates inputs into the system using regular
expressions and data validation (bottom-up
testing)

2. Flow of control testing Checks the users path through the system, they
should be forced to log in to access certain
elements. (Top-down testing)

3. Process Testing Ensures the used algorithms produce the correct
outputs. (black box testing)

4. Testing saving of data Ensure all data must be saved in the correct
location and in the correct data type.

5. Specification testing Used to check whether the system meets the
original specification set out in the
analysis/requirements

Input Testing Strategy

INPUT TESTING DATASETS

Typical datasets (T), Erroneous Datasets (E), Extreme Datasets (X)

Registering and Login Dataset: (for both students and teachers)

Data
set

Usercode Password Email Forename Surname

Treg1 10000 ABcd1234 LBJ@myemail.com James Labpartner

Ereg1 10001 Ab1234 Heresmyemail@myemail.com ThIsISmyNAMe AwKWArd

Xreg1 Nope Word Notanemail N^M3 WR0NG

Classcode Dataset

Data set Classcode

Treg1 1

Ereg1 124124

Xreg1 1a

49

INPUT TESTING TABLE

No. Purpose Description Data
Typical,
Erroneous,
Extreme

Expected
outcome

Actual
outcome

Evidence
in
appendix

1.1 Validate
Password

Any combination
of characters
longer than 6
should be accepted

Treg1 – “Abcd1234”
Ereg1 – “Ab1234”
Xreg1 – “Word”

Accept
Accept
Error

1.2 Validate
Email

Email should be
accepted if it
contains an @ sign
and a domain

Treg1 – “LBJ@myemail.com”
Ereg1 –
“Heresmyemail@email.com”
Xreg1 – “ Notanemail”

Accept
Accept
Error

1.3 Validate
Forename

Forename should
be accepted if it
only contains
letters.

Treg1 – “James”
Ereg1 – “James”
Xreg1 – “James12”

Accept
Accept
Error

1.4 Validate
Surname

Surname should be
accepted if it only
contains letters

Treg1 – “Hancock”
Ereg1 – “Hancock”
Xreg1 – “Hancock12”

Accept
Accept
Error

2.1 Validate
Classcode

Classcode must be
of the correct
format i.e an
integer

Treg2 – 1
Ereg2 – 124124
Xreg2 – 1a

Accept
Accept
Error

50

Flow of Control Testing Strategy

FLOW CONTROL WITHIN SIMULATION

• In simulation, disabling of buttons

In order to be a robust simulation that is difficult to cause errors in there must be some controlling of flow

to prevent certain actions.

While most key processes will still function regardless of the order of operation a desired route through

the system would be:

1. The user chooses the locations and relative masses of the systems masses.

2. The user then chooses one of the options from the list of functions.

3. The function then executes and control is brought back to the user after the process has been

completed.

To control flow here and improve robustness the technique of limiting the users actions has been used. For

example once the add mass button has been clicked all other controls on the interface excluding clear are

disabled so that the user cannot continue to add masses while a process is running. This aids in preventing

system crashed and creating false results where the environment was changed after the defining variables

were calculated.

This should be evident within the testing video as windows forms changes the view of controls when they

are disabled.

FLOW CONTROL WITHIN ACCOUNT USE

Pre-login

On the home form there are multiple options available to the user, using the taskbar class the user can

select from several options of where to navigate the system too.

While a user is not logged in they should be prohibited from accessing the results page, so an error message

should be displayed asking the user to log in.

By selecting the account page it should bring up a separate form which enables the user to log in. In this

second form the user will either be able to log in (as a student or a teacher depending on the selected

option, and the login details are validated), or access the register page.

Once the user has elected to log in to their account or to create a new account the system should return

them to the home page. However the user should still be logged in so that they can now access the results

page.

51

Therefore variables containing the account details as well as a Boolean stating that there is a user logged

in must be passed variables to retain the data whilst changing form.

Case 1: a student with the username 10000 has logged in the following variables are expected to contain

the specified values:

No. Variable Description Expected value Actual
value

Evidence
in
appendix

1.0 LoggedIn Boolean variable that states whether
a user is currently logged in

True

1.1 Usercode String that contains the users code,
not dependent on whether or not the
user is a student or teacher

10000

1.2 PriveledgeLevel Innumerable which defines what level
of access the user has

Userlevel.Student

Case 2: a teacher with the username 1000 has logged in:

No. Variable Description Expected value Actual
value

Evidence
in
appendix

1.0 LoggedIn Boolean variable that states whether
a user is currently logged in

True

1.1 Usercode String that contains the users code,
not dependent on whether or not the
user is a student or teacher

1000

1.2 PriveledgeLevel Innumerable which defines what level
of access the user has

Userlevel.Teacher

Post-login

Once a user has logged in the account page should change, and for a student user should display and allow

them to alter their Classcode.

The results page should also now be accessible to all levels of user but should display varying interfaces

depending on who is logged in.

These changes will be apparent during the testing video.

52

Process Testing Strategy

Algorithmic processes

The key algorithms responsible for generating the data required to produce the images in the simulation

must be working correctly in order to fulfil the requirements. Some of the key algorithms are:

• The calculation of gravitational potential

• The calculation of gravitational force

• The summation of individual forces

• The recursive elements within the generate field line function

• The Compression of the test mass list

The calculation of gravitational potential

Incredibly important for the system as many of the processes within the simulation rely on the basic

calculation of gravitational potential.

This is almost impossible to gather during normal runtime so a test will be run using the following variables.

Property Value Symbol

Mass 5.97 x 1024 kg M

Radius 6.37 x 106 m r

Gravitational
Constant

6.67 x 10-11 Nm2kg-2 G

In order to calculate the gravitational potential, Vg, at a point in a gravitational field the following equation

is used:

𝑉𝑔 = −
𝐺𝑀

𝑟

𝑉𝑔 = −
(6.67 ∗ 10−11)(5.97 ∗ 1024)

(6.37 ∗ 106)

𝑉𝑔 = − 6.26 ∗ 106 𝐽𝑜𝑢𝑙𝑒𝑠

These values should produce the mean gravitational potential at the earths surface which according to

https://en.wikipedia.org/wiki/Gravitational_potential is approx. equal to -6MJ.

These values shall be passed into the calculate potential function and the value return should, if correct,

be accurate to the calculated value of Vg.

View appendix

Gravitational potential is a scalar property which means that when summing them it is a simple case of

adding the magnitudes of the potentials from each body in the system. (as discussed in the analysis)

https://en.wikipedia.org/wiki/Gravitational_potential

53

The calculation of gravitational force

Another fundamental process in the system is the calculation of the gravitational force F, at any point within

the gravitational field, like before a runtime test within the simulation is challenging so a test of the

subroutine with the following values will suffice:

Property Value Symbol

Mass 1 5.97 x 1024 kg m1

Mass 2 1 kg m2

Radius 6.37 x 106 m r

Gravitational
Constant

6.67 x 10-11 Nm2kg-2 G

As discussed within the analysis the equation for calculating the gravitational force, F, at a point within a

field is equal to:

𝑭 = 𝑮
𝒎𝟏𝒎𝟐

𝒓𝟐

𝑭 = (𝟔. 𝟔𝟕 ∗ 𝟏𝟎−𝟏𝟏)
(𝟓. 𝟗𝟕 ∗ 𝟏𝟎𝟐𝟒)(𝟏)

(𝟔. 𝟑𝟕 ∗ 𝟏𝟎𝟔)𝟐

𝑭 = 𝑮
𝒎𝟏𝒎𝟐

𝒓𝟐

𝑭 = 𝟗. 𝟖𝟏 𝑵

These values should produce the mean gravitational force at the earths surface which according to

https://en.wikipedia.org/wiki/Gravitational_potential is approx. equal to 9.81N

These values shall be passed into the calculate potential function and the value return should, if correct,

be accurate to the calculated value of Vg.

View appendix

The summation of forces

The algorithm responsible for summing together the individual forces acting upon a test mass from each

massive body in the system is utilised at multiple points during a simulations lifetime, for example within

the show force lines and test mass utilities, therefore it is essential that the correct outputs are received.

Unlike gravitational potential, the gravitational force is a vector property and has direction, which for a

single mass system will always point towards the body in question. This simple fact makes the summation

of gravitational forces a more complex challenge.

Therefore the resultant force, FR, of the individual forces will be equal to the vector sum of each force:

https://en.wikipedia.org/wiki/Gravitational_potential

54

𝑭𝑹
⃗⃗⃗⃗ ⃗ = ∑�⃗⃗�

In order to test this two massive bodies will be passed into the system at specific predefined radius from

each mass. For simplicity this will be shown by using two masses that are on the same horizontal line.

In this example point P is in between m1 and m2

Property Value Symbol

Mass 1 1 x 106 kg m1

Mass 2 2 x 106 kg m2

Test mass 1 kg mt

Radius 1 x 103 m r

Gravitational Constant 6.67 x 10-11 Nm2kg-2 G

Therefore to calculate the results gravitational force, FR, at P:

𝑭𝑹
⃗⃗⃗⃗ ⃗ = ∑�⃗⃗�

Taking the direction to the right as positive in this example, as P is in the midpoint the denominator remains

as r2, otherwise the sum of the two r values would equal the distance between the masses.

𝑭𝑹
⃗⃗⃗⃗ ⃗ = 𝑮

(𝟐 ∗ 𝟏𝟎𝟔)(𝟏)

(𝟏 ∗ 𝟏𝟎𝟑)𝟐
− 𝑮

(𝟏 ∗ 𝟏𝟎𝟔)(𝟏)

(𝟏 ∗ 𝟏𝟎𝟑)𝟐

𝑭𝑹
⃗⃗⃗⃗ ⃗ = 𝑮(1) = 6.67x10-11 N

Note the direction of the force should be to the right.

View appendix

There is also an element of recursion within this algorithm which enables the system to sum individual

forces until a stack overflow error occurs. A point which is unlikely to be encountered as it would require

the user to place that number of masses. Therefore if the algorithm works for two massive bodies then it

should work for N bodies, as the resultant force of two forces can be continuously found until the final

resultant force is discovered.

Recursive elements within the generate field line function

The generate field line function works by calculating the resultant gravitational field strength at a point

within a gravitational field; by inverting the direction of the force and by scaling its magnitude it can point

to a new location where the process can be repeated.

55

To prevent a stack overflow a termination condition has to be met, where the force has become so weak

that applying the process returns the same point. At this point the line will not be extended so there is no

need to continue running the program and the stack can be emptied.

An alternate condition where the force ‘vector’ points to a location that is not contained within the canvas.

At this point there is no need to keep running the subroutine and the stack may terminate.

Evidence for the recursive elements and termination of the stack can be found in the appendix

Compression of the test mass list

The test mass list contains 100 memory locations, and with a new testmass being instantiated every 0.5

seconds (base rate) the list would fill very quickly and cause a fault. However to prevent over populating

the canvas with test masses the testmasses have a limited lifespan and will ‘decay’ after a certain number

of life cycles. A testmass will also decay if it comes into contact with a mass.

As a result of this decay process the array of testmasses will slowly be converted until a point where each

index contains no value. To remedy this the algorithm replaces all indexes where the value is nothing with

the next index that contains a value. Compacting the list to ensure all the existing testmasses are stored at

the beginning of the array.

This algorithm will be stepped through within the testing video to ensure it is fully functional.

Visual processes

Firstly the simulation should be robust and any errors should be encapsulated and handled. This is

important as if it to be useable and beneficial it must be robust. This can be testing completely through use

and by attempting different combinations of actions.

As the output of the simulation is generally visual the expected outcomes will also be visual. By abstracting

the program into its separate parts the expected outcomes can be shown.

Potentials function

The potentials function should produce a colourmap of the potentials surrounding two massive objects.

This should be visible by concentric rings of colour surrounding each mass, when multi body systems are

produced the program should produce images that are similar to the following:

Figure 20: Potentials Example 1

56

Figure 21: Potentials example 2

Figure 22: Potentials Example 3

Field Line function

Next the field line function should produce a set of lines that originate at the mass and extend outwards

producing a diagram that looks like the following:

Figure 23: Field Line Example 1

57

Figure 24: Field Line Example 2

Test mass function

The test mass function should produce a set number of test masses in a set time interval which should

show the direction of the gravitational force. They should be affected by all masses in the system but should

not affect any of the large masses in the system as their weight is assumed to be negligible in comparison.

A test mass should be deleted and no longer shown once it comes into contact with a mass, or it lasts

longer than its pre-set lifespan, to prevent multiple test masses becoming permanently stuck in Lagrange

points (where the resultant force acting upon the test mass is

zero newtons).

Here the red dots represent the test masses, and will be

attracted to each mass in the system.

To prevent overpopulating the system with testmasses they

should ‘decay’ after a pre-determined lifespan or if they

collide with a mass in the system. This should be visually

apparent when running the test mass function during the

testing video.

Storage Testing Strategy

DATABASE CREATION

Firstly, it is imperative that the database is created correctly with the correct tables, fields and datatypes,

as it has been created by multiple DDL strings contained within the program itself. Each table should be

created as per specified in the design.

Figure 25: Test mass example

58

Students Table

Teachers Table

Classes Table

Results Table

Tests Table

59

Table Evidence in appendix

Students 3.1

Teachers 3.2

Results 3.3

Classes 3.4

Tests 3.5

INSERTING INTO THE DATABASE

There are multiple occurrences when data is inserted into the database:

1. When a new user registers (Teacher or student)

2. When a student adds or changes their class code

3. When a Teacher adds feedback to a students work

User registration

When a student or teacher registers they are required to enter multiple fields such as their forename,

surname and email. All this data must be entered into the database correctly

In the case of a student:

A Usercode is generated once valid login details have been entered and is input along with all the other

information

Criteria Expected Field Expected Data
type

Actual Field Actual Data
type

Evidence in
appendix

Usercode Students.StudentCode Integer 4.1

Forename Students.forename Varchar 4.1

Surname Students.Surname Varchar 4.1

Email Students.Email Varchar 4.1

Password Students.password Varchar 4.1

Date Joined Students.DataJoined Date 4.1

In the case of a Teacher

Once a teachers account is created a class code is automatically generated however this value is stored

within the Classes table.

Criteria Expected Field Expected Data
type

Actual Field Actual Data
type

Evidence in
appendix

Usercode Teachers.TeacherCode Integer 4.2

Usercode Classes.TeacherCode Integer 4.2

Forename Teachers.forename Varchar 4.2

Surname Teachers.Surname Varchar 4.2

Email Teachers.Email Varchar 4.2

Password Teachers.password Varchar 4.2

ClassCode Classes.Classcode Integer 4.3

60

Appending Class Code

A student should be able to add the class code that connects them to their teacher. This value is stored

within the student table under the student class field

Criteria Expected Field Expected Data
type

Actual Field Actual Data
type

Evidence in
appendix

Classcode Students.StudentClass Integer

This is also required to be in the correct students table, as otherwise the student would be connecting a

different student to his class.

To efficiently test it the following students details will be used:

Property Value

StudentCode 10000

Forename “Alfie”

Surname “Aldwin”

Adding/Altering feedback

A teacher is able to add feedback to all their students work. For this test the teacher will be adding the

following to the student “Alfie Aldwin” where originally there is no feedback.

Expected
StudentCode
and testcode

Expected
Feedback

Expected
Data Type

Actual
StudentCode
and testcode

Actual
Feedback

Actual
Data
Type

Evidence in
appendix

10000, 1 “Great Work” Varchar

Evidence for these processes will be demonstrated within a testing video.

Expected Student
(By studentcode

Actual
Student

Evidence in
appendix

10000

61

Beta Testing Strategy
To gather a response on the overall effectiveness of the developed program it is important to receive an

opinion and feedback from the target audience in order to determine its successfulness as a product.

To conduct the beta testing I will give the following questionnaires to students and teachers who have been

given a chance to explore the programmes facilities. In order to show of the effectiveness of the data

handling aspect of the program both audiences will be given a role specific account to use.

QUESTIONNAIRE FOR STUDENTS

1. Did you encounter any issues with the product?

Yes □ No □

 Please outline if yes,

__

__

__

__

2. To what extent was the product easy to use?

Poor □ Below Average □ Average □ Above Average □ Strong □

3. How beneficial was the simulation to your understanding of gravitational potential?

Not beneficial □ not useful □ useful □ Very beneficial □

4. Would you like to see as resource such as this be used by teachers within lessons?

Yes □ No □

5. How easy were the accounts and results page to use?

Hard □ Below Average □ Average □ Above Average □ Easy □

6. How suitable is the range of questions

Not suitable □ Could be improved□ Average □ Suitable □

7. What improvements, if any, would you like to see implemented?

__

__

62

__

QUESTIONNARE FOR TEACHERS

1. Did you encounter any issues with the product?

Yes □ No □

 Please outline if yes,

__

__

__

__

2. To what extent was the product easy to use?

Poor □ Below Average □ Average □ Above Average □ Strong □

3. How beneficial was the simulation to your students understanding of gravitational potential?

Not beneficial □ Semi-useful □ Very beneficial □

4. Would you use a resource such as this within lessons?

Yes □ No □

5. How easy were the accounts and results page to use?

Hard □ Below Average □ Average □ Above Average □ Easy □

6. How easy was it to access a students results and find the desired information?

Hard □ Below Average □ Average □ Above Average □ Easy □

7. How suitable is the range of questions

Not suitable □ Could be improved□ Average □ Suitable □

8. What improvements, if any, would you like to see implemented?

__

__

__

63

Technical Solution

Home Form

The form used for the interface of the system. Everything in the program relies on this form so it is the

backbone of the program. However not a lot of code is held here due to the large scope of the system.

Note the database is originally created here.

1. Option Strict On
2. Public Class Home
3. Public LoggedIn As Boolean = False
4. Public PriveledgeLevel As Login_System.UserLevel
5. Public UserCode As String
6.
7. Private Sub Home_Load(sender As Object, e As EventArgs) Handles MyBase.Load
8. 'Database.DatabaseMasterCreator(Database.DatabaseName) 'used during the or

iginal creation of the database
9. Me.WindowState = FormWindowState.Maximized 'full screen
10. Me.Text = "NEA"
11. CreateToolbar(Me) 'creates the toolbar system
12. End Sub
13. End Class

Layout Creation

As multiple forms are reused for different purposes it is necessary that buttons and textboxes, amongst

other things, are created programmatically, and can be recreated at any time. For organisation these are

all stored within a module, aptly name layout creation. Most forms have a call to a procedure within this

module at some point.

1. 'Option Strict On
2. Module LayoutCreation
3. Dim WithEvents Toolbar As New ToolStrip
4. Dim WithEvents ToolsLessons As New ToolStripDropDownButton
5. Dim WithEvents ToolsSim As New ToolStripButton
6. Dim WithEvents ToolsQuiz As New ToolStripButton
7. Dim WithEvents ToolsResults As New ToolStripButton
8. Dim WithEvents ToolsAccount As New ToolStripButton
9.
10.
11. Public Sub CreateToolbar(Domain As Object)
12. CreateLessonsToolBar(ToolsLessons) 'creates the drop down section of t

he toolbar, which is a separate type of control
13. Toolbar.Items.Add(ToolsLessons)
14.
15. CreateDropDownButton(Toolbar, ToolsSim, "Simulation") 'creating each indi

vidual toolbar button
16. CreateDropDownButton(Toolbar, ToolsQuiz, "Tests")
17. CreateDropDownButton(Toolbar, ToolsResults, "Results")
18. CreateDropDownButton(Toolbar, ToolsAccount, "Account")
19. For Each Item As ToolStripItem In Toolbar.Items 'adds the handler to al

l the separate buttons so that the each fulfil their purpose
20. If TypeOf Item Is ToolStripButton Then
21. AddHandler Item.Click, AddressOf Navigation.ButtonDestination

64

22. End If
23. Next
24. For Each MenuItem As ToolStripMenuItem In ToolsLessons.DropDownItems
25. If TypeOf MenuItem Is ToolStripMenuItem Then
26. AddHandler MenuItem.Click, AddressOf Navigation.ListDestination
27. End If
28. Next
29. Domain.controls.add(Toolbar)
30. End Sub
31. Private Sub CreateLessonsToolBar(ByRef DropDown As ToolStripDropDownButton)
32. If DropDown.DropDownItems.Count = 0 Then 'prevents items being added mul

tiple times after form remake
33. DropDown.DisplayStyle = ToolStripItemDisplayStyle.ImageAndText
34. DropDown.Text = "Lessons"
35.
36. Dim workandenergy As New ToolStripMenuItem
37. workandenergy.Text = "1. Work and Energy"
38. Dim gravfieldsandforces As New ToolStripMenuItem
39. gravfieldsandforces.Text = "2. Gravitational Fields and Forces"
40. Dim gravpotential As New ToolStripMenuItem
41. gravpotential.Text = "3. Gravitational Potential Energy and Gravitation

al Potential"
42. Dim potentialgradandescapevel As New ToolStripMenuItem
43. potentialgradandescapevel.Text = "4. Potential gradients and escape vel

ocity"
44.
45. DropDown.DropDownItems.Add(workandenergy)
46. DropDown.DropDownItems.Add(gravfieldsandforces)
47. DropDown.DropDownItems.Add(gravpotential)
48. DropDown.DropDownItems.Add(potentialgradandescapevel)
49. End If
50.
51. End Sub
52. Private Sub CreateDropDownButton(ByRef toolbar As Object, ByRef button As Objec

t, ByVal text As String)
53. button.DisplayStyle = ToolStripItemDisplayStyle.ImageAndText
54. 'ToolsSim.Image = System.Drawing.Bitmap()
55. button.Text = text
56. toolbar.Items.Add(button)
57. End Sub
58. Private Sub CreateButton(ByRef but As Button, ByVal location As Point, ByVal si

ze As Size, ByVal text As String)
59. but.Location = location
60. but.Size = size
61. but.Text = text
62. End Sub
63. Public Sub CreateAccountPage()
64. 'create account page
65. CreateToolbar(Home)
66. 'Home.Text = "Account"
67. If Home.LoggedIn = False Then 'the user has to log in to access the a

ccounts page
68. Login_System.Login_Load()
69. Login_System.Show() 'brings up the login form
70. Else
71. If Home.PriveledgeLevel = Login_System.UserLevel.Teacher Then 'if the

 user is a teacher
72. 'teacher account page#
73. Account.LoadTeacherAccount() 'passes the variables through to th

e home form
74. Account.Show()
75. Else
76. Account.LoadStudentAccount() 'passes the variables through to th

e home form
77. Account.Show()
78.

65

79. End If
80. End If
81. End Sub
82. Public Sub CreateTestPage()
83. 'create quiz page
84. CreateToolbar(Home)
85. Home.Text = "Quiz"
86. If Home.PriveledgeLevel = Login_System.UserLevel.Teacher Then 'if the use

r is a teacher
87. Tests.Show()
88. Else
89. 'get link to tests?
90. System.Diagnostics.Process.Start("https://drive.google.com/open?id=1cV6

cAqBaLvcIbbn785K8pSI4fZSZA4Vv") 'opens the website for all the saved tests
91. End If
92. End Sub
93. Public Sub CreateResultsPage()
94. CreateToolbar(Home)
95. If Not Home.LoggedIn Then
96. MsgBox("You must be logged in to access the results page")
97. Else
98. Results.PassVariables(Home.UserCode, Home.PriveledgeLevel)
99. Home.Text = "Results"
100. If Home.PriveledgeLevel = Login_System.UserLevel.Teacher Then
101. 'MsgBox("Teacher Results")
102. Results.FormatTeacherPage() 'creates the results page for a

teacher user.
103. Else
104. 'MsgBox("Student Results")
105. Results.FormatStudentPage()
106. End If
107. End If
108. End Sub
109. Public Sub CreateSimulationPage()
110. CreateToolbar(Home)
111. Home.Text = "Simulation"
112. Simulation.CreateCanvas()
113. End Sub
114. Public Sub Simulationcontrols(ByRef controls() As Button, ByRef addmass

As Button, ByRef SliderValue As Label, ByRef Slider As TrackBar, ByRef Instructions
 As TextBox)

115. Dim str As String = ""
116. For index As Integer = 0 To controls.Count - 1
117. controls(index) = New Button
118.
119. Select Case index
120. Case 0
121. str = "Clear"
122. AddHandler controls(0).Click, AddressOf Simulation.Clear

_click
123. Case 1
124. str = "Calculate Potentials"
125. AddHandler controls(1).Click, AddressOf Simulation.Poten

tials_click
126. Case 2
127. str = "Show Force lines"
128. AddHandler controls(2).Click, AddressOf Simulation.Force

Lines_click
129. Case 3
130. str = "Add Test mass"
131. AddHandler controls(3).Click, AddressOf Simulation.TestM

ass_click
132. Case 4
133. str = "Measure"
134. AddHandler controls(4).Click, AddressOf Simulation.Measu

re_click

66

135. Case Else
136. str = "<invalid option>"
137. End Select
138. CreateButton(controls(index), New Point(850, 50 + 30 * index), N

ew Size(400, 25), str)
139. Home.Controls.Add(controls(index))
140. Next
141.
142. 'dim slider as new trackbar
143. Slider.Location = New Point(950, 300)
144. Slider.Size = New Size(300, 50)
145. Slider.Minimum = 1
146. Slider.Maximum = 10
147. Slider.SmallChange = 1
148. Home.Controls.Add(Slider)
149. AddHandler Slider.ValueChanged, AddressOf Slider_Change
150.
151. addmass = New Button
152. addmass.Location = New Point(850, 300)
153. addmass.Size = New Size(100, 25)
154. addmass.Text = "Add Mass"
155. Home.Controls.Add(addmass)
156.
157. AddHandler addmass.Click, AddressOf Addmass_Click
158. SliderValue.Location = New Point(1255, 301)
159. SliderValue.Text = Slider.Value
160. Home.Controls.Add(SliderValue)
161.
162. Instructions = New TextBox
163. With Instructions
164. .Multiline = True
165. .Size = New Size(400, 130)
166. .Location = New Point(850, 400)
167. .ReadOnly = True
168. .BorderStyle = BorderStyle.None
169. .Font = New Font(.Font.FontFamily, .Font.Size + 3, .Font.Style)

170. .Text = "Place masses and select an option:
171. Calculate Potentials: View the equipotential lines about the masses,
172. Show Force Lines: Display gravitational field lines about the masses,
173. Add Test mass: Place a test mass and view how it is affected by the field."

174. End With
175. Home.Controls.Add(Instructions)
176. End Sub
177. End Module

67

Navigation

Coupled with the layout creation module this enables the system to direct itself to where the user wishes.

Using the address enumerable, it directs each button on the toolbar to the different sections in the

program.

1. Module Navigation
2. Dim Destination As Address
3. Enum Address 'enumerable for the address to make addressing easier and t

he program easier to use.
4. Account
5. Test
6. Simulation
7. Results
8. Lesson1
9. Lesson2
10. Lesson3
11. End Enum
12. Public Sub ButtonDestination(sender As Object, e As EventArgs)
13. Try
14. Select Case sender.Text 'addresses each case to direct the system a

fter it has been cleared
15. Case "Account"
16. 'MsgBox("Account")
17. Destination = Address.Account
18. Case "Tests"
19. 'MsgBox("Quiz")
20. Destination = Address.Test
21. Case "Simulation"
22. 'MsgBox("Simulation")
23. Destination = Address.Simulation
24. Case "Results"
25. Destination = Address.Results
26. End Select
27. ResetWindow() 'wipes the window clean
28. Catch ex As Exception
29. MsgBox("system error " & ex.Message)
30. End Try
31. End Sub
32. Public Sub ListDestination(sender As Object, e As EventArgs)
33. Select Case sender.Text
34. Case "1. Work and Energy"
35. System.Diagnostics.Process.Start("https://www.khanacademy.org/scien

ce/physics/work-And-energy/work-And-energy-tutorial/v/introduction-to-work-And-
energy")

36. Case "2. Gravitational Fields"
37. System.Diagnostics.Process.Start("https://www.youtube.com/watch?v=z

dQ54siEfvc")
38. Case "3. Gravitational Potential"
39. System.Diagnostics.Process.Start("https://youtu.be/zdQ54siEfvc?t=46

6")
40. Case "4. Escape velocity"
41. System.Diagnostics.Process.Start("https://youtu.be/zdQ54siEfvc?t=14

88")
42. Case Else
43. 'MsgBox("do list stuff here")
44. System.Diagnostics.Process.Start("https://www.youtube.com/watch?v=z

dQ54siEfvc")

68

45. End Select
46. End Sub
47. Public Sub ResetWindow()
48. Home.Controls.Clear() 'removes all controls from the window
49. Select Case Destination 'using the destination it creates the next relevant

 page.
50. Case 0
51. 'MsgBox("account")
52. LayoutCreation.CreateAccountPage()
53. Case 1
54. 'quiz
55. LayoutCreation.CreateTestPage()
56. Case 2
57. 'simulation
58. LayoutCreation.CreateSimulationPage()
59. Case 3
60. 'Results
61. LayoutCreation.CreateResultsPage()
62. Case 4
63. 'lesson1
64. Case 5
65. 'lesson2
66. Case 6
67. 'lesson3
68. End Select
69. End Sub
70. End Module

69

Simulation

The core of the program where the visualisation of gravitational fields is processed and produced. With a

large number of separate procedures and functions occurring it is by far the largest section of the program.

Including multiple classes such as the environment, planet, testmass, fieldpoint and field properties; which

demonstrate inheritance and composition. In combining these classes with multiple processes and

visualising it a demonstration of the gravitational field about a system of masses is created.

1. Option Strict On
2.
3. Module Simulation
4. '// potential wells option?
5.
6. Private Canvas As New Environment()
7. Private PaintPotentialshandle As New PaintEventHandler(AddressOf PaintPotential

s)
8. Private g As Graphics = Canvas.CreateGraphics
9.
10. Private Controls(4) As Button
11. Private Instructions As TextBox
12. Private ControlsEnabled As Boolean = True
13. Dim Addmass As Button
14. Dim SliderValue As New Label
15. Dim Slider As New TrackBar()
16.
17. Private TimerEnabled As Boolean = False
18. Private Timer As New Timer
19. 'encountered an issue with the timer not incrementing by 0.05 and instead becom

ing a recurring decimmal .9999x
20. Private time As Single = 0
21. Private Timesteps As Integer = 0
22. Private NextIndex As Integer = 0
23. Private Const TimeStepsPerSecond As Single = 20
24.
25. Private TestMassPlaceable As Boolean = True
26.
27. Private Rnd As New Random
28.
29. Private Numberofsatellites As Integer = 0
30. Private satellites(Numberofsatellites - 1) As Planet
31. Private TestMasses(199) As Testmass 'reasonably wont ever be more than 200 tes

t masses
32.
33. Private FieldPoints() As FieldPoint
34. Private MaximumPotential As Single
35.
36. Public Sub CreateCanvas()
37. AddHandler Canvas.Paint, PaintPotentialshandle
38. Home.Controls.Add(Canvas)
39. Canvas.Location = New Point(5, 30)
40.
41. Dim index As Integer = 0
42. ReDim FieldPoints(Canvas.Width * Canvas.Height - 1) 'creates a field po

int for each pixel in the canvas
43. For x As Integer = 0 To Canvas.Width - 1
44. For y As Integer = 0 To Canvas.Height - 1
45. FieldPoints(index) = New FieldPoint(New Point(x, y))
46. index += 1
47. Next

70

48. Next
49.
50. LayoutCreation.Simulationcontrols(Controls, Addmass, SliderValue, Slider, I

nstructions) 'creates all the controls required for the simulation
51. End Sub
52. Public Sub Clear_click()
53. Dim paintevent As New PaintEventArgs(g, New Rectangle(Canvas.Origin, Canvas

.Size))
54.
55. ReDim satellites(0) 'clears the satellites list
56. Canvas.ResetCanvas(Canvas, paintevent)
57.
58. time = 0
59. For Each testmass In TestMasses 'resets the testmass list
60. testmass = Nothing
61. Next
62. 'MsgBox("done")
63. End Sub
64. Public Sub Potentials_click()
65. AddHandler Canvas.Paint, PaintPotentialshandle
66.
67. Dim index As Integer = 0
68. For x As Integer = 0 To Canvas.Width - 1 'defines each fieldpoint in the

 canvas and calculates the potential
69. For y As Integer = 0 To Canvas.Height - 1
70. FieldPoints(index) = New FieldPoint(New Point(x, y))
71. FieldPoints(index).CalculatePotential(satellites, Canvas)
72. index += 1
73. Next
74. Next
75.
76. Canvas.Invalidate() 'causes the canvas to be repainted
77. 'MsgBox("done")
78. End Sub
79. Public Sub ForceLines_click()
80. Dim paintevent As New PaintEventArgs(g, New Rectangle(Canvas.Origin, Canvas

.Size))
81. For Sat As Integer = 0 To satellites.Length - 1 'for each placed ma

ss in the system:
82. If Not satellites(Sat) Is Nothing Then 'prevents break

s
83. For index As Integer = 0 To satellites(Sat).Linecount - 1 'cy

cles through each of the starting points
84. Dim Start As FieldPoint = satellites(Sat).FieldStart(index)
85. 'MsgBox(Start.Location.X & ", " & Start.Location.Y)
86. Try
87. CreateForceLine(paintevent, satellites, Start)
88. Catch ex As Exception
89. MsgBox(ex.Message)
90. End Try
91. Next
92. End If
93. Next
94.
95. 'MsgBox("done")
96. End Sub
97. Public Sub CreateForceLine(ByVal paintevent As PaintEventArgs, ByVal planets()

As Planet, ByVal fp As FieldPoint)
98. Dim BorderReached As Boolean = False
99. BorderReached = fp.CalculateForce(planets, Canvas) 'works out the forc

e on each fieldpoint, returns a boolean stating whether the edge of the canvas has
been reached --> exit clause no. 1

100. 'System.Threading.Thread.Sleep(0)
101. If fp.FieldStrength > 2 Then 'if the strength is so small that it

 points to the same point --> exit clause no.2
102. Try

71

103. paintevent.Graphics.DrawLine(Pens.DarkSlateGray, fp.Location
, fp.Vector.Location)

104. Catch ex As Exception
105. MsgBox(ex.Message)
106. BorderReached = True 'if there is a failure then the syst

em aborts
107. End Try
108.
109. If BorderReached = False Then CreateForceLine(paintevent, planet

s, fp.Vector) 'recursively creates each field line
110. End If
111. End Sub
112. Public Sub Slider_Change()
113. SliderValue.Text = CStr(Slider.Value)
114. End Sub
115. Public Sub Addmass_Click()
116. Dim AddMassHandler As New MouseEventHandler(AddressOf PlaceMass_mous

eClick)
117. If ControlsEnabled = True Then
118. Dim paintevent As New PaintEventArgs(g, New Rectangle(Canvas.Ori

gin, Canvas.Size))
119. Canvas.ResetCanvas(Canvas, paintevent)
120. For Each sat In satellites 'redraws each placed mass
121. If Not sat Is Nothing Then
122. paintevent.Graphics.FillEllipse(Brushes.Orange, sat.Loca

tion.X - 5 * sat.Mass / 1000000, sat.Location.Y - 5 * sat.Mass / 1000000, 10 * sat.
Mass / 1000000, 10 * sat.Mass / 1000000)

123. End If
124. Next
125. AddHandler Canvas.MouseClick, AddMassHandler 'adds the handle

r to the mouse
126. Canvas.Cursor = Cursors.Cross 'in order to make it clear to th

e user
127. Else
128. RemoveHandler Canvas.MouseClick, AddMassHandler 'removes the mou

se handler
129. Canvas.Cursor = Cursors.Default
130. End If
131.
132. ControlsEnabled = Not ControlsEnabled 'disables all controls other

 than place mass for robustness
133. For index = 1 To Controls.Length - 1
134. Controls(index).Enabled = ControlsEnabled
135. Next
136. 'Next
137. End Sub
138. Public Sub PlaceMass_mouseMove(ByVal sender As Object, ByVal mouse As Mo

useEventArgs)
139. Dim paintevent As New PaintEventArgs(g, New Rectangle(Canvas.Origin,

 Canvas.Size))
140. paintevent.Graphics.FillRectangle(Brushes.Black, Canvas.Origin.X, Ca

nvas.Origin.Y, Canvas.Width, Canvas.Height)
141.
142. For index = 0 To satellites.Length - 1
143. paintevent.Graphics.FillEllipse(Brushes.Orange, satellites(index

).Location.X - (5 * satellites(index).Mass / 1000000), satellites(index).Location.Y
 - (5 * satellites(index).Mass / 1000000), (10 * satellites(index).Mass / 1000000),
 (10 * satellites(index).Mass / 1000000))

144. Next
145.
146. paintevent.Graphics.FillEllipse(Brushes.Orange, mouse.Location.X - 5

 * Slider.Value, mouse.Location.Y - 5 * Slider.Value, 10 * Slider.Value, 10 * Slide
r.Value)

147. 'have it so a circle follows the mouse
148. End Sub

72

149. Public Sub PlaceMass_mouseClick(ByVal sender As Object, ByVal mouse As M
ouseEventArgs)

150. 'validating if the location has already been added to - required due
 to the way vb calls this multiple times.

151. Dim ValidPlace As Boolean = True
152. If satellites.Length > 0 Then
153. Dim index As Integer = 0
154. Do
155. If Not satellites(index) Is Nothing Then
156. If mouse.Location = satellites(index).Location Then Vali

dPlace = False
157. End If
158. index += 1
159. Loop Until index > satellites.Length - 1 Or ValidPlace = False
160. End If
161.
162. If ValidPlace = True Then
163. Dim paintevent As New PaintEventArgs(g, New Rectangle(Canvas.Ori

gin, Canvas.Size))
164. ReDim Preserve satellites(satellites.Length)
165. Numberofsatellites += 1
166. If satellites(0) Is Nothing Then
167. satellites(0) = New Planet(Slider.Value, mouse.X, mouse.Y)

'creates a mass at the mouse's location
168. Else
169. satellites(satellites.Length - 1) = New Planet(Slider.Value,

 mouse.X, mouse.Y)
170. End If
171. paintevent.Graphics.FillEllipse(Brushes.Orange, mouse.Location.X

 - 5 * Slider.Value, mouse.Location.Y - 5 * Slider.Value, 10 * Slider.Value, 10 * S
lider.Value)

172. End If
173. End Sub
174. Public Sub TestMass_click()
175. RemoveHandler Canvas.Paint, PaintPotentialshandle
176. Dim TimerHandler As New EventHandler(AddressOf TimeChange)
177. Dim PaintTestmassHandler As New PaintEventHandler(AddressOf PaintTes

tMasses)
178. If TimerEnabled = False Then 'once clicked the first time it

adds all necessary handlers, then removes all of them the second time
179. Timer = New Timer
180. AddHandler Timer.Tick, TimerHandler
181. AddHandler Canvas.Paint, PaintTestmassHandler
182. Timer.Start()
183. 'MsgBox("timer active")
184. Else
185. RemoveHandler Timer.Tick, TimerHandler
186. RemoveHandler Canvas.Paint, PaintTestmassHandler
187. Timer.Stop()
188. End If
189. For index = 0 To Controls.Length - 1
190. If index <> 3 Then 'disables all controls except the testmass c

ontrol
191. Controls(index).Enabled = Not Controls(index).Enabled
192. End If
193. Next
194.
195. TimerEnabled = Not TimerEnabled 'enabled/disables the timer.
196. End Sub
197. Private Sub TimeChange(ByVal sender As Object, ByVal args As System.Even

tArgs) 'every time change
198. Dim PlaceTestMassHandler As New MouseEventHandler(AddressOf PlaceTes

tMass)
199. Dim paintevent As New PaintEventArgs(g, New Rectangle(Canvas.Origin,

 Canvas.Size))
200.

73

201. Try
202. Timesteps += 1
203. time = CSng(Timesteps / TimeStepsPerSecond)
204. 'time += dt
205. 'Controls(5).Text = CStr(time)
206. If time Mod 0.5 = 0 Then
207. TestMassPlaceable = True

 'only one mass placed if commented out
208. AddHandler Canvas.MouseMove, PlaceTestMassHandler

 'enables a mass to be placed.
209. End If
210.
211. Canvas.Invalidate(New Region(New RectangleF(Canvas.Origin, Canva

s.Size)))
212.
213. Catch ex As Exception
214. Timer.Stop()
215. MsgBox("Timing error: " & ex.Message)
216. End Try
217. End Sub
218. Public Sub PlaceTestMass(ByVal sender As Object, ByVal mouse As MouseEve

ntArgs)
219. Dim paintevent As New PaintEventArgs(g, New Rectangle(Canvas.Origin,

 Canvas.Size))
220. If TestMassPlaceable = True And NextIndex < 200 Then
221. 'paintevent.Graphics.FillEllipse(Brushes.Red, mouse.Location.X -

 2, mouse.Location.Y - 2, 4, 4)
222. TestMasses(NextIndex) = New Testmass(mouse.Location)
223. NextIndex += 1
224. TestMassPlaceable = False
225. End If
226. End Sub
227. Public Sub Measure_click()
228. Dim Addmeasurehandler As New MouseEventHandler(AddressOf Measure_mou

semove)
229. If ControlsEnabled Then 'enabled or disables the control
230. AddHandler Canvas.MouseClick, Addmeasurehandler
231. Else
232. RemoveHandler Canvas.MouseClick, Addmeasurehandler
233. End If
234. ControlsEnabled = Not ControlsEnabled
235. For index = 0 To Controls.Length - 1 'disables all other controls

236. If index <> 4 Then Controls(index).Enabled = ControlsEnabled
237. Next
238. Addmass.Enabled = ControlsEnabled
239. End Sub
240. Private Sub Measure_mousemove(ByVal sender As Object, ByVal e As MouseEv

entArgs)
241. Dim G As Single = 6.67408 * 10 ^ -11
242. Dim testfieldpoint As New FieldPoint(e.Location)
243. Dim testfieldproperty As New Fieldproperty()
244. Dim potential, force As Single
245. testfieldpoint.CalculatePotential(satellites, Canvas)
246. potential = testfieldpoint.Potential
247. testfieldpoint.CalculateForce(satellites, Canvas)
248. force = testfieldpoint.FieldStrength
249. potential *= G
250. force *= G
251. 'testfieldpoint.Potential *= G
252. MsgBox("Potential: " & potential & "
253. Strength: " & force & "N") 'wouldnt work with a textbox so had to use a mes

sage box
254. End Sub
255. Private Sub CompressTestmassList(ByVal Testmasses() As Testmass, ByRef R

emoveCount As Integer)

74

256. Dim newnextindex As Integer = NextIndex
257. If RemoveCount > 0 Then
258. Dim ShiftTo As Integer = 0
259. Dim ShiftFrom As Integer = 0
260. While ShiftTo <= NextIndex - RemoveCount
261. While Testmasses(ShiftFrom) Is Nothing And ShiftFrom < Testm

asses.Length - 2
262. ShiftFrom += 1
263. End While
264. If ShiftTo <> ShiftFrom Then
265. Testmasses(ShiftTo) = Testmasses(ShiftFrom)
266. Testmasses(ShiftFrom) = Nothing
267. newnextindex = ShiftTo
268. End If
269. ShiftTo += 1
270. ShiftFrom += 1
271. If ShiftFrom > Testmasses.Length - 1 Then ShiftFrom = Testma

sses.Length - 1
272. End While
273. RemoveCount = 0
274. NextIndex = newnextindex
275. End If
276. End Sub
277. Private Sub PaintPotentials(ByVal sender As Object, ByVal paintargs As P

aintEventArgs)
278. Try
279. Canvas.PaintCanvas(satellites, Numberofsatellites, FieldPoints,

paintargs, Canvas)
280. Catch ex As Exception
281. MsgBox("petit erreur" & ex.Message)
282. End Try
283. End Sub
284. Private Sub PaintTestMasses(ByVal sender As Object, ByVal paintargs As P

aintEventArgs)
285. Dim removeCount As Integer = 0
286.
287. Try
288. If satellites.Length <> 0 Then 'draws each mass
289. For Each planet In satellites
290. If Not planet Is Nothing Then
291. Dim width As Integer = CInt(planet.Mass / 1000000 *

10)
292. paintargs.Graphics.FillEllipse(Brushes.Orange, CSng(

planet.Location.X - 0.5 * width), CSng(planet.Location.Y - 0.5 * width), CInt(width
), CInt(width))

293. End If
294. Next
295.
296. For index = 0 To TestMasses.Length - 1 'draws each testmass

297. If Not TestMasses(index) Is Nothing Then
298. TestMasses(index).UpdateLocation(satellites)
299. TestMasses(index).Lifespan -= 1
300. If TestMasses(index).Lifespan <= 0 Then
301. TestMasses(index) = Nothing 'need to th

en delete all testmasses that are 'nothing'
302. 'paintargs.Graphics.FillEllipse(Brushes.Blue, te

stmass.Location.X - 3, testmass.Location.Y - 3, 6, 6)
303. removeCount += 1
304. Else
305. paintargs.Graphics.FillEllipse(Brushes.Red, Test

Masses(index).Location.X - 3, TestMasses(index).Location.Y - 3, 6, 6)
306. End If
307. End If
308. Next
309. End If

75

310.
311. 'loop to clean the testmasses list
312. CompressTestmassList(TestMasses, removeCount)
313. Catch ex As Exception
314. Timer.Stop()
315. MsgBox("Ein Fault! " & ex.Message)
316. End Try
317. End Sub
318. End Module
319.
320. Public Class Environment
321. Inherits PictureBox
322. Private _maximum As Point
323. Private _origin As Point
324. Private _maximumPotential As Single 'highest potential in the environmen

t
325. Private _minimumPotential As Single 'lowest potential in the environment

326. Public Sub New()
327. MyBase.Size = New Size(800, 500)
328. MyBase.Location = New Point(5, 5)
329. MyBase.BackColor = Color.Black
330. _origin = New Point(0, 0)
331. _maximum = MyBase.Location + MyBase.Size
332. End Sub
333.
334. Public Property Origin As Point
335. Set(value As Point)
336. _origin = value
337. End Set
338. Get
339. Return _origin
340. End Get
341. End Property
342. Public Property Maximum As Point
343. Set(value As Point)
344. _maximum = value
345. End Set
346. Get
347. Return _maximum
348. End Get
349. End Property
350. Public Property MaximumPotential As Single
351. Set(value As Single)
352. _maximumPotential = value
353. End Set
354. Get
355. Return _maximumPotential
356. End Get
357. End Property
358. Public Property MinimumPotential As Single
359. Set(value As Single)
360. _minimumPotential = value
361. End Set
362. Get
363. Return _minimumPotential
364. End Get
365. End Property
366.
367. Public Sub ResetCanvas(ByRef canvas As Environment, ByVal paintargs As P

aintEventArgs)
368. paintargs.Graphics.FillRegion(Brushes.Black, New Region(New Rectangl

e(canvas.Origin, canvas.Size)))
369. End Sub

76

370. Public Sub PaintCanvas(ByVal Satellites() As Object, ByVal NumberOfSatel
lites As Integer, ByVal FieldPoints() As FieldPoint, ByVal paintargs As PaintEventA
rgs, ByVal env As Environment)

371. ''coordinates from top left corner
372. 'paintargs.Graphics.DrawEllipse(Pens.Red, _origin.X, _origin.Y, 30,

30)
373.
374. Dim CustomBrush As New SolidBrush(Color.White)
375. Dim index As Integer = 0
376. For Each Point In FieldPoints
377. If Not Point Is Nothing Then
378. Try
379. If Point.Potential <> 0 Then
380. CustomBrush.Color = (ConvertPotentialToColour(Point.

Potential, env.MaximumPotential, env.MinimumPotential))
381. Else
382. CustomBrush.Color = Color.Black
383. End If
384. Catch ex As Exception
385. MsgBox("brush error " & ex.Message)
386. CustomBrush.Color = Color.White
387. End Try
388. index += 1
389. paintargs.Graphics.FillEllipse(CustomBrush, Point.Location.X

, Point.Location.Y, 2, 2)
390. End If
391. Next
392. End Sub
393. Public Function ConvertPotentialToColour(ByVal Potential As Single, ByVa

l Optional maxpotential As Single = 10000, Optional minPotential As Single = 0) As
Color

394. '/converting to a rainbow of RGB/'
395.
396. 'firstly normalising the scalar value of potential in the range 0 -

> 1
397. ' f = (potential - minPotential)/(Maxpotential-Minpotential)
398.
399. 'linearising the potential
400. 'Potential = Math.Log(Potential)
401. 'If minPotential <> 0 Then minPotential = Math.Log(minPotential)
402. 'maxpotential = Math.Log(maxpotential)
403.
404. Dim f As Double
405. Dim X As Integer
406. Dim y As Integer
407. Dim colour As Color
408.
409. f = (Potential - minPotential) / (maxpotential - minPotential)
410. If Potential <> Double.PositiveInfinity Then
411. If f < 0 Then f = 0
412. 'now to split the scalar into 5 distinct colour groups
413. 'f = (1 - Math.Log(f)) / 0.2 ' now f will be ranging from 0 to

 5
414. f = (1 - f) / 0.2
415. X = CInt(Math.Floor(f))
416. y = CInt(Math.Floor(255 * (f - X)))
417.
418. 'as x is will be either 0,1,2,3,4, or 5 this can be used for the

 select statement
419. If y Mod 17 = 0 Then 'creates apparent equipotential lines as o

nly certain colours are selected.
420. Select Case X
421. Case 0
422. 'keep red at maximum, blue at minimum and vary green

423. colour = Color.FromArgb(255, y, 0)

77

424. Case 1
425. 'max green, min blue, vary red
426. colour = Color.FromArgb(255 - y, 255, 0)
427. Case 2
428. 'min red, max green, vary blue
429. colour = Color.FromArgb(0, 255, y)
430. Case 3
431. ' min red, max blue, vary green
432. colour = Color.FromArgb(0, 255 - y, 255)
433. Case 4
434. 'min green, max blue, vary red
435. colour = Color.FromArgb(y, 0, 255)
436. Case 5
437. colour = Color.FromArgb(255, 0, 255)
438. Case Else
439. colour = Color.White
440. End Select
441. Else
442. colour = Color.Black
443. End If
444. Dim col As Integer = colour.ToArgb
445. Return colour
446. End If
447. Return Color.Black
448. End Function
449.
450. End Class
451.
452. Public Class Planet
453. Protected _mass As Single
454. Protected _location As Point
455. Private _linecount As Integer
456. Private _Fieldstartingpoints() As FieldPoint
457. 'Private _Lines() as point
458. Sub New(ByVal Optional mass As Single = 1, ByVal Optional xPoint As Inte

ger = 250, ByVal Optional yPoint As Integer = 250)
459. _mass = 1000000 * mass
460. _location = New Point(xPoint, yPoint)
461. _linecount = CInt(mass) * 8
462. FieldStartingPoints()
463. End Sub
464. Public Property Mass As Single
465. Set(value As Single)
466. _mass = value
467. End Set
468. Get
469. Return _mass
470. End Get
471. End Property
472. Public Property Location As Point
473. Set(value As Point)
474. _location = value
475. End Set
476. Get
477. Return _location
478. End Get
479. End Property
480. Public Property Linecount As Integer
481. Set(value As Integer)
482. _linecount = value
483. End Set
484. Get
485. Return _linecount
486. End Get
487. End Property
488. Public Function FieldStart(ByVal index As Integer) As FieldPoint

78

489. If _linecount > 0 Then Return _Fieldstartingpoints(index)
490. Return Nothing
491. End Function
492. Public Sub FieldStartingPoints() 'creates a circle of equidistant poi

nts from the centre of the mass
493. ReDim _Fieldstartingpoints(_linecount - 1)
494. Dim x, y As Integer
495. Dim dTheta, r As Double
496. r = 5 * CInt(_mass / 1000000)
497. dTheta = 2 * Math.PI / (_linecount)
498. 'If r * CInt(Math.Cos(2 * dTheta)) <= 1 Or r * CInt(Math.Cos(((Math.

PI / 2 - dTheta)))) <= 1 Then
499.
500. For index = 0 To _linecount - 1
501. x = CInt(r * Math.Cos(index * dTheta))
502. y = CInt(r * Math.Sin(index * dTheta))
503. _Fieldstartingpoints(index) = New FieldPoint(New Point(_location

.X + x, _location.Y - y)) 'y location increases as it goes down the screen
504. 'MsgBox(_Fieldstartingpoints(index).Location.X & ", " & _Fieldst

artingpoints(index).Location.Y)
505. Next
506. End Sub
507. Public Function CalculatePotential(ByVal point As Point) As Single
508. Dim radius As Single
509. radius = CSng(Math.Sqrt((point.X - _location.X) ^ 2 + (point.Y - _lo

cation.Y) ^ 2))
510. Return (_mass / radius)
511. End Function
512. Public Sub CalculateForce(ByVal location As Point, ByRef Field As Fieldp

roperty)
513. Dim radius As Single
514. Dim minradius As Integer = 20
515. Dim ScalingFactor As Single = 0.005
516.
517. radius = CSng(Math.Sqrt((location.X - _location.X) ^ 2 + (location.Y

 - _location.Y) ^ 2))
518. Field.Strength = _mass / 50000
519. If radius < minradius Then radius = 20 'min radius required to ensu

re the size of the force around the smallest masses does not appear greater due to
the x^2 nature of the

520. Field.Strength = CSng(_mass / radius ^ 2) * ScalingFactor
521. Field.Direction = CalculateDirection(location, Field)
522. End Sub
523. Public Function CalculateDirection(ByVal location As Point, ByVal field

As Fieldproperty) As Single
524. Dim Direction, angle As Double
525. Dim Dy, Dx As Integer
526. Direction = 0
527. 'direction is the angle of the vector from the fieldpoint to mass
528.
529. Dy = _location.Y - location.Y 'vertical change top of screen t

o bottom
530. Dx = location.X - _location.X 'horizontal change left to right

531.
532. If Dy = 0 And Dx = 0 Then Return 9999 'case where the mass is in t

he planet
533.
534. angle = Math.Atan(Math.Abs(Dy / Dx))
535.
536. If Dy >= 0 Then
537. If Dx >= 0 Then 'top right and right |_
538. Direction = angle
539. Else
540. Direction = Math.PI - angle 'top left
541. End If

79

542. ElseIf Dy < 0 Then
543. If Dx >= 0 Then 'bottom right
544. Direction = 0 - angle
545. Else 'bottom left
546. Direction = Math.PI + angle
547. End If
548. End If
549. Return CSng(Direction Mod 2 * Math.PI)
550. End Function
551. End Class
552.
553. Public Class Testmass
554. Inherits Planet
555. Private _TMlocation As Point
556. Private _Vx, _Vy, _Ax, _Ay As Single
557. Private _field As Fieldproperty
558. Private _lifespan As Integer
559.
560. Sub New(ByVal location As Point)
561. _mass = 1
562. _TMlocation = location
563. _field = New Fieldproperty
564. _Vx = 0
565. _Vy = 0
566. _Ax = 0
567. _Ay = 0
568. _lifespan = 100
569. End Sub
570. Public Overloads Property Location As Point
571. Set(value As Point)
572. _TMlocation = value
573. End Set
574. Get
575. Return _TMlocation
576. End Get
577. End Property
578. Public Property Lifespan As Integer
579. Set(value As Integer)
580. _lifespan = value
581. End Set
582. Get
583. Return _lifespan
584. End Get
585. End Property
586. Public Sub UpdateAcceleration(ByVal planets() As Planet)
587. Dim OldStrength, OldDirection As Single
588. OldStrength = 0
589. OldDirection = 9999
590. For Each planet In planets
591. If Not planet Is Nothing Then
592. planet.CalculateForce(_TMlocation, _field)
593. If _field.Strength > planet.Mass / 1000000 * 10 Then _lifesp

an = 0 'roughly within the draw circle of the planet
594. _field.Direction += CSng(Math.PI) 'correction as for fie

ldlines it is shifted 180 degrees needs to be shifted back.
595. _field.SumofGravitationalForce(_field, OldStrength, OldDirec

tion)
596. OldStrength = _field.Strength
597. OldDirection = _field.Direction
598. Else
599. OldStrength = OldStrength
600. End If
601. Next
602. _field.Strength *= CSng(0.05) 'scaling factor
603. 'force on the test mass is stored in the _field variable
604. 'f = ma so a = f/m = f/1 = f

80

605. If _field.Direction <> 9999 Then
606. _Ax = CSng(_field.Strength * Math.Cos(_field.Direction))
607. _Ay = -CSng(_field.Strength * Math.Sin(_field.Direction))
608. 'Controls(0).Text = CStr(_Ax) 'make controls private ag

ain
609. 'Controls(1).Text = CStr(_Ay)
610. Else
611. _lifespan = 0
612. 'MsgBox("NaN")
613. End If
614. End Sub
615. Public Sub UpdateVelocity(ByVal planets() As Planet)
616. UpdateAcceleration(planets)
617. If _lifespan <> 0 Then
618. _Vx += _Ax
619. _Vy += _Ay
620. End If
621. End Sub
622. Public Sub UpdateLocation(ByVal planets() As Planet, Optional ByVal dt A

s Single = 1)
623. UpdateVelocity(planets)
624. If _lifespan <> 0 Then
625. _TMlocation.X += CInt(_Vx * dt * 10)
626. _TMlocation.Y += CInt(_Vy * dt * 10)
627.
628. For Each planet In planets
629. If Not planet Is Nothing Then TooCloseToPlanet(planet) 'del

ete clause for the testmass, it has collided with the mass
630. Next
631. End If
632. End Sub
633. Public Sub TooCloseToPlanet(ByVal planet As Planet)
634. If Math.Sqrt((planet.Location.X - _TMlocation.X) ^ 2 + (planet.Locat

ion.Y - _TMlocation.Y) ^ 2) < planet.Mass / 1000000 Then _lifespan = 0
635. End Sub
636. End Class
637.
638. Public Class FieldPoint
639. 'Inherits Planet
640. Private _location As Point
641. Private _potential As Single
642. Private _field As Fieldproperty
643.
644. Public Sub New(location As Point, Optional potential As Single = 0, Opti

onal fieldstrength As Single = 0)
645. _location = location
646. _field = New Fieldproperty(fieldstrength)
647. _potential = potential
648. End Sub
649. Public Property Location As Point
650. Set(value As Point)
651. _location = value
652. End Set
653. Get
654. Return _location
655. End Get
656. End Property
657. Public Property Potential As Single
658. Set(value As Single)
659. _potential = value
660. End Set
661. Get
662. Return _potential
663. End Get
664. End Property
665. Public Property FieldStrength As Single

81

666. Set(value As Single)
667. _field.Strength = value
668. End Set
669. Get
670. Return _field.Strength
671. End Get
672. End Property
673. Public Property Vector As FieldPoint
674. Set(value As FieldPoint)
675. _field.Vector = value
676. End Set
677. Get
678. Return _field.Vector
679. End Get
680. End Property
681. Public Property Field As Fieldproperty
682. Set(Value As Fieldproperty)
683. _field = Value
684. End Set
685. Get
686. Return _field
687. End Get
688. End Property
689.
690. Public Sub CalculatePotential(planets() As Planet, env As Environment)
691. For Each planet In planets
692. If Not planet Is Nothing Then
693. _potential += planet.CalculatePotential(_location)
694. Else
695. _potential += 0
696. End If
697. Next
698.
699.
700.
701. If _potential < 1 Then _potential = 1 'adds limits so that the col

our scaling works with the potentials function.
702. If _potential > 100000 Then _potential = 100000
703.
704. If _potential > env.MaximumPotential And _potential <> Double.Positi

veInfinity Then
705. env.MaximumPotential = _potential 'stores the maximum potentia

l found in the system.
706. End If
707. If _potential < env.MinimumPotential Then
708. env.MinimumPotential = _potential 'stores the minimum potentia

l in the system.
709. End If
710. 'MsgBox(_potential)
711. End Sub
712. Public Function CalculateForce(ByVal planets() As Planet, ByVal canvas A

s Environment) As Boolean
713. Dim CurrentDirection, CurrentMagnitude As Single
714. For Each planet In planets
715. If Not planet Is Nothing Then
716. CurrentDirection = _field.Direction 'saves old values of mag

nitude and direction so the vector sum can be calculated
717. CurrentMagnitude = _field.Strength 'first time through the

magnitude of the force will be 0 so there will be no force
718.
719. planet.CalculateForce(_location, _field) 'calculates the

attraction from the next planet
720. 'only need to sum two forces at a time
721. If CurrentDirection <> 9999 Then
722. _field.SumofGravitationalForce(_field, CurrentMagnitude,

 CurrentDirection) 'takes field byref so updated values stored in _field

82

723. End If
724.
725. Else
726. _field.Strength += 0
727. End If
728. Next
729. Return _field.CalculateVector(_location, canvas)
730. End Function
731. End Class
732.
733. Public Class Fieldproperty
734. Private _FieldStrength As Single
735. Private _FieldDirection As Single
736. Private _FieldVector As FieldPoint 'instead of a traditional vector each

 point on the field will point to another point, creating a list that will be the p
ath of the line

737. 'the line should be created from the centre of each plaent
738. Public Sub New(ByVal Optional strength As Single = 0, ByVal Optional dir

ection As Single = 9999) '9999 is a null value of direction
739. _FieldStrength = strength
740. _FieldDirection = direction
741. _FieldVector = Nothing
742. End Sub
743.
744. Public Property Strength As Single
745. Set(value As Single)
746. _FieldStrength = value
747. End Set
748. Get
749. Return _FieldStrength
750. End Get
751. End Property
752. Public Property Direction As Single
753. Set(Value As Single)
754. _FieldDirection = Value
755. End Set
756. Get
757. Return _FieldDirection
758. End Get
759. End Property
760. Public Property Vector As FieldPoint
761. Set(Value As FieldPoint)
762. _FieldVector = Value
763. End Set
764. Get
765. Return _FieldVector
766. End Get
767. End Property
768.
769. Public Sub SumofGravitationalForce(ByRef field As Fieldproperty, ByVal O

ldMagnitude As Single, ByVal OldDirection As Single)
770. Dim x1, y1, x2, y2, xR, yR, Direction, angle As Double
771.
772. x1 = (field.Strength * Math.Cos(field.Direction)) 'new direction of

the field to be added
773. y1 = (field.Strength * Math.Sin(field.Direction))
774.
775. x2 = (OldMagnitude * Math.Cos(OldDirection)) 'old direction of the f

ield to be added
776. y2 = (OldMagnitude * Math.Sin(OldDirection))
777.
778. xR = x1 + x2 'sum of components/resultant force
779. yR = y1 + y2
780. angle = Math.Atan(Math.Abs(yR / xR))
781.
782. If yR >= 0 Then

83

783. If xR >= 0 Then 'top right and right |_
784. Direction = angle
785. Else
786. Direction = Math.PI - angle 'top left
787. End If
788. ElseIf yR < 0 Then
789. If xR >= 0 Then 'bottom right
790. Direction = 0 - angle
791. Else 'bottom left
792. Direction = Math.PI + angle
793. End If
794. End If
795.
796.
797. field.Strength = CSng(Math.Sqrt(xR ^ 2 + yR ^ 2))
798. field.Direction = CSng(Direction Mod 2 * Math.PI)
799.
800. End Sub
801. Public Function CalculateVector(ByVal currentlocation As Point, ByVal ca

nvas As Environment) As Boolean
802. Dim dest As Point
803. dest = New Point(currentlocation.X + CInt(_FieldStrength * Math.Cos(

_FieldDirection)), currentlocation.Y - CInt(_FieldStrength * Math.Sin(_FieldDirecti
on))) 'y location increases as it goes down the screen

804. _FieldVector = New FieldPoint(dest)
805. If dest.X > canvas.Maximum.X Or dest.X < canvas.Origin.X Or dest.Y <

 canvas.Origin.Y Or dest.Y > canvas.Maximum.Y Then 'end recursive loop
806. Return True 'returns all the way to borderreached in createforce

line subroutine
807. End If
808. Return False
809. End Function
810. End Class

Login System

A separate form that enables the user to log into their account or access the registry form. While not

essential it be a separate form for ease of design and separation it has been done in this way.

In order to gather the combination of user details it must have strong links to the database. A dictionary

has been selected to store the user details as it enabled a key value combination of each user code and

password in the database to be created.

1. Public Class Login_System
2. Dim PriveledgeLevel As UserLevel
3. Dim StudentLoginDetails As Dictionary(Of String, String)
4. Dim TeacherLoginDetails As Dictionary(Of String, String)
5. Public Enum UserLevel
6. Admin
7. Teacher
8. Student
9. End Enum
10. Public Sub Login_Load()
11. PriveledgeLevel = UserLevel.Student
12. StudentLoginDetails = New Dictionary(Of String, String)
13. TeacherLoginDetails = New Dictionary(Of String, String)
14. StudentLoginDetails = Database.GatherLoginDetails(StudentLoginDetails, "Stu

dents")
15. TeacherLoginDetails = Database.GatherLoginDetails(TeacherLoginDetails, "Tea

chers")
16. End Sub

84

17. Private Sub Register_Click(sender As Object, e As EventArgs) Handles B_Register
.Click

18. Register_System.PassOverLoginList(StudentLoginDetails, TeacherLoginDetails)

19. Register_System.Show()
20. Me.Close()
21. End Sub
22. Private Sub StudentsLogin_Click(sender As Object, e As EventArgs) Handles Stude

ntsLogin.Click
23. B_Login.BackColor = StudentsLogin.BackColor
24. PriveledgeLevel = UserLevel.Student
25. End Sub
26. Private Sub TeachersLogin_CLick(sender As Object, e As EventArgs) Handles Teach

ersLogin.Click
27. B_Login.BackColor = TeachersLogin.BackColor
28. PriveledgeLevel = UserLevel.Teacher
29. End Sub
30. Private Sub Login_Click(sender As Object, e As EventArgs) Handles B_Login.Click

31. 'check database for valid login
32. Dim validLogin As Boolean = False
33. Select Case PriveledgeLevel
34. Case UserLevel.Teacher
35. validLogin = CheckLoginDetails(TeacherLoginDetails, Text_Username.T

ext, Text_Password.Text)
36. Case Else
37. validLogin = CheckLoginDetails(StudentLoginDetails, Text_Username.T

ext, Text_Password.Text)
38. End Select
39. 'MsgBox(CStr(validLogin))
40. If validLogin Then
41. Home.LoggedIn = True
42. Home.UserCode = Text_Username.Text
43. Home.PriveledgeLevel = PriveledgeLevel
44. Me.Close()
45. End If
46.
47. End Sub
48. Private Function CheckLoginDetails(ByVal LoginDetails As Dictionary(Of String,

String), ByVal Username As String, ByVal Password As String) As Boolean
49. Dim Keyvaluepair As New KeyValuePair(Of String, String)(Username, Password)

50. If LoginDetails.Contains(Keyvaluepair) Then Return True
51. Return False
52. End Function
53. Private Sub ForgotPassword_LinkClicked(sender As Object, e As LinkLabelLinkClic

kedEventArgs)
54.
55. End Sub
56. End Class

85

Register System

The register system works with the login system, allowing a new user to create an account by entering in

their forename, surname, email and a password. This account must be added to the database and should

allow a user with the correct login details into the account again.

1. Public Class Register_System
2. Private StudentLogins As Dictionary(Of String, String)
3. Private TeacherLogins As Dictionary(Of String, String)
4. Private Usercode As String
5. Private isTeacher As Boolean
6. Public Sub PassOverLoginList(ByVal Students As Dictionary(Of String, String), B

yVal Teachers As Dictionary(Of String, String))
7. StudentLogins = Students
8. TeacherLogins = Teachers
9. End Sub
10. Private Sub Register_System_Load(sender As Object, e As EventArgs) Handles MyBa

se.Load
11.
12. End Sub
13. Private Sub B_Register_Click(sender As Object, e As EventArgs) Handles B_Regist

er.Click
14. Dim validdetails As Boolean = False
15. 'Check names
16. If IsValidNameFormat(Text_Username.Text) And IsValidNameFormat(Text_Surname

.Text) And IsValidEmailFormat(Text_Email.Text) Then
17. If Text_Password1.Text = Text_Password2.Text Then
18. If TeacherBox.Checked Then
19. Home.PriveledgeLevel = Login_System.UserLevel.Teacher
20. Usercode = GenerateUserCode(False)
21. MsgBox("Your usercode is: " & Usercode & " make sure to remembe

r it.")
22. isTeacher = True
23. Database.AddTeacherData(Usercode, Text_Username.Text, Text_Surn

ame.Text, Text_Email.Text, Text_Password1.Text)
24. Dim Classcode As Integer = TeacherLogins.Count
25. MsgBox("Classcode: " & Classcode)
26. AddTeacherClass(Classcode, Usercode)
27. Else
28. Home.PriveledgeLevel = Login_System.UserLevel.Student
29. Usercode = GenerateUserCode(True)
30. MsgBox("Your usercode is: " & Usercode & " make sure to remembe

r it.")
31. isTeacher = False
32. Database.AddStudentData(Usercode, Text_Username.Text, Text_Surn

ame.Text, Text_Email.Text, Text_Password1.Text)
33. 'Database.AddClassCode(Usercode, "10010")
34. End If
35. Home.UserCode = Usercode
36. Home.LoggedIn = True
37. Me.Close()
38. Else
39. MsgBox("Passwords do not match, please retry")
40. End If
41. Else
42. MsgBox("Invalid username and/or surname and/or email, please retry")
43. End If
44.
45. 'check email duplicate?
46. 'check no duplicates -

cant be a usercode duplicate as not generated yet!
47.

86

48. 'ADD DETAILS TO THE DATABASE
49.
50. End Sub
51. Function IsValidNameFormat(ByVal s As String) As Boolean
52. If Not System.Text.RegularExpressions.Regex.IsMatch(s, "^[A-Za-

z]+$") Then MsgBox("Name must only contain letters")
53. Return System.Text.RegularExpressions.Regex.IsMatch(s, "^[A-Za-z]+$")
54. End Function
55. Function IsValidEmailFormat(ByVal s As String) As Boolean
56. If Not System.Text.RegularExpressions.Regex.IsMatch(s, "^([0-9a-zA-Z]([-

\.\w]*[0-9a-zA-Z])*@([0-9a-zA-Z][-\w]*[0-9a-zA-Z]\.)+[a-zA-
Z]{2,9})$") Then MsgBox("Email must contain an @ sign and a domain")

57. Return System.Text.RegularExpressions.Regex.IsMatch(s, "^([0-9a-zA-Z]([-
\.\w]*[0-9a-zA-Z])*@([0-9a-zA-Z][-\w]*[0-9a-zA-Z]\.)+[a-zA-Z]{2,9})$")

58. End Function
59.
60. Function GenerateUserCode(ByVal Isstudent As Boolean) As String
61. If Isstudent Then 'it is a student
62. Return 10000 + StudentLogins.Count
63. Else
64. Return 1000 + TeacherLogins.Count
65. End If
66. End Function
67. End Class

Account

After a user has logged in they should be able to access the account form where they are able to alter their

class code. Enabling a student to connect themselves to a teacher within the database.

1. Public Class Account
2. Private UserCode, classcode As String
3. Public Sub LoadStudentAccount()
4. UserCode = Home.UserCode
5. 'get current ClassCode
6. MsgBox("Usercode: " & UserCode)
7. classcode = Database.GetClassCode(UserCode)
8. ClassCodeTextBox.Text = classcode
9. End Sub
10.
11. Public Sub LoadTeacherAccount()
12. ClassCodeButton.Visible = False
13. ClassCodeTextBox.Visible = False
14. End Sub
15. Private Sub LogOut_click(sender As Object, e As EventArgs) Handles LogOutButton

.Click
16. ClassCodeButton.Visible = True
17. ClassCodeTextBox.Visible = True
18. UserCode = ""
19. Home.PriveledgeLevel = Nothing
20. Home.LoggedIn = False
21. Me.Close()
22. End Sub
23. Private Sub ClassCodeButton_Click(sender As Object, e As EventArgs) Handles Cla

ssCodeButton.Click
24. Database.AddClassCode(UserCode, ClassCodeTextBox.Text)
25. End Sub
26. End Class

87

Database

The data back end of the system where all the login details of both students and teachers, and the test

results of each student. It needs to be robust and capable of handling large amounts of data.

3. ''added reference Microsoft Ado Ext 2.8 for DDL and Security
4. Option Strict On
5. Imports ADOX
6. Imports System.Data.OleDb
7. Module Database
8. Public DatabaseName As String = "TestDB"
9. Private MyConnection As New OleDbConnection
10. Private MyCommand As New OleDbCommand
11. Private DDLstr As String
12. Public Sub DatabaseMasterCreator(name As String)
13. CreateDatabase(DatabaseName)
14. OpenDatabase(name)
15. CreateStudentTable() 'creates each table independently
16. CreateTeacherTable()
17. CreateClassesTable()
18. CreateResultsTable()
19. CreateTestsTable()
20. MyConnection.Close()
21. 'creating all the tables
22. End Sub
23. Public Sub CreateDatabase(name As String)
24. Dim cat As Catalog = New Catalog()
25. Try
26. cat.Create("Provider=Microsoft.Jet.OLEDB.4.0;" &
27. "Data Source=" & name & ".mdb;" &
28. "Jet OLEDB:Engine Type=5")
29. MyConnection = New OleDbConnection
30. MyConnection.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data

Source=" & name & ".mdb"
31. MyConnection.Open()
32. Catch ex As Exception
33. MsgBox("Database Creation failed " & ex.Message)
34. Finally
35. MyConnection.Close()
36. End Try
37. cat = Nothing
38. End Sub
39. Public Sub OpenDatabase(name As String)
40. Try
41. MyConnection.ConnectionString = ("Provider=Microsoft.Jet.OLEDB.4.0;Data

 Source=" & name & ".mdb")
42. MyConnection.Open()
43. Catch ex As Exception
44. MsgBox("Database not opened " & ex.Message)
45. End Try
46. End Sub
47. Public Sub CreateTable(tablename As String)
48. Try
49. MyCommand = New OleDb.OleDbCommand("CREATE TABLE [" & tablename & "]",

MyConnection)
50. MyCommand.ExecuteNonQuery()
51. Catch ex As Exception
52. MsgBox(ex.Message)
53. End Try
54. End Sub

88

55. Private Sub CreateStudentTable()
56. DDLstr = "CREATE TABLE [Students] ([StudentCode] INT CONSTRAINT PrimaryKey

PRIMARY KEY, [StudentClass] INT, [Forename] Varchar(25), [Surname] Varchar(25), [Em
ail] Varchar(25), [Password] Varchar(25), [DateJoined] DATE)"

57. Try
58. MyCommand = New OleDb.OleDbCommand(DDLstr, MyConnection)
59. MyCommand.ExecuteNonQuery()
60. 'msgbox("Students table created")
61. Catch ex As Exception
62. MsgBox("Students table not created: " & ex.Message)
63. End Try
64. End Sub
65. Private Sub CreateTeacherTable()
66. DDLstr = "CREATE TABLE [Teachers] ([TeacherCode] INT CONSTRAINT PrimaryKey

PRIMARY KEY, [Forename] Varchar(25), [Surname] Varchar(25), [Email] Varchar(25), [P
assword] Varchar(25))"

67. Try
68. MyCommand = New OleDb.OleDbCommand(DDLstr, MyConnection)
69. MyCommand.ExecuteNonQuery()
70. Catch ex As Exception
71. MsgBox("Teacher table not created: " & ex.Message)
72. End Try
73. End Sub
74. Private Sub CreateClassesTable()
75. DDLstr = "CREATE TABLE [Classes] ([Classcode] INT CONSTRAINT PrimaryKey PRI

MARY KEY, [TeacherCode] INT)"
76. Try
77. MyCommand = New OleDb.OleDbCommand(DDLstr, MyConnection)
78. MyCommand.ExecuteNonQuery()
79. Catch ex As Exception
80. MsgBox("Teacher table not created: " & ex.Message)
81. End Try
82. End Sub
83. Private Sub CreateResultsTable()
84. DDLstr = "CREATE TABLE [Results] ([StudentCode] INT, [HomeworkCode] INT, [P

ercentage] INT, [Feedback] Varchar(50))"
85. Dim SQLstr As String = "ALTER TABLE Results ADD CONSTRAINT PrimaryKey PRIMA

RY KEY ([StudentCode], [HomeworkCode])"
86. Try
87. MyCommand = New OleDb.OleDbCommand(DDLstr, MyConnection)
88. MyCommand.ExecuteNonQuery()
89. MyCommand = New OleDb.OleDbCommand(SQLstr, MyConnection)
90. MyCommand.ExecuteNonQuery()
91. Catch ex As Exception
92. MsgBox("Results table not created: " & ex.Message)
93. End Try
94. End Sub
95. Private Sub CreateTestsTable()
96. DDLstr = "CREATE TABLE [Tests] ([TestCode] INT CONSTRAINT PrimaryKey PRIMAR

Y KEY, [Questions] INT)"
97. Try
98. MyCommand = New OleDb.OleDbCommand(DDLstr, MyConnection)
99. MyCommand.ExecuteNonQuery()
100. Catch ex As Exception
101. MsgBox("Tests table not created: " & ex.Message)
102. End Try
103. End Sub
104. Public Sub AddField(tablename As String, field As String, type As String

)
105. Try
106. MyCommand = New OleDb.OleDbCommand("ALTER TABLE [" & tablename &

 "] ADD COLUMN [" & field & "] " & type, MyConnection)
107. MyCommand.ExecuteNonQuery()
108. Catch ex As Exception
109. MsgBox(ex.Message)
110. End Try

89

111. End Sub
112. Public Sub AddClassCode(ByVal ID As String, ByVal data As String)
113. Dim SQLstr As String
114. Dim RowsUpdated As Integer = 0
115. OpenDatabase(DatabaseName)
116. Try
117. SQLstr = "UPDATE Students SET [StudentClass] = @data WHERE [Stud

entCode] = @condition"
118. MyCommand = New OleDbCommand(SQLstr, MyConnection)
119. MyCommand.Parameters.AddWithValue("@data", data)
120. MyCommand.Parameters.AddWithValue("@condition", ID)
121. RowsUpdated = MyCommand.ExecuteNonQuery()
122. If RowsUpdated > 0 Then MsgBox("Successfully added")
123. Catch ex As Exception
124. MsgBox("error inserting the students class: " & ex.Message)
125. Finally
126. MyConnection.Close()
127. End Try
128. End Sub
129. Public Sub AddTeacherClass(ByVal Classcode As Integer, ByVal teachercode

 As String)
130. Dim SQLstr As String
131. OpenDatabase(DatabaseName)
132. Try
133. SQLstr = "INSERT INTO Classes ([ClassCode], [TeacherCode]) VALUE

S (@classcode, @teachercode)"
134. MyCommand = New OleDbCommand(SQLstr, MyConnection)
135. With MyCommand.Parameters
136. .AddWithValue("@classcode", Classcode)
137. .AddWithValue("@teachercode", teachercode)
138. End With
139. MyCommand.ExecuteNonQuery()
140. Catch ex As Exception
141. MsgBox(ex.Message)
142. Finally
143. MyConnection.Close()
144. End Try
145. End Sub
146. Public Sub AddStudentData(ByVal usercode As String, ByVal forename As St

ring, ByVal surname As String, ByVal email As String, ByVal password As String)
147. Dim SQLstr As String
148. OpenDatabase(DatabaseName)
149. Try
150. SQLstr = "INSERT INTO Students ([StudentCode], [Forename], [Surn

ame], [Email], [Password], [DateJoined]) VALUES (@StudentCode, @Forename, @Surname,
 @Email, @Password, @DateJoined)"

151. MyCommand = New OleDbCommand(SQLstr, MyConnection)
152. With MyCommand.Parameters
153. .AddWithValue("@StudentCode", usercode)
154. .AddWithValue("@Forename", forename)
155. .AddWithValue("@Surname", surname)
156. .AddWithValue("@Email", email)
157. .AddWithValue("@Password", password)
158. .AddWithValue("@DateJoined", System.DateTime.Today)
159. End With
160. MyCommand.ExecuteNonQuery()
161. Catch ex As Exception
162. MsgBox(ex.Message)
163. Finally
164. MyConnection.Close()
165. End Try
166. End Sub
167. Public Sub AddTeacherData(ByVal usercode As String, ByVal forename As St

ring, ByVal surname As String, ByVal email As String, ByVal password As String)
168. Dim SQLstr As String
169. OpenDatabase(DatabaseName)

90

170. Try
171. SQLstr = "INSERT INTO Teachers ([TeacherCode], [Forename], [Surn

ame], [Email], [Password]) VALUES (@TeacherCode, @Forename, @Surname, @Email, @Pass
word)"

172. MyCommand = New OleDbCommand(SQLstr, MyConnection)
173. With MyCommand.Parameters
174. .AddWithValue("@TeacherCode", usercode)
175. .AddWithValue("@Forename", forename)
176. .AddWithValue("@Surname", surname)
177. .AddWithValue("@Email", email)
178. .AddWithValue("@Password", password)
179. End With
180. MyCommand.ExecuteNonQuery()
181. Catch ex As Exception
182. MsgBox(ex.Message)
183. Finally
184. MyConnection.Close()
185. End Try
186. End Sub
187. Public Sub AddFeedback(ByVal testcode As Integer, ByVal forename As Stri

ng, ByVal surname As String, ByVal feedback As String)
188. Dim SQLstr As String
189. Dim RowsUpdated As Integer = 0
190. OpenDatabase(DatabaseName)
191. Try
192. SQLstr = "UPDATE ((Tests INNER JOIN Results On Tests.TestCode =

Results.HomeworkCode) INNER JOIN Students On Results.StudentCode = Students.Student
Code) Set Results.Feedback = '" & feedback

193. SQLstr += "' WHERE Tests.TestCode = @testcode And Students.Foren
ame = @forename And Students.Surname = @surname"

194. MyCommand = New OleDbCommand(SQLstr, MyConnection)
195. MyCommand.Parameters.Add("@testcode", OleDbType.Integer).Value =

 testcode
196. MyCommand.Parameters.AddWithValue("@forename", OleDbType.VarChar

).Value = forename
197. MyCommand.Parameters.AddWithValue("@surname", OleDbType.VarChar)

.Value = surname
198. RowsUpdated = MyCommand.ExecuteNonQuery()
199. If RowsUpdated > 0 Then MsgBox("Successfully added")
200. Catch ex As Exception
201. MsgBox("Error inserting the students feedback: " & ex.Message)
202. Finally
203. MyConnection.Close()
204. End Try
205. End Sub
206. Public Sub AddResult(ByVal testcode As Integer, ByVal studentcode As Int

eger, ByVal percent As Integer, ByVal feedback As String)
207. Dim SQLstr As String
208. Dim RowsUpdated As Integer = 0
209. OpenDatabase(DatabaseName)
210. Try
211. SQLstr = "INSERT INTO Results ([StudentCode], [HomeworkCode], [P

ercentage], [Feedback]) VALUES (@testcode, @studentcode, @percent, '" & feedback &
"')"

212. MyCommand = New OleDbCommand(SQLstr, MyConnection)
213. With MyCommand.Parameters
214. .AddWithValue("@testcode", OleDbType.Integer).Value = testco

de
215. .AddWithValue("@studentcode", OleDbType.Integer).Value = stu

dentcode
216. .AddWithValue("@percent", OleDbType.Integer).Value = percent

217. End With
218. RowsUpdated = MyCommand.ExecuteNonQuery
219. If RowsUpdated > 0 Then MsgBox("Successfully added")
220. Catch ex As Exception

91

221. MsgBox("Could not add result: " & ex.Message)
222. Finally
223. MyConnection.Close()
224. End Try
225.
226. End Sub
227. Public Function GetColumnNamesInTable(ByVal tableName As String) As Arra

y
228. Dim restrictions As String() = New String() {Nothing, Nothing, table

Name, Nothing}
229. Try
230. OpenDatabase(DatabaseName)
231. Dim dataTable As DataTable = MyConnection.GetSchema("Columns", r

estrictions)
232. Dim Cols() As DataRow = dataTable.Select()
233. Dim ArrayOfNames(Cols.Length - 1) As String
234. For i As Integer = 0 To Cols.Length - 1
235. ArrayOfNames(i) = CStr(Cols(i)("column_name"))
236. Next
237. Return ArrayOfNames
238. Catch ex As Exception
239. MsgBox(ex.Message)
240. Finally
241. MyConnection.Close()
242. End Try
243. Return Nothing
244. End Function
245. Public Function GetStudentnameFromResultsTable(ByVal Teachercode As Stri

ng) As Array
246. Dim SQlstr, name As String
247. Dim names As New List(Of String)
248. SQlstr = "SELECT Students.Forename, Students.Surname FROM ((Students

 INNER JOIN Classes On Students.StudentClass = Classes.ClassCode) INNER JOIN Teache
rs On Classes.TeacherCode = Teachers.TeacherCode) WHERE Classes.TeacherCode = @cond
ition"

249. 'SQlstr = "Select Forename, Surname FROM Students WHERE Classes.Clas
sCode = Students.StudentClass And Classes.TeacherCode = @condition"

250.
251. Dim Datareader As OleDbDataReader
252. Try
253. OpenDatabase(DatabaseName)
254. MyCommand = New OleDbCommand(SQlstr, MyConnection)
255. MyCommand.Parameters.AddWithValue("@condition", Teachercode)
256. Datareader = MyCommand.ExecuteReader() 'ExecuteReader()
257. If Datareader.HasRows Then
258. While Datareader.Read()
259. If Not Datareader.IsDBNull(0) Then
260. name = Datareader.GetString(0) & " " & Datareader.Ge

tString(1)
261. 'MsgBox("name: " & name)
262. names.Add(name)
263. End If
264. End While
265. End If
266. Catch ex As Exception
267. MsgBox("Student names could not be gathered " & ex.Message)
268. Finally
269. MyConnection.Close()
270. End Try
271. Dim formattednames(names.Count - 1) As String
272. For index As Integer = 0 To names.Count - 1
273. formattednames(index) = CStr(names(index))
274. Next
275. Return formattednames
276. End Function
277. Public Function GetTableNames() As Array

92

278. Dim connection As New OleDb.OleDbConnection(MyConnection.ConnectionS
tring)

279. Dim restrictions As String() = New String() {Nothing, Nothing, Nothi
ng, "Table"} 'catalog, owner, table name, table type

280. Try
281. connection.Open()
282. Dim dataTable As DataTable = connection.GetSchema("Tables", rest

rictions)
283. Dim Tables() As DataRow = dataTable.Select()
284. Dim ArrayOfNames(Tables.Length) As String
285. For i As Integer = 0 To Tables.Length - 1
286. ArrayOfNames(i) = CStr(Tables(i)("table_name"))
287. Next
288. Return ArrayOfNames
289. Catch ex As Exception
290. MsgBox(ex.Message)
291. Finally
292. connection.Close()
293. End Try
294. Return Nothing
295. End Function
296. Public Function GatherLoginDetails(ByVal LoginDetails As Dictionary(Of S

tring, String), ByVal Tablename As String) As Dictionary(Of String, String)
297. Dim SQLstr, Usercode, Password As String
298. Dim Datareader As OleDbDataReader
299. Select Case Tablename
300. Case "Teachers"
301. SQLstr = "SELECT TeacherCode, Password FROM " & Tablename
302. Case "Students"
303. SQLstr = "SELECT StudentCode, Password FROM " & Tablename
304. Case Else
305. Return LoginDetails
306. End Select
307. Try
308. OpenDatabase(DatabaseName)
309. Dim SqlCommand As New OleDbCommand(SQLstr, MyConnection)
310. Datareader = SqlCommand.ExecuteReader
311. While Datareader.Read()
312. Usercode = CStr(Datareader.GetInt32(0))
313. Password = Datareader.GetString(1)
314. LoginDetails.Add(Usercode, Password)
315. End While
316. Catch ex As Exception
317. MsgBox("Data could not be gathered " & ex.Message)
318. Finally
319. MyConnection.Close()
320. End Try
321. Return LoginDetails
322. End Function
323. Public Function GetClassCode(ByVal usercode As String) As String
324. Dim SQLstr, classcode As String
325. classcode = "nothing"
326. Dim Datareader As OleDbDataReader
327. SQLstr = "SELECT StudentClass FROM Students WHERE Students.StudentCo

de = @condition"
328. Try
329. OpenDatabase(DatabaseName)
330. MyCommand = New OleDbCommand(SQLstr, MyConnection)
331. MyCommand.Parameters.AddWithValue("@condition", OleDbType.Intege

r).Value = CInt(usercode)
332. Datareader = MyCommand.ExecuteReader() 'ExecuteReader()
333. If Datareader.HasRows Then
334. While Datareader.Read()
335. If Not Datareader.IsDBNull(0) Then
336. classcode = CStr(Datareader.GetInt32(0))
337. End If

93

338. End While
339. End If
340. MsgBox("Classcode: " & classcode)
341. Catch ex As Exception
342. MsgBox("Class code could not be gathered " & ex.Message)
343. Finally
344. MyConnection.Close()
345. End Try
346. Return classcode
347. End Function
348. Public Function GetTestCodes() As Array
349. Dim SQLstr, test As String
350. Dim Tests As New List(Of String)
351. Dim Datareader As OleDbDataReader
352. SQLstr = "SELECT TestCode FROM Tests"
353. Try
354. OpenDatabase(DatabaseName)
355. MyCommand = New OleDbCommand(SQLstr, MyConnection)
356. Datareader = MyCommand.ExecuteReader() 'ExecuteReader()
357. If Datareader.HasRows Then
358. While Datareader.Read()
359. If Not Datareader.IsDBNull(0) Then
360. test = CStr(Datareader.GetInt32(0))
361. Tests.Add(test)
362. End If
363. End While
364. End If
365. Catch ex As Exception
366. MsgBox("Tests codes could not be gathered " & ex.Message)
367. Finally
368. MyConnection.Close()
369. End Try
370. Dim formattedtests(Tests.Count - 1) As String
371. For index As Integer = 0 To Tests.Count - 1
372. formattedtests(index) = CStr(Tests(index))
373. Next
374. Return formattedtests
375. End Function
376. Public Function GetStudentResults(ByVal usercode As String) As DataTable

377. Dim ResultsTable As New DataTable
378. Dim SQLstr As String
379. Dim DataAdapter As OleDbDataAdapter
380. Try
381. OpenDatabase(DatabaseName)
382. SQLstr = "SELECT HomeworkCode, Percentage, Feedback FROM Results

 WHERE Results.StudentCode = @condtion" ' OrderBy HomeworkCode DESC"
383. MyCommand = New OleDbCommand(SQLstr, MyConnection)
384. MyCommand.Parameters.AddWithValue("@condition", OleDbType.Intege

r).Value = CInt(usercode)
385. DataAdapter = New OleDbDataAdapter(MyCommand)
386. DataAdapter.Fill(ResultsTable)
387. Catch ex As Exception
388. MsgBox("Student results could not be gathered: " & ex.Message)
389. Return Nothing
390. Finally
391. MyConnection.Close()
392. End Try
393. Return ResultsTable
394. End Function
395. Public Function GetStudentCode(ByVal forename As String, ByVal surname A

s String) As Integer
396. Dim SQLstr As String
397. Dim studentcode As Integer
398. studentcode = 0
399. Dim Datareader As OleDbDataReader

94

400. SQLstr = "SELECT StudentCode FROM Students WHERE Students.Forename =
 @forename AND Students.Surname = @surname"

401. Try
402. OpenDatabase(DatabaseName)
403. MyCommand = New OleDbCommand(SQLstr, MyConnection)
404. MyCommand.Parameters.AddWithValue("@forename", forename)
405. MyCommand.Parameters.AddWithValue("@surname", surname)
406. Datareader = MyCommand.ExecuteReader() 'ExecuteReader()
407. If Datareader.HasRows Then
408. While Datareader.Read()
409. If Not Datareader.IsDBNull(0) Then
410. studentcode = (Datareader.GetInt32(0))
411. End If
412. End While
413. End If
414. MsgBox("StudentCode: " & studentcode)
415. Catch ex As Exception
416. MsgBox("Student code could not be gathered " & ex.Message)
417. Finally
418. MyConnection.Close()
419. End Try
420. Return studentcode
421. End Function
422. Public Function GetTestmax(ByVal testcode As Integer) As Integer
423. Dim SQLstr As String
424. Dim Testmax As Integer
425. Testmax = 0
426. Dim Datareader As OleDbDataReader
427. SQLstr = "SELECT Questions FROM Tests WHERE Tests.TestCode = @condit

ion"
428. Try
429. OpenDatabase(DatabaseName)
430. MyCommand = New OleDbCommand(SQLstr, MyConnection)
431. MyCommand.Parameters.AddWithValue("@condition", OleDbType.Intege

r).Value = (testcode)
432. Datareader = MyCommand.ExecuteReader() 'ExecuteReader()
433. If Datareader.HasRows Then
434. While Datareader.Read()
435. If Not Datareader.IsDBNull(0) Then
436. Testmax = (Datareader.GetInt32(0))
437. End If
438. End While
439. End If
440. MsgBox("testmax: " & Testmax)
441. Catch ex As Exception
442. MsgBox("testmax could not be gathered " & ex.Message)
443. Finally
444. MyConnection.Close()
445. End Try
446. Return Testmax
447. End Function
448. Public Function StudentResultsByName(ByVal Studentname As String) As Dat

aTable
449. 'split student name into first and second
450. Dim name(1), SQLstr As String
451. Dim ResultsTable As New DataTable
452. Dim dataadapter As OleDbDataAdapter
453. name = Studentname.Split
454. SQLstr = "SELECT Results.HomeworkCode, Results.Percentage, Results.F

eedback FROM Students INNER JOIN Results ON Students.StudentCode = Results.StudentC
ode WHERE Students.Forename = @forename AND Students.Surname = @surname;"

455. Try
456. OpenDatabase(DatabaseName)
457. MyCommand = New OleDbCommand(SQLstr, MyConnection)
458. With MyCommand.Parameters
459. .AddWithValue("@forename", name(0))

95

460. .AddWithValue("@surname", name(1))
461. End With
462. dataadapter = New OleDbDataAdapter(MyCommand)
463. dataadapter.Fill(ResultsTable)
464. Catch ex As Exception
465. MsgBox("Student Data could not be gathered by name " & ex.Messag

e)
466. Return Nothing
467. Finally
468. MyConnection.Close()
469. End Try
470. Return ResultsTable
471. End Function
472. Public Function StudentResultsByTest(ByVal testcode As String, ByVal Tea

cherCode As String) As DataTable
473. Dim SQLstr As String
474. Dim ResultsTable As New DataTable
475. Dim dataadapter As OleDbDataAdapter
476. SQLstr = "SELECT Students.Forename, Students.Surname, Results.Percen

tage, Results.Feedback
477. FROM ((Students INNER JOIN Results ON Students.StudentCode = Results.Student

Code) INNER JOIN Tests ON Results.HomeworkCode = Tests.TestCode) INNER JOIN (Classe
s INNER JOIN Teachers ON Classes.TeacherCode = Teachers.TeacherCode) ON Students.St
udentClass = Classes.Classcode

478. WHERE Teachers.TeacherCode = @teachercode AND Tests.TestCode = @testcode"
479. Try
480. OpenDatabase(DatabaseName)
481. MyCommand = New OleDbCommand(SQLstr, MyConnection)
482. With MyCommand.Parameters
483. .AddWithValue("@teachercode", TeacherCode)
484. .AddWithValue("@testcode", testcode)
485. End With
486. dataadapter = New OleDbDataAdapter(MyCommand)
487. dataadapter.Fill(ResultsTable)
488. Catch ex As Exception
489. MsgBox("Student Data could not be gathered by test number " & ex

.Message)
490. Return Nothing
491. Finally
492. MyConnection.Close()
493. End Try
494. Return ResultsTable
495. End Function
496. End Module

96

Results

The results page allows users to view either their results or the results of students in their class, this should

enable a teacher to make multiple queries and gather data about their students in multiple ways.

1. 'Option Strict On
2. Module Results
3. Private UserCode As String
4. Private PriveledgeLevel As Login_System.UserLevel
5. Private ResultsGrid As New DataGrid
6. Private ResultsView As New DataGridView
7. Private Labels(1) As Label
8. Private DropDownLists(1) As ComboBox
9. Private Checkboxes(1) As CheckBox
10. Private QueryButton As New Button
11. Private ResultsHandler As New DataGridViewCellEventHandler(AddressOf CellChange

d)
12. Public Sub PassVariables(ByVal code As String, ByVal level As Login_System.User

Level)
13. UserCode = code
14. PriveledgeLevel = level
15. End Sub
16. Public Sub FormatStudentPage()
17. ResultsView.DataSource = Database.GetStudentResults(UserCode)
18. ResultsView.Location = New Point(50, 100)
19. ResultsView.Size = New Size(700, 400)
20. ResultsView.AutoResizeColumns()
21. Home.Controls.Add(ResultsView)
22. End Sub
23. Public Sub FormatTeacherPage()
24. For index As Integer = 0 To 1
25. Labels(index) = New Label
26. With Labels(index)
27. .Location = New Point(250 * index + 90, 85)
28. If index = 0 Then .Text = "By Student Name:"
29. If index = 1 Then .Text = "By Test:"
30. End With
31. DropDownLists(index) = New ComboBox
32. With DropDownLists(index)
33. .Location = New Point(250 * index + 100, 110)
34.
35. If index = 0 Then
36. .Text = "Student"
37. .DataSource = (Database.GetStudentnameFromResultsTable(UserCode

))
38. ElseIf index = 1 Then
39. .Text = "Homework"
40. .DataSource = (Database.GetTestCodes())
41. End If
42. '.Items = Nothing 'get students from teacher class
43. End With
44. Checkboxes(index) = New CheckBox
45. With Checkboxes(index)
46. .Location = New Point((250 * index) + 225, 110)
47. .Size = New Size(15, .Height)
48. .Text = ""
49. End With
50. If index = 0 Then AddHandler Checkboxes(index).CheckedChanged, AddressO

f Uncheck1
51. If index = 1 Then AddHandler Checkboxes(index).CheckedChanged, AddressO

f Uncheck0
52.

97

53. Home.Controls.Add(Labels(index))
54. Home.Controls.Add(DropDownLists(index))
55. Home.Controls.Add(Checkboxes(index))
56. Next
57.
58. QueryButton.Location = New Point(510, 108)
59. QueryButton.Text = "Query"
60. Home.Controls.Add(QueryButton)
61. AddHandler QueryButton.Click, AddressOf QueryResults
62. End Sub
63. Private Sub Uncheck1(ByVal sender As Object, e As EventArgs) 'ensures only o

ne of the checkboxes can be selected
64. If Checkboxes(0).Checked = True Then Checkboxes(1).Checked = False
65. End Sub
66. Private Sub Uncheck0(ByVal sender As Object, e As EventArgs)
67. If Checkboxes(1).Checked = True Then Checkboxes(0).Checked = False
68. End Sub
69. Private Sub QueryResults(ByVal sender As Object, e As EventArgs) 'adds all t

he results to a results view object
70. MsgBox("Querying")
71. ResultsView.Location = New Point(50, 150)
72. ResultsView.Size = New Size(700, 400)
73. ResultsView.AutoResizeColumns()
74. If Checkboxes(0).Checked Then 'query by student name
75. ResultsView.DataSource = Database.StudentResultsByName(DropDownLists(0)

.Text)
76. Else 'query by test no.
77. ResultsView.DataSource = Database.StudentResultsByTest(DropDownLists(1)

.Text, UserCode)
78. End If
79. AddHandler ResultsView.CellEndEdit, ResultsHandler
80. Home.Controls.Add(ResultsView)
81. End Sub
82. Private Sub CellChanged(ByVal sender As Object, e As DataGridViewCellEventArgs)

83. Dim row, column As Integer
84. If Checkboxes(1).Checked And e.ColumnIndex = 3 Or Checkboxes(0).Checked And

 e.ColumnIndex = 2 Then
85. row = e.RowIndex
86. column = e.ColumnIndex
87. 'append feedback to the DB
88. If Checkboxes(0).Checked Then 'by student name
89. Dim names(1) As String
90. names = DropDownLists(0).Text.Split
91. Database.AddFeedback(CInt(ResultsView(0, row).Value), names(0), nam

es(1), ResultsView(2, row).Value)
92. 'Database.AddFeedback(ResultsView(0, row).Value, names(0), names(1)

, ResultsView(2, row).Value)
93. Else 'by test number
94. Database.AddFeedback(CInt(DropDownLists(1).Text), ResultsView(0, ro

w).Value, ResultsView(1, row).Value, ResultsView(3, row).Value)
95. End If
96. End If
97. MsgBox("active")
98. End Sub
99. End Module

98

Tests

The tests page is only accessible to teachers, it enables them to add a students result to the database,

where the student can access it and view the feedback left for them.

1. Public Class Tests
2. Private Sub Tests_Load(sender As Object, e As EventArgs) Handles MyBase.Load
3. With StudentsList
4. .DataSource = (Database.GetStudentnameFromResultsTable(Home.UserCode))

5. End With
6. With TestsList
7. .DataSource = (Database.GetTestCodes())
8. End With
9. End Sub
10. Private Sub B_Addresult_Click(sender As Object, e As EventArgs) Handles B_Addre

sult.Click
11. Dim name(1) As String
12. Dim percent, maxscore As Integer
13. maxscore = 0
14. name = StudentsList.Text.Split
15. maxscore = GetTestmax(CInt(TestsList.Text))
16. If maxscore <> 0 And IsValidTestScore(ScoreTextBox.Text) Then
17. percent = CInt(ScoreTextBox.Text) / maxscore * 100
18. If percent <= 100 And percent >= 0 Then
19. Try
20. AddResult(TestsList.Text, GetStudentCode(name(0), name(1)), per

cent, FeedbackText.Text)
21. Catch
22. MsgBox("invalid entry combination, please check and try again")

23. End Try
24. Else
25. MsgBox("Invalid score")
26. End If
27. End If
28. End Sub
29.
30. Function IsValidTestScore(ByVal s As String) As Boolean
31. If Not System.Text.RegularExpressions.Regex.IsMatch(s, "^[0-

9]+$") Then MsgBox("Invalid Score")
32. Return System.Text.RegularExpressions.Regex.IsMatch(s, "^[0-9]+$")
33. End Function
34. End Class

99

Alpha Testing

Input Testing

No. Purpose Description Data
Typical,
Erroneous,
Extreme

Expected
outcome

Actual
outcome

Evidence
in
appendix

1.1 Validate
Password

A password should
be accepted if it is
any combination of
characters longer
than(or equal to) 6
characters. And
the two entered
passwords match.

Treg1 – “Abcd1234”
Ereg1 – “Ab1234”
Xreg1 – “Word”

Accept
Accept
Error

Accept
Accept
Error

I-1.1

1.2 Validate
Email

Email should be
accepted if it
contains an @ sign
and a domain

Treg1 – “LBJ@myemail.com”
Ereg1 –
“Heresmyemail@email.com”
Xreg1 – “ Notanemail”

Accept
Accept
Error

Accept
Accept
Error

 I-1.2

1.3 Validate
Forename

Forename should
be accepted if it
only contains
letters.

Treg1 – “James”
Ereg1 – “James”
Xreg1 – “James12”

Accept
Accept
Error

Accept
Accept
Error

 I-1.3

1.4 Validate
Surname

Surname should be
accepted if it only
contains letters

Treg1 – “Hancock”
Ereg1 – “Hancock”
Xreg1 – “Hancock12”

Accept
Accept
Error

Accept
Accept
Error

 I-1.4

2.1 Validate
Classcode

Classcode must be
of the correct
format i.e an
integer

Treg2 – 1
Ereg2 – 1
Xreg2 – 1a

Accept
Accept
Error

Accept
Accept
Error

 I-1.5

100

Flow of Control Testing

VARIABLE PASSING TEST FOR STUDENT USER

No. Variable Description Expected value Actual
value

Evidence
in

appendix

1.0 LoggedIn Boolean variable that states whether
a user is currently logged in

True True S-2.1

1.1 Usercode String that contains the users code,
not dependent on whether or not the
user is a student or teacher

10000 “10000” S-2.1

1.2 PriveledgeLevel Innumerable which defines what
level of access the user has

Userlevel.Student Student{2} S-2.1

VARIABLE PASSING TEST FOR TEACHER USER

No. Variable Description Expected value Actual
value

Evidence
in

appendix

1.0 LoggedIn Boolean variable that states whether
a user is currently logged in

True True S-2.2

1.1 Usercode String that contains the users code,
not dependent on whether or not
the user is a student or teacher

1000 “1000” S-2.2

1.2 PriveledgeLevel Innumerable which defines what
level of access the user has

Userlevel.Teacher Teacher{1} S-2.2

Process Testing

CALCULATION OF GRAVITATIONAL POTENTIAL

To be a suitable simulation the calculation for the value of gravitational potential should be within 1%,

seeing as there should be no errors within the application except possible rounding errors.

As the actual value is within tolerance of the expected value any discrepancy in the result can be ignored.

CALCULATION OF GRAVITATIONAL FORCE

Like the calculation of gravitational potential the calculation of the gravitational force must be as accurate

as possible to have little to no ramification on the function of the rest of the program.

Expected Value Tolerance Actual Value Actual Difference Pass/Fail Evidence in
appendix

6.26 ∗ 106 ±1% 6.251 ∗ 106 0.144% Pass P-1.1

101

As the actual value is within the tolerance region the calculation is proved to be correct.

SUMMATION OF FORCES

For the summation of forces to be accurate both the calculation of the gravitational force and the

calculation of the horizontal and vertical components of the force, summing these individual components

respectively and then recombining the force to a magnitude and direction.

To accomplish this test two masses can be placed of relative masses 1 and 2. To ensure the correct testing

distance has been used the radius variable in the calculate force function can be fixed to 1000. This means

that the distance can be specified and it is easier to calculate the actual value instead of having to work out

the actual distance between each mass and the testing field point. Which due to the programming methods

used is a complex and time consuming task.

 The value for this is clearly accurate although the actual difference may be greater due to automatic

rounding in the programming environment.

OTHER ALGORITHMIC FUNCTIONS

The other notable algorithms, the recursive elements within the field line function and the compression of

the test mass list, are more easily demonstrated during the testing video, so as a result there is no evidence

of them within this documentation.

VISUAL TESTING

The appropriateness of the simulations visual appearance is vital to its overall effectiveness as a product,

so to show its suitability to the product the following evidence is provided, though it will also be available

within the testing video.

Function description Evidence

Potentials Function P-2.1

Generate Field Line function P-2.2

Test Mass Function P-2.3

Expected Value Tolerance Actual Value Actual Difference Pass/Fail Evidence in
appendix

9.81 N 1% 9.8134 0.347% Pass P-1.2

Expected Value Tolerance Actual Value Actual Difference Pass/Fail Evidence in
appendix

6.67 ∗ 10−11 N 1% 6.67 ∗ 10−11 N <1% Pass P-1.2

102

Storage Testing

Evidence for the correct creation of the database as to the DDL strings contained within the design.

The results should show that the database tables have been correctly created according to the design; with

each table made up of its respective fields that have the correct data type.

Table Evidence in appendix

Students S-1.1

Teachers S-1.2

Results S-1.3

Classes S-1.4

Tests S-1.5

LOCATION TESTING FOR STUDENT REGISTERING

Once a student has registered an account all the information they entered should be input into the

database. It is important that all the information should go into the correct field within the database so

that it can be queried successfully.

Field Entered Value

Usercode Generated by the system (10003)

Forename Albert

Surname Einstein

Email AE@genius.net

Password Relative

Date Joined Generated by the system (10/03/2020)

Criteria Expected Field Expected Data
type

Actual Field Actual Data type Evidence in
appendix

Usercode Students.StudentCode Integer StudentCode Number S-2.1

Forename Students.forename Varchar forename Short text S-2.1

Surname Students.Surname Varchar Surname Short text S-2.1

Email Students.Email Varchar Email Short text S-2.1

Password Students.password Varchar password Short text S-2.1

Date Joined Students.DataJoined Date DataJoined Date/Time S-2.1

The evidence should show that each of the entered values has been correctly placed within the database.

103

LOCATION TESTING FOR TEACHER REGISTERING

Field Entered Value

Usercode Generated by the system (1002)

Forename Phillip

Surname Fender

Email PF@godalming.ac.uk

Password PhysicsChallenge

Classcode Generated by the system (2)

Criteria Expected Field Expected
Data type

Actual Field Actual
Data type

Evidence
in
appendix

Usercode Teachers.TeacherCode Integer Teachers.TeacherCode Number S-2.2

Usercode Classes.TeacherCode Integer Classes.TeacherCode Number S-2.3

Forename Teachers.forename Varchar Teachers.forename Short text S-2.2

Surname Teachers.Surname Varchar Teachers.Surname Short text S-2.2

Email Teachers.Email Varchar Teachers.Email Short text S-2.2

Password Teachers.password Varchar Teachers.password Short text S-2.2

Classcode Classes.Classcode Integer Classes.Classcode Number S-2.3

Like before it is important that the data is correctly entered into the database so that it can be successfully

queried at a later date. All the data should be normalised to fulfil the requirements.

104

Requirements Testing

SIMULATION/MODEL REQUIREMENTS

Below is a summary of the pre-defined system requirements for the simulation aspect of the product along

with a statement saying if the requirement has been met.

Requirement Summary Requirement met? (Pass/Fail)

1.0 Is the simulation easily useable? Pass

1.1 The interface should well designed and organised logically Pass

1.2 The interface controls should be suitably named Pass

1.3 There should be a brief descriptions of the controls function Pass

1.4 Any inputs must be limited so that a system failure is avoided Pass

2.0 The visualisation should be understandable Pass

2.1 Model should be clear and its visualisation should be quickly
understandable.

Pass

2.2 Gravitational field strength must be correctly calculated Pass

2.3 Gravitational field strength must be correctly calculated Pass

2.4 The gravitational potential function should work correctly Pass

2.5 The field line function should work correctly Pass

2.6 The test mass function should work correctly Pass

2.7 The model should be of use within a classroom and at home Pass

Some of the above requirements are objective, such as whether or not it is easily useable or if it is

understandable, for these requirements the beta testing results were used to decide the outcome of the

test.

This is a justifiable approach as the system’s usefulness is also defined by how students (like those used for

the beta testing) find the system, and its effectiveness in covering the subject content.

To ensure that the end user was content with the final product I contacted Mr Weston to assess how well

it met the original system requirements.

He commented that he was mostly thrilled with the final product, stating that it was largely simple to use

and had the potential to be very helpful within his tutorials. However he did mention that the functionality

of the measuring tool could be improved along with a few minor graphical details: such as the field lines

produced should technically go to infinity and how close to the masses the equipotential lines weren’t

incredibly clear. Although he continued to say that these issues would not be a problem and the key

messages were transmitted.

105

LEARNING RESOURCE REQUIREMENTS

Requirement Summary Requirement met? (Pass/Fail)

1.0 The resource should be educational and useable at home and
in a classroom

Pass

1.1 The information should cover the entirety of the subject
content.

Pass

 The detail of the information must be sufficient to leave the
students with a strong understanding of the subject.

Pass

2.0 There should be a range of suitable questions to answer Pass

2.1 The questions should have a range of difficulties Pass

2.1.1 All students should be able to answer the easiest questions Pass

2.1.2 The most challenging questions should be testing for the
majority of students

Pass

2.1.3 The questions should prepare student for common exam
question scenarios

Pass

3.0 Is feedback available to the students? Pass

3.1 The students should be able to see the percentage they
achieve on each test.

Pass

3.2 The students should receive a feedback message from their
teacher.

Pass

The requirements for the learning resource will always have an element of objectiveness as the outcome

may vary from user to user depending on the experience they receive. However the results from the beta

testing clearly showed that the learning resource contained a sufficiently broad range of testing and clear

resources for educating the students on the subject content.

DATABASE REQUIREMENTS

Requirement Summary Requirement met? (Pass/Fail)

1.0 Database should be designed logically Pass

1.1 All tables should be normalised Pass

1.1.1 Tables should only contain atomised values Pass

1.1.2 Values stored within the same column should be similar Pass

1.1.3 Columns should be appropriately named Pass

1.1.4 The order in which data should not matter Pass

1.2 All stored data should be useful Pass

2.0 The system must be able to interact with the database Pass

2.1 The database must be created correctly Pass

2.1.1 Each table must be created with the correct name Pass

2.1.2 Each table must be created with the correct number of fields Pass

2.1.3 All key fields must be defined Pass

2.1.4 Each field must be correctly named Pass

2.1.5 Each field must have the correct data type Pass

2.2 The database should be able to store all necessary values Pass

106

2.2.1 When an account is created the details must be stored Pass

2.2.2 When a student’s class code is changed the alteration must
be made to the database

Pass

2.2.3 When a teacher adds a students work the results table should
be correctly updated.

Pass

2.2.4 When a teacher adjusts a students feedback the changed
must be updated

Pass

2.3 The database must be able to answer a range of queries Pass

2.3.1 Data required to fill controls in the system must be gathered Pass

2.3.2 Teachers must be able to view the feedback they have left
students in their class

Pass

2.3.3 Teachers must be able to view and alter the data involving
students within their class

Pass

It is essential to the function of large portions of the system that not only the database is created correctly

but that the database can perform a range of SQL commands.

For these SQL commands it is imperative that all tables and fields are created accurately to the design with

the correct identifiers and data types, otherwise multiple errors will be encountered when attempting to

query fields that do not exist or input/read data of the wrong data type. For the robustness of the system

these requirements must be met.

107

Beta Testing

Results from Beta Testing Questionnaires

Did you encounter any issues with the product?

During the beta testing a few minor issues were found relating to the overall performance of the product.

Such issues include:

• getting some notifications multiple times (receiving the same message box multiple times).

• The simulation becoming slow after an extended period of use.

While neither of these issues are massive issues to improve the products ease of use they should be fixed

or a method should be changed to avoid the issue occurring.

To what extent was the product easy to use?

Evidently with a product of such size with its numerous different components each aspect should be easy

to use and be instantly understandable.

With this said it was found that students and teachers found certain aspects easier to use than others. By

common consensus it was found that the beta testers found the simulation easiest to use. Although it

should be noted that the results of the beta testing questionnaire show that the ease of use of the product

was found to be average to above average.

How beneficial was the simulation to your (students) understanding of gravitational potential?

From the brief amount of time the students were able to utilise the system it would appear that it is indeed

beneficial to understanding the concept of gravitational potential gravitational fields in general.

It may prove useful to expand the research into this question with a wider sample as the students used had

already studied gravitational fields due to the stage of their learning, however it was stated that they

thought the diagrams were accurate and helpful. This means that it is likely that the product would be

beneficial to developing the understanding of gravitational fields.

Would you use a resource such as this within lessons?

Response to this question was very mixed with a roughly equal amount of responses saying yes and no.

This shows that as roughly half the users agreed that it would be of use within lessons that it would be of

benefit to teachers and students as it is a relevant result representative of a strong proportion of the

population. While for the students who said they wouldn’t use it as a resource it may still benefit their

understanding of the topic

How easy were the accounts and results page to use?

This question had a larger range of answers averaging around the average mark, with a few below averages

and above averages. This shows that the system is passable could be improved leading to a development

in the product.

How easy was it to access results?

108

The students generally agreed it was very easy to access their results, and as the system simply displays all

the students results this is the only real acceptable state.

On the other hand the teachers feedback, while positive, pointed out some difficulties where the

instructions had not been clear or a wanted to query by both a student and a test and was unable to, while

by design this could be a possible improvement.

Was there a suitable range of questions?

It was clear from the beta testing that there is indeed a suitable range of range of questions available. This

definitively positive response showed that the questions available are suitable to the students

requirements and the subjects specification. However the quantity of questions could always be increased

to improve the diversity of questions available.

What improvements, if any, would you like to see implemented?

A few comments related to the overall performance of the product with the small number of issues found

being fixed. Other than this there were a few requests for further developments such as a gravitational

collapse simulation, or the large masses attracting each other, or more ways to query the database for

information.

User feedback

The user feedback from the initial testing was overwhelmingly positive. With the students pleasantly

surprised at the effectiveness of the simulation. The response to the visualisations were positive and

excited the students into exploring and testing the bounds of the system.

Particularly positive functions included the gravitational potential mapping where the visualisation of

equipotential lines was greatly appreciated (although if the screen is overpopulated with large masses then

it causes a poor visual, as the screen is filled with red. While not an error and the system is still working it

may be a future improvement to add scaling elements in order to make these circumstances possible to

clearly visualise). However this would also make the program harder to use in normal situations as the

masses would no longer have the same effect after the scaling parameters have been added.

Another popular function was the test mass function where the movement of the masses was found to be

interesting. Quickly the students had discovered that the masses could be forced into an orbit if correctly

placed in a multi mass system or the challenge of finding a Lagrangian point – where the resultant

gravitational force is 0N and the test mass would hover in place.

In reality the gravitational field lines would in fact stretch out towards infinity, however due to the recursive

process used without a geometrically increasing scaling factor this would be a challenge to implement, and

it does not affect the system as it just shows that beyond that point the gravitational force is negligible.

109

Evaluation
To assess the successfulness of my solution it is important to evaluate how well it meets the specified

requirements set at the beginning of the project. As seen in the requirements testing the program meets

all the requirements in some aspects but do varying degrees, and it is that degree of success that I plan to

discuss here.

As normal it is practical to split the solution up into its three separate parts; the simulation, the learning

resource and the database back end. Firstly focusing on the simulation I would define this as the strongest

success. With most requirements being comfortably met. The visualisations are clear and effective and

while there is some scope for improvement these are only minor fine tunings, with the possible exception

of the measuring tool.

This evaluation is supported by the results of the alpha and beta testing. From the alpha testing all the

calculations that create the data required to produce all the visual outputs are accurate to within 1%, which

covers the uncertainties from rounding errors. Positive feedback from the beta testing showed that the

simulation aspect was clearly working well, a few requests for minor improvements or changes were left

but no users found any error of large significance. The suggested improvements included some of the

points I have already outlined such as the measuring tool; which I would like to rework given time, and in

the case where the screen is overpopulated with large masses in close proximity then the visualisations

produced are sometimes poor. However, there is no real fix for this as the user can continuously add

masses and it is under the users control, so the only real solution is to limit how many masses a user can

place.

If given the opportunity I would have liked to rework the measuring function to better emulate some of

the other similar resources explored within the research where it is possible to measure the difference in

potential between two points. In these cases, there is a specific drag and drop tool for this which makes

use easy and entertaining. However, in these cases this tool forms a large part of the product and is

essential to the use. In revisiting the project, it may be an idea to define the simulation as a class instead

of a module, but this would require a large amount of refactoring of code, and I believe that for this purpose

a module was better suited. In hindsight, I also believe I made the correct decision to calculate the field

lines recursively as if I were to brute force them and select specific lines the simulation would take

considerably longer to run. Though if it is possible I would like to find a proper way to calculate the

equipotential lines instead of just grouping together potentials by magnitude and displaying them, which

may solve the issues experienced close to a mass; where the equipotential lines become disjointed.

However, this method would likely require higher levels of physics to implement and a physics engine to

run.

As previously mentioned, Mr Wester was able to give feedback on the simulation and was ecstatic about

how quick and easy it was to use, after a few minutes practice and exploring he was able to quickly set up

a large multitude of interesting systems. He believed that the simulation strongly met the requirements it

had been set and ‘definitely could be used within a classroom. He did mention that it would be nice if the

system was scalable and it was possible to change the scale so that larger systems could be made though

it is not essential to the use of the program. This inclusion could be furthered by adding in velocities for

each mass so that the model was able to simulation solar systems, however this alteration would

undoubtedly make the program harder and slower to use as more details have to be set up before a

simulation could be run. Which while may improve its usefulness in an all-day demonstration at a science

exhibition, would make the program more cumbersome and less suited to a learning environment. One

110

thing that he would have liked to see is a visualisation of the potential wells from a side on view, which

could be created given further time and was not specified within the requirements.

An area that I would consider reworking to a large degree is the learning resource, while it does meet its

requirements and given the time frame is more suited to the client’s needs I believe that a more

comprehensive system may have had these aspects more implemented. With endless practice questions

and answers generated by the system and the ability for the students to answer the tests online, reducing

the environmental impact of each student printing multiple sheets of paper. This may also result in easing

a teacher’s workload as the system could mark the tests, meaning the teacher would only have to add

some feedback.

From the testing results it has been ascertained that the resources supplied and the practice questions

available are helpful and relevant to the course. Both resources supplying a good level of detail and leaving

the students with a thorough understanding spanning the breadth of the subject.

During my Mr Wester’s use of the final product he was able to explore the available lessons and question

resources. By chance Mr Wester occasionally uses some of the same resources within his lessons, giving

praise to khan academy and some of the YouTube videos attached. Suggesting that this product would

enable him to spend less time using them within his lessons and enable him to show students some other

important demonstrations. The large array of questions available on the system are straight form the AQA

exam specification so they are completely relevant to the course, and the large volume available meant

that all common exam scenarios that Mr Wester was aware of were covered.

While not given direct access to the database, during his time with the system Mr Wester was able to

formulate several queries on a temporary account. Seemingly pleased with the opportunity to move more

of the current system online and improving its organisation. He said that he was frustrated with having the

keep note of which students had handed in what work and that it may be helpful to see which students

had not completed the homework instead of just those who had. But other than that he did not have any

other methods of querying results that he would add. This positive feedback of the results was reflected in

the beta testing as no users struggled to use the system, finding little fault with the login services, results

page and the teacher’s version of the test page.

The more important aspect of the database is the database itself, which strongly meets all the

requirements specified in the design. With the database being correctly created with all field correctly

named and of the data type required, it is fully normalised and has protection against common forms of

fault for robustness. As a result, it can only be said that the database has been successful in meeting its

requirements. However due to the system it is currently impossible to have multiple classes for one

teacher, even though it is technically possible within the database and this capability should be included.

111

Appendix

Testing Video

To demonstrate parts of the programme screen captures have been used to show it is functioning correctly,

this evidence has been uploaded to the following playlist on Youtube.

https://www.youtube.com/playlist?list=PLHRLrlINrSQ-bce32fnUhFbC1qGJw2FM0

Input testing

Index Screenshot

I-1.1 Validation of password

(The usercode message is a success as it means the account has been created)

I-1.2 Validation of email, returns true if valid, false if not

https://www.youtube.com/playlist?list=PLHRLrlINrSQ-bce32fnUhFbC1qGJw2FM0

112

I-1.3

I-1.4

113

I-1.5

I-2.1 While not quite exactly the same as the expected results they are all equivalent so the test is passed

I-2.2

114

Process Testing

Index Screenshot

P-1.1 Runtime watch of the Calculate Potential Function to ensure it is outputting the correct value

P-1.2 Runtime watch of the calculate force function to ensure correctness. Note, mass 2 is assumed to be 1kg in

the formula.

P-1.3 Test for the summation of gravitational force

115

Note that the field direction is angled at 3.1415 radians to the horizontal which is approximately horizontal
to the right. Which is consistent with how the masses were oriented. (size is proportional to mass)

P-2.1 The screenshots of the programme should be vaguely similar to the following examples,

116

117

P-2.2 Like previous the screenshots should be close to these examples

118

P-2.3

119

Storage Testing

Index Screenshot

S-1.1

S-1.2

S-1.2

S-1.3

S-1.4

S-2.1 Screen clipping of students table after data added

S-2.2 Screen clipping of the teacher table after data added

120

S-2.3 Screen clipping of the classes table after teacher data added

