
Bonus Reference

VB.NET Functions and
Statements
This bonus reference describes the functions and statements that are supported by Visual
Basic .NET, grouped by category. When you’re searching for the statement to open a file, you
probably want to locate all file I/O commands in one place. This is exactly how this reference is
organized. Moreover, by grouping all related functions and statements in one place, I can present
examples that combine more than one function or statement.

The majority of the functions are the same as in VB6. One difference is that many of the VB6
statements are implemented as functions in VB.NET. Moreover, many VB6 functions have an
equivalent method in a Framework class. VB programmers are so accustomed to the old func-
tions that they will not consider the alternatives—at least for a while. The Len() function of VB6
returns the length of a string. In VB.NET you can retrieve the length of a string with the Length
method of a string variable. If strVar is declared as string variable, you can retrieve its length by
calling the Length method:

Dim strVar As String = “a short string”
Console.WriteLine(“The string contains “ & strVar.Length & “ characters”)

Or you can call the Len() function passing the name of the string as argument:

Dim strVar As String = “a short string”
Console.WriteLine(“The string contains “ & Len(strVar) & “ characters”)

Most of the built-in functions are VB6 functions, and they accept optional arguments.
VB.NET uses overloaded forms of the same function, and this is an important difference you
have to keep in mind as you work with the built-in functions. If you omit an optional argument,
you must still insert the comma to indicate that an argument is missing. Optional arguments are
enclosed in square brackets. The Mid() function, for example, extracts a number of characters
from a string, and its syntax is

newString = Mid(string[, start][, length])

The starting location of the characters to be extracted is specified by the start argument, and the
number of characters to be extracted is length. If you omit the start argument, the extraction starts
with the first character in the string. If you omit the length argument, all the characters from the

specified position to the end of the string are extracted. The only mandatory argument is the first one,
which is the string from which the characters will be extracted, and this argument can’t be omitted.

The methods of the various classes are discussed in detail in the book. This bonus reference con-
tains all the functions supported by VB.NET, and these functions are listed by category in Table 1.
Items in the table that are not followed by parentheses are statements and are also described in this
reference.

Table 1: VB.NET Functions by Type

Type Functions

Input/Output InputBox(), MsgBox()

File and Folder Manipulation ChDir(), ChDrive(), CurDir(), Dir(), FileCopy(), FileDateTime(), FileLen,
GetAttr(), Kill, MkDir(), Rename(), RmDir(), SetAttr()

Data Type Identification IsArray(), IsDate(), IsDBNull(), IsNothing() IsNumeric(), IsReference,
TypeName(), VarType()

Variable Type Conversion CBool(), CByte(), CChar(), CDate(), CDbl(), CDec(), CInt(), CLng(), CObj(),
CShort(), CSng(), CStr(), CType()

String Manipulation Asc(), AscW(), Chr(), ChrW(), Filter(), InStr(), InStrRev(), Join(), LCase(),
Left(), Len(), LTrim(), Mid(), Mid, Replace(), Right(), RTrim(), Space(),
Split(), StrComp(), StrConv(), StrDup(), StrReverse(), Trim(), UCase()

Data Formatting Format(), FormatCurrency(), FormatDateTime(), FormatNumber(),
FormatPercent(), LSet(), RSet(), Str(), Val()

Math Abs(), Atan(), Cos(), Exp(), Fix(), Hex(), Int(), Log(), Oct(), Pow(),
Round(), Sin(), Sqrt(), Tan()

Date and Time DateAdd(), DateDiff(), DatePart(), DateSerial(), DateValue(), Day(),
Hour(), Minute(), Month(), MonthName(), Now(), Second(),
TimeSerial(), TimeValue(), Weekday(), WeekdayName(), Year()

Financial DDB(), FV(), IPmt(), IRR(), MIRR(), NPer(), NPV(), Pmt(), PPmt(), PV(),
Rate(), SLN(), SYD()

File I/O EOF(), FileAttr(), FileClose(), FileOpen(), FileGet(), FilePut(), FreeFile(),
Input(), LineInput(), Loc(), Lock(), LOF(), Print(), PrintLine(), Reset(),
Seek(), Unlock(), Width(), Write(), WriteLine()

Random Numbers Rnd(), Randomize

Graphics QBColor(), RGB()

Registry DeleteSetting(), GetAllSettings(), GetSetting(), SaveSetting()

Application Collaboration AppActivate(), Shell()

Miscellaneous Beep, CallByName(), Choose(), Environ(), IIf(), Option, Switch()

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF2

These functions and statements are described in the following sections, along with examples. The
entries are not discussed alphabetically within each category. I start with the simpler ones so that I
can present examples that combine more than one function and/or statement.

Input/Output
Visual Basic provides two basic functions for displaying (or requesting) information to the user:
MsgBox() and InputBox(). Windows applications should communicate with the user via nicely
designed forms, but the MsgBox() and InputBox() functions are still around and quite useful.

InputBox(prompt[, title][, default][, xpos][, ypos])
The InputBox() function displays a dialog box with a prompt and a TextBox control and waits for
the user to enter some text and click the OK or Cancel button. The arguments of the InputBox()
function are shown in Table 2.

Table 2: Arguments of the InputBox() Function

Argument What It Is Description

prompt The prompt that appears in the dialog box If necessary, the prompt is broken into multiple
lines automatically. To control line breaks from
within your code, use a carriage return charac-
ter or a linefeed character (vbCr, vbLf).

title The title of the dialog box If you omit this argument, the application’s
name is displayed as the title.

default The default input (if any) If you anticipate the user’s response, use this
argument to display it when the dialog box is
first opened.

xpos, ypos Expressed in twips.

The simplest format of the InputBox() function is as follows:

SSN = InputBox(“Please enter your social security number”)

The string that the user enters in the dialog box is assigned to the variable SSN. The return value
is always a string, even if the user enters numeric information. When prompting for input with the
InputBox() function, always check the value returned by the function. At the very least, check for a
blank string. Use the IsNumeric() function if you expect the user to enter a number, use the IsDate()
function if you expect the user to enter a date, and so on.

BDay = InputBox(“Please enter your birth date”)
If IsDate(BDay) Then

MsgBox(“Preparing your horoscope”)
Else

MsgBox(“Please try again with a valid birth date”)
End If

The coordinates of the top-left corner of the
dialog box

chF3INPUT/OUTPUT

MsgBox(prompt[, buttons][, title])
The MsgBox() function displays a dialog box with a message and waits for the user to close it by
clicking a button. The message is the first argument (prompt). The simplest form of the MsgBox()
function is as follows:

MsgBox(“Your computer is running out of memory!”)

This function displays a message in a dialog box that has an OK button. The MsgBox() function
can display other buttons and/or an icon in the dialog box and return a numeric value, depending on
which button was clicked. Table 3 summarizes the values for the buttons argument.

Table 3: The MsgBoxStyle Enumeration

Constant Value Description

Button Values

OKOnly 0 Displays OK button only.

OKCancel 1 Displays OK and Cancel buttons.

AbortRetryIgnore 2 Displays Abort, Retry, and Ignore buttons.

YesNoCancel 3 Displays Yes, No, and Cancel buttons.

YesNo 4 Displays Yes and No buttons.

RetryCancel 5 Displays Retry and Cancel buttons.

Icon Values

Critical 16 Displays Critical Message icon.

Question 32 Displays Warning Query icon.

Exclamation 48 Displays Warning Message icon.

Information 64 Displays Information Message icon.

Default Button

DefaultButton1 0 First button is default.

DefaultButton2 256 Second button is default.

DefaultButton3 512 Third button is default.

DefaultButton4 768 Fourth button is default.

Modality

ApplicationModal 0 The user must respond to the message box before switch-
ing to any of the Forms of the current application.

SystemModal 4096 All applications are suspended until the user responds to
the message box.

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF4

Button values determine which buttons appear in the dialog box. Notice that you can’t choose
which individual buttons to display; you can only choose groups of buttons.

Icon values determine an optional icon you can display in the dialog box. These are the common
icons used throughout the Windows user interface to notify the user about an unusual or excep-
tional event.

Default button values determine which button is the default one; pressing Enter activates this but-
ton. The constants ApplicationModal and SystemModal determine whether the message box is modal.

To combine any of these settings into a single value, simply add their values.
Finally, the MsgBox() function returns an integer, which indicates the button pressed, according

to Table 4.

Table 4: The MsgBoxResult Enumeration

Constant Value

OK 1

Cancel 2

Abort 3

Retry 4

Ignore 5

Yes 6

No 7

To display a dialog box with the OK and Cancel buttons and the Warning Message icon, add the
values MsgBoxStyle.Exclamation and MsgBoxStyle.OKCancel as follows:

cont = MsgBox(“This operation may take several minutes”, _
MsgBoxStyle.Exclamation + MsgBoxStyle.OKCancel)

The value returned by the MsgBox() function is a member of the MsgBoxResult enumeration,
which is shown in Table 4. Your program continues with the operation if the value of cont is
MsgBoxResult.OK.

To display a dialog box with the Yes and No buttons and the Critical Message icon, add the val-
ues 4 and 16 as follows:

cont = MsgBox(“Incomplete data. Would you like to retry?”, _
MsgBoxStyle.YesNo + MsgBoxStyle.Critical)

If cont = MsgBoxResult.Yes Then ‘ user clicked Yes
{ prompt again }

Else ‘ user clicked No
{ exit procedure }

Endif

chF5INPUT/OUTPUT

File and Folder Manipulation
The following Visual Basic functions manipulate files and folders (move and rename files, create
new folders and delete existing ones, and so on). The functions discussed in this section do not
manipulate the contents of the files. Most of them are equivalent to the members of the File and
Directory objects, discussed in Chapter 13. They are also equivalent to the basic DOS commands
for manipulating files and folders.

GetAttr(pathname)
This function returns an integer (a member of the FileAttribute enumeration) representing the
attributes of a file, directory, or folder, according to Table 5.

Table 5: The FileAttribute Enumeration

Constant Value Attribute

Normal 0 Normal

ReadOnly 1 Read-only

Hidden 2 Hidden

System 4 System

Volume 8 Volume label

Directory 16 Directory or folder

Archive 32 File has changed since last backup

To determine which attributes are set, use the AND operator to perform a bitwise comparison of
the value returned by the GetAttr() function and the value of one or more attributes. If the result is
not zero, that attribute is set for the named file. For example, to find out if a file is read-only, use a
statement such as the following:

Result = GetAttr(FName) And FileAttribute.ReadOnly

If the file Fname has its read-only attribute set, Result will be 1. If not, Result will be 0, regardless of
the values of any other attributes. To find out whether a file has its archive attribute set, then the
statement

Result = GetAttr(FName) And FileAttribute.Archive

will assign the value 32 to the Result variable.
If the file has both its archive and read-only attributes set, the GetAttr() function will return the

value 33. However, you must AND this value with the appropriate constant to find out whether a
certain attribute is set.

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF6

SetAttr(pathname, attributes)
The SetAttr() function sets the attributes of a file. The argument pathname is the path name of an
existing file and attributes is a numeric value that specifies one or more attributes. To set an attribute
without affecting any existing attributes, use a statement like

SetAttr(pathname, GetAttr(file_name) Or new_attribute)

The new_attribute argument can have any of the values shown in Table 5 in the preceding section.
To change multiple attributes, combine the corresponding values with the logical OR operator.

Notice that the statement

SetAttr(file_name, new_attribute)

will turn on a specific attribute, but it will clear all other attributes. If a file is read-only and hidden,
its Attributes property is 3 (1 + 2 according to Table 5). If you attempt to turn on the Archive
attribute by setting its Attributes property to 32, the other two attributes will be cleared. By combin-
ing the new attribute (32) and the existing attributes with the OR operator, the file will be read-
only, hidden, and archive.

To remove a specific attribute, first find out whether this attribute is already set, and then sub-
tract its value from the value returned by the GetAttr() function. To remove the Hidden attribute,
use a structure such as the following:

If GetAttr(file_name) And FileAttribute.Hidden Then
SetAttr(file_name, GetAttr(file_name) – FileAttribute.Hidden)

End If

You can also use the MsgBox() function to prompt the user to change the read-only attribute:

If GetAttr(file_name) And FileAttribute.ReadOnly Then
reply = MsgBox(“This is a read-only file. Delete it anyway?”, _

MsgBoxStyle.YesNo)
If reply = MsgBoxResult.Yes Then

SetAttr(file_name, GetAttr(file_name) - FileAttribute.ReadOnly)
Kill(file_name)

End If
Else

Kill(file_name)
End If

You can also use the XOR operator to reset an attribute. The call to the SetAttr() function can
also be written as follows (the two methods of resetting an attribute are equivalent):

SetAttr(file_name, GetAttr(file_name) Xor FileAttribute.ReadOnly)

Kill(pathname)
The Kill() function deletes the specified file permanently from the hard disk. The argument
pathname specifies one or more file names to be deleted. The Kill() function supports the use of

chF7FILE AND FOLDER MANIPULATION

multiple-character (*) and single-character (?) wildcards to specify multiple files. If the specified file
does not exist, a runtime error is generated. The Kill() function is frequently used as follows:

Try
Kill(“C:\RESUME.OLD”)

Catch exc As Exception
End Try

The error handler prevents the runtime error that would occur if the specified file doesn’t exist or
can’t be deleted, and the program continues with the execution of the following statement.

The Kill() function does not move the specified file to the Recycle Bin; it permanently deletes the
file from the disk. If you move the file to the Recycle Bin with the FileCopy() function, the file will
appear in the Recycle Bin’s window, but you won’t be able to restore it.

FileDateTime(pathname)
This function returns the date and time when a file was created or last modified. The following
statement:

Console.WriteLine(FileDateTime(“myDocument.txt”))

returns a date/time value such as “21/11/01 14:13:02 PM”.

FileLen(pathname)
The FileLen() function returns a long integer value indicating the file’s length in bytes. The file
whose length you want to find out is passed as an argument to the function. The statement

MsgBox(“The file contains” & FileLen(“.\docs\myDocument.txt”) & “ bytes”)

displays the length of the specified file in a message box.
The FileLen() function is different from the LOF() function, which returns the length of a file

that has already been opened. See the description of the LOF() function in the section “File I/O.”

MkDir(path)
The MkDir() function creates a new folder (directory). The path argument can be the full path of the
new folder, or just a folder name, in which case a new folder is created under the current folder. The
statement:

MkDir(“C:\Users\New User”)

will create the New User folder under C:\Users, but only if the parent folder exists already. If
C:\Users doesn’t already exist, you must call the MkDir() function twice, to create two folders, as
shown next:

MkDir(“C:\Users”)
MkDir(“C:\Users\New User”)

Alternatively, you can switch to the parent folder and then create the subfolder:

ChDrive(“C:\”)
ChDir(“C:\”)

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF8

MkDir(“Users”)
ChDir(“Users”)
MkDir(“New User”)

You should also use the appropriate error-trapping code, because if a folder you attempt to create
exists already, a runtime error will occur.

RmDir(path)
The RmDir() function deletes a folder (directory), specified by the path argument. The argument
can’t contain wildcard characters (in other words, you can’t remove multiple folders with a single call
to the RmDir() function). Moreover, the folder must be empty; if not, a runtime error will occur.
To remove a folder containing files, use the Kill() function to delete the files first. In addition, you
must remove all subfolders of a given folder before you can remove the parent folder.

The statement:

RmDir(“C:\Users”)

will generate an error message. You must first remove the subfolder, then the parent folder:

RmDir(“C:\Users\New User”)
RmDir(“C:\Users”)

ChDir(path)
The ChDir() function changes the current folder (directory). If your application opens many disk
files, you can either specify the path name of each file, or switch to the folder where the files reside
and use their names only.

To switch to the folder C:\Windows, use the statement:

ChDir(“C:\Windows”)

If the argument of the ChDir() function doesn’t include a drive name, then ChDir() will attempt
to switch to the specified folder on the current drive. If no such folder exists, then the current folder
won’t change and a runtime error will be raised.

The ChDir() function changes the current folder but not the current drive. For example, if the
current drive is C:, the following statement changes the current folder to another folder on drive D:, but
C: remains the current drive:

ChDir “D:\TMP”

To change the current drive, use the ChDrive() function, described next.
You can also use relative folder names. The statement

ChDir(“..”)

takes you to the parent folder of the current folder, while the statement

ChDir(“..\MyFiles”)

takes you to the MyFiles folder of the parent folder (both the current folder and MyFiles are sub-
folders of the same folder).

chF9FILE AND FOLDER MANIPULATION

ChDrive(drive)
The ChDrive() function changes the current drive. The drive argument must be the name of an exist-
ing drive. If the drive argument is a multiple-character string, ChDrive() uses only the first letter.

CurDir([drive])
The CurDir() function, when called without an argument, returns the name of the current folder in
the current drive. To find out the current folder on another drive, supply the drive’s name as argu-
ment. If you’re in a folder of the C: drive, the function

CDir = CurDir()

returns the current folder on the current drive. To find out the current folder on drive D:, call the
function CurDir() as follows:

DDir = CurDir(“D”)

Dir([pathname[, attributes]])
The Dir() function accepts two optional arguments and returns a string with the name of a file or
folder that matches the specified pathname or file attribute(s).

If you specify the first argument, which supports wildcard characters, Dir() will return the name
of the file or folder that matches the specification. If no file or folder matched the specification, an
empty string is returned (“”). The second argument is a numeric value, which specifies one or more
attributes, from the enumeration shown in Table 5 earlier in this reference. If the second argument is
omitted, only normal files (files without attributes) are returned.

A common use of the Dir() function is to check whether a specific file or folder exists. The
statement:

OCXFile = Dir(“C:\WINDOWS\SYSTEM\MSCOMCTL.OCX”)

will return “MSCOMCTL.OCX” if the specified file exists, an empty string otherwise.
To find out how many DLL files exist in your WinNT\System folder, you must specify a wildcard

specification and call the Dir() function repeatedly:

Dim DLLFile As String
Dim DLLFiles As Integer
DLLFile = Dir(“C:\WINNT\SYSTEM*.DLL”)
If DLLFile <> “” Then DLLFiles = DLLFiles + 1
While DLLFile <> “”

DLLFile = Dir()
DLLFiles = DLLFiles + 1

End While
MsgBox(DLLFiles)

The Dir() function is called for the first time with an argument. If a DLL file is found, its name
is returned. Then the function is called repeatedly, this time without arguments. Each time it returns
the name of the next DLL file, until all DLL files that match the original specification are exhausted.
After the loop, the variable DLLFiles contains the number of DLL files in the \WinNT\System folder.
(There should be two dozen DLL files there, even on a bare-bones system.)

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF10

If you want to find out whether there are any hidden DLL files in the \WinNT\System folder, sup-
ply the attributes arguments to the Dir() function:

HiddenFile = Dir(“C:\WINNT\SYSTEM*.DLL”, FileAttribute.Hidden)

You can also combine multiple attributes by adding the corresponding constants.
To list all the subfolders in a given folder, you must specify the FileAttribute.Directory attrib-

ute, which returns folder names as well as the names of the normal files. To check whether an entry
is a folder or a file, you must also examine its attributes with the GetAttr() function. The following
loop counts the subfolders of the System folder.

Dim path, FName As String
Dim totFolders As Integer
path = “C:\”
FName = Dir(path, FileAttribute.Directory)
While FName <> “”

If (GetAttr(path & FName) And FileAttribute.Directory) = _
FileAttribute.Directory Then

Console.WriteLine(FName)
totFolders = totFolders + 1

End If
FName = Dir()

End While
Console.WriteLine(“Found “ & totFolders & “ folders”)

If you run this code segment, you’ll see a list of folder names followed by the total number of
folders under the specified folder.

FileCopy(source_file, dest_file)
The FileCopy() function copies a file to a new location on the hard disk. source_file is the name of the
file to be copied. If the file is in the current folder, then you can specify its name only. Otherwise, you
must specify the file’s path name. The dest_file argument specifies the target file name and may include a
folder and drive name. Notice that the file can’t be copied if an application is using it at the time.

To copy the file C:\VBMaterial\Examples\Files.txt to D:\MasteringVB\Files.txt, use the fol-
lowing statements:

source = “C:\VBMaterial\Examples\Files.txt”
destination = “D:\MasteringVB\Files.txt”
FileCopy(source, destination)

The FileCopy() function does not allow wildcard characters. In other words, you can’t use this
function to copy multiple files at once.

Rename(oldpath, newpath)
The Rename() function renames a disk file or folder. The existing file’s or folder’s name is specified
by the oldpath argument, and the new name is specified with the newpath argument. The path specified by
the newpath argument should not exist already. The statement

Rename(“C:\Users”, “C:\All Users”)

chF11FILE AND FOLDER MANIPULATION

will rename the folder C:\Users to C:\All Users. The folder will be renamed even if it contains sub-
folders and/or files. If you attempt to rename two nested folders at once with a statement like the
following one:

Rename(“C:\Users\New User”, “C:\All Users\User1”)

a runtime error will be generated. Rename them one at a time (it doesn’t make any difference which
one is renamed first).

The Rename() function can rename a file and move it to a different directory or folder, if nec-
essary. However, it can’t move a folder (with or without its subfolders and files). If the folder D:\New
User folder exists, the following statement will move the file UserProfile.cps to the folder New User
on the D: drive and rename it as well:

Rename(“C:\AllUsers\User1\Profile1.cps”, “D:\New User\UserProfile.cps”)

If the folder D:\New User does not exist, it will not be created automatically. You must first cre-
ate it, then move the file there. The Rename() function cannot create a new folder.

Notice that the Rename() function can not act on an open file. You must first close it, then
rename it. Like most file- and folder-manipulation statements of Visual Basic, the Rename func-
tion’s arguments don’t recognize wildcards.

Data Type Identification
The functions in this section merely identify a data type. To change data types, use the functions in
the following section, “Variable Type Conversion.”

IsArray(variable)
This function returns True if its argument is an array. If the variable names has been defined as

Dim names(100)

then the function

IsArray(names)

returns True.

IsDate(expression)
This function returns True if expression is a valid date. Use the IsDate() function to validate user data.
Dates can be specified in various formats, and validating them without the help of the IsDate() func-
tion would be a task on its own.

BDate = InputBox(“Please enter your birth date”)
If IsDate(BDate) Then

MsgBox “Date accepted”
End If

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF12

IsDBNull(expression)
This function returns True if expression is DBNull. A DBNull value is a nonvalid value and is differ-
ent from the Nothing value. The DBNull value represents missing or nonexistent data.

IsNothing(expression)
This function returns a Boolean (True/False) value indicating whether expression represents an object
variable that hasn’t been instantiated yet. Let’s say you’ve declared an object variable with the follow-
ing statements:

Dim obj As Object

After this declaration, the expression IsNothing(obj) is True. Later in your code, you assign an
object to the obj variable with the following statement:

obj = New Rectangle(10, 100, 12, 12)

After the execution of this statement, obj is no longer Nothing. You can set it back to Nothing
explicitly to release the object it references (the Rectangle object):

obj = Nothing

You can also compare an object variable against the Nothing value with the following statement:

If IsNothing(obj) Then
{ code to initialize variable }

End If
{ code to process variable }

You can also use the Is keyword to compare an object variable against the Nothing value:

If obj Is Nothing Then

IsNumeric(expression)
This function returns True if expression is a valid number. Use this function to check the validity of
strings containing numeric data as follows:

age = InputBox(“Please enter your age”)
If Not IsNumeric(age) Then

MsgBox(“Please try again, this time with a valid number”)
End If

IsReference(expression)
This function returns a Boolean (True/False) value indicating whether expression represents an object
variable. To find out the type of object, use the TypeName() or VarType() functions, which are
described next.

chF13DATA TYPE IDENTIFICATION

TypeName(variable_name)
This function returns a string that identifies the variable’s type. The variable whose type you’re
examining with the TypeName function may have been declared implicitly or explicitly. Suppose
you declare the following variables

Dim name As Integer
Dim a

The following statements produce the results shown in bold:

Console.WriteLine(TypeName(name))
Integer

Console.WriteLine(TypeName(a))
Nothing

a = “I’m a string”
Console.WriteLine(TypeName(a))

String

VarType(variable)
The VarType() function returns a member of the VariantType enumeration indicating the type of a
variable, according to Table 6.

Table 6: The VariantType Enumeration

Constant Description

Array Array

Boolean Boolean

Byte Byte

Char Character

Currency Currency

DataObject A data-access object

Date Date

Decimal Decimal

Double Double-precision floating-point number

Empty Empty (uninitialized)

Error Error

Integer Integer

Long Long integer

Null Null (no valid data)

Object Automation object

Short Short integer

Single Single-precision floating-point number

String String

UserDefinedType User-defined type (structure). Each member of the structure has its own type.

Variant Variant (used only with arrays of Variants)

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF14

Variable Type Conversion
These functions convert their numeric argument to the corresponding type. With the introduction
of the Variant data type, these functions are of little use. You can use them to document your code
and show that the result of an operation should be of the particular type, but keep in mind that all
operands in an arithmetic operation are first converted to double-precision numbers for the greatest
possible accuracy. Table 7 lists the variable type conversion functions.

Table 7: Variable Type Conversion Functions

Function Converts Its Argument To

CBool(expression) Boolean (True/False)

CByte(expression) Byte

CChar(expression) Char

CDate(expression) Date

CDec(expression) Decimal

CDbl(expression) Double

CInt(expression) Integer

CLng(expression) Long

CObj(expression) Object

CShort(expression) Short

CSng(expression) Single

CStr(expression) String

CType(expression, type) The type specified

CType(varName, typeName)
This function converts the variable (or expression) specified by the first argument to the type speci-
fied by the second argument. The following statements convert the integer value 1,000 and the
string “1000” to Double values:

CType(1000, System.Double)
CType(“1000”, System.Double)

String Manipulation
The following functions manipulate strings. Visual Basic .NET provides an impressive array of
functions for string manipulation, as the average application spends most of its time operating on
strings, not numbers. This group contains a single statement, the Mid statement, which happens to
have the same name as the Mid() function. All the string-manipulation functions of Visual Basic

chF15STRING MANIPULATION

have an equivalent method (or property) in the System.String class, as well as in the StringBuilder
class, which were described in Chapter 12.

Asc(character), AscW(string)
The Asc() function returns the character code corresponding to the character argument, and it works
on all systems, regardless of whether they support Unicode characters. If you specify a string as argu-
ment to the Asc() function, it will return the character code of the first character in the string.

The AscW() function returns the Unicode character code except on platforms that do not sup-
port Unicode, in which case, the behavior is identical to that of the Asc() function.

If you call either function with a string instead of a character, the character code of the string’s
first character is returned.

Chr(number), ChrW(number)
The Chr() function is the inverse of the Asc() function and returns the character associated with the
specified character code. Use this function to print characters that don’t appear on the keyboard
(such as line feeds or special symbols).

The ChrW() function returns a string containing the Unicode character except on platforms that
don’t support Unicode, in which case, the behavior is identical to that of the Chr() function.

LCase(string), UCase(string)
The LCase() function accepts a string as an argument and converts it to lowercase; the Ucase() func-
tion accepts a string as an argument and converts it to uppercase. After the following statements are
executed:

Title = “Mastering Visual Basic”
LTitle = LCase(Title)
UTitle = UCase(Title)

the variable LTitle contains the string “mastering visual basic”, and the variable UTitle contains the
string “MASTERING VISUAL BASIC”.

InStr([startPos,] string1, string2[, compare])
The InStr() function returns the position of string2 within string1. The first argument, which is
optional, determines where in string1 the search begins. If the startPos argument is omitted, the search
begins at the first character of string1. If you execute the following statements:

str1 = “The quick brown fox jumped over the lazy dog”
str2 = “the”
Pos = Instr(str1, str2)

the variable Pos will have the value 33. If you search for the string “he” by setting:

str2 = “he”

the Pos variable’s value will be 2. If the search begins at the third character in the string, the first
instance of the string “he” after the third character in the original string will be located:

Pos = InStr(3, str1, str2)

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF16

This time the Pos variable will be 34.
The search is by default case-sensitive. To locate “the”, “The”, or “THE” in the string, specify

the last, optional argument, whose value is CompareMethod.Binary (default) for a case-sensitive
search and CompareMethod.Text for a case-insensitive search (Table 8).

Table 8: The CompareMethod Enumeration

Value Description

Binary Performs a binary (case-sensitive) comparison

Text Performs a textual (case-insensitive) comparison

The following statement locates the first occurrence of “the” in the string, regardless of case:

str1 = “The quick brown fox jumped over the lazy dog”
str2 = “the”
Pos = InStr(1, str1, str2, CompareMethod.Text)

The value of Pos will be 1. If you set the last argument to CompareMethod.Binary, the Pos variable
becomes 33.

InStrRev(string1, string2[, start][, compare])
This function returns the position of one string within another as does the InStr() function, but it
starts from the end of the string (hence InStrRev = “in string reverse”). The string1 argument is the
string being searched, and the string2 argument is the string being searched for. The other two argu-
ments are optional. The start argument is the starting position for the search. If it is omitted, the
search begins at the last character. Notice that in this function, the starting location of the search is
the third argument. The compare argument indicates the kind of comparison to be used in locating the
substrings, and its value is one of the members of the CompareMethod enumeration, listed in Table
8 earlier. If compare is omitted, a binary comparison is performed.

StrComp(string1, string2[, compare])
This function compares two strings and returns a value indicating the result, according to Table 9.

Table 9: Values Returned by the StrComp() Function

Value Description

–1 string1 is less than string2.

0 string1 is equal to string2.

1 string1 is greater than string2.

Null string1 and/or string2 is Null.

chF17STRING MANIPULATION

The last argument of the StrComp() function determines whether the comparison will be case-
sensitive. If compare is CompareMethod.Binary (or omitted), the comparison is case-sensitive. If it’s
CompareMethod.Text, the comparison is case-insensitive.

The following function:

StrComp(“Sybex”, “SYBEX”)

returns 1 (“Sybex” is greater than “SYBEX”, because the lowercase y character is after the uppercase
Y in the ASCII sequence). The function

StrComp(“Sybex”, “SYBEX”, CompareMethod.Text)

returns 0.

Left(string, number)
This function returns a number of characters from the beginning of a string. It accepts two argu-
ments: the string and the number of characters to extract. If the string date1 starts with the month
name, the following Left() function can extract the month’s abbreviation from the string, as follows:

date1 = “December 25, 1995”
MonthName = Left(date1, 3)

The value of the MonthName variable after the execution of the statements is “Dec”.

Right(string, number)
This function is similar to the Left() function, except that it returns a number of characters from the
end of a string. The following statements

date1 = “December 25, 1995”
Yr = Right(date1, 4)

assign to the Yr variable the value “1995”.

Mid(string, start, [length])
The Mid() function returns a section of a string of length characters, starting at position start. The fol-
lowing function:

Mid(“09 February, 1957”, 4, 8)

extracts the name of the month from the specified string.
If you omit the length argument, the Mid() function returns all the characters from the starting

position to the end of the string. If the specified length exceeds the number of characters in the
string after the start position, the remaining string from the start location is returned.

Mid(string, start[, length]) = new_string
In addition to the Mid() function, there’s a Mid statement, which does something similar. Instead of
extracting a few characters from a string, the Mid statement replaces a specified number of characters
in a String variable (specified with the first argument, string) with another string (the argument

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF18

new_string). The location and count of characters to be replaced are specified with the arguments start
and length. The last argument is optional. If you omit it, all the characters from the starting character
to the end of the string will be replaced.

If you’re writing code that performs operations with long strings, you should use the String-
Builder class of the .NET Framework. StringBuilder variables are text variables, but the compiler can
handle them much more efficiently than strings. The StringBuilder class is discussed in detail in
Chapter 12.

Len(string)
The Len() function returns the length of a string. After the following statements execute:

Name = InputBox(“Enter your first name”)
NameLen = Len(Name)

the variable NameLen contains the length of the string entered by the user in the input box.
The Len() function is frequently used as a first test for invalid input, as in the following lines:

If Len(Name) = 0 Then
MsgBox (“NAME field can’t be empty”)

Else
MsgBox (“Thank you for registering with us”)

EndIf

The Len() function can accept any base type as argument, and it returns the number of bytes
required to store the variable. The expression

Len(12.01)

will return 8 (by default, floating-point values are stored in Double variables). The expression

Len(12)

will return 4, because integers are stored in 4 bytes.

LTrim(string), RTrim(string), Trim(string)
These functions trim the spaces in front of, after, and on both sides of a string, respectively. They
are frequently used in validating user input. Let’s say you want to make sure that the EMail variable
isn’t empty and you use the following If structure:

If EMail <> “” Then
MsgBox (“Applications without an e-mail address won’t be processed”)

End If

The preceding won’t, however, catch a string that only has spaces. To detect empty strings, use
the Trim() function instead:

If Trim(EMail) = “” Then
MsgBox (“Invalid Entry!”)

End If

chF19STRING MANIPULATION

Space(number)
This function returns a string consisting of the specified number of spaces. The number argument is
the number of spaces you want in the string. This function is useful for formatting output and clear-
ing data in fixed-length strings.

StrDup(number, character)
This function returns a string of number characters, all of which are character. The following function:

StrDup(12, “*”)

returns the string “************”. Use the StrDup() function to create long patterns of special sym-
bols. The StrDup() function replaces the String() function of VB6.

StrConv(string, conversion)
This function returns a string variable converted as specified by the conversion argument, whose values
as shown in Table 10.

Table 10: The vbStrConv Enumeration

Constant Converts

UpperCase The string to uppercase characters

LowerCase he string to lowercase characters

ProperCase The first letter of every word in string to uppercase

Wide Narrow (single-byte) characters in string to wide (double-byte) characters*

Narrow Wide (double-byte) characters in string to narrow (single-byte) characters*

Katakana Hiragana characters in string to Katakana characters*

Hiragana Katakana characters in string to Hiragana characters*

TraditionalChinese Simplified Chineese to traditional Chinese*

SimplifiedChinese Traditional Chinese to simplified Chinese*

*Applies to Far East locales.

To perform multiple conversions, add the corresponding values. To convert a string to lowercase
and to Unicode format, use a statement such as the following:

newString = StrConv(txt, vbStrConv.LowerCase + vbStrConv.Unicode)

StrReverse(string)
This function reverses the character order of its argument. Its syntax is:

StrReverse(string)

where string is a string variable or expression that will be reversed.

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF20

Filter(inputStrings, value[, include][, compare])
This function returns an array containing part of a string array, based on specified filter criteria. The
inputStrings argument is a one-dimensional array of the strings to be searched, and the value argument is
the string to search for. The last two arguments are optional. include indicates whether the function
should contain substrings that include or exclude the specified value. If True, the Filter() function
returns the subset of the array that contains value as a substring. If False, the Filter() function returns
the subset of the array that does not contain value as a substring. The compare argument indicates the
kind of string comparison to be used and can be either of the values (CompareMethod.Binary or
CompareMethod.Text) in Table 8, shown previously in this reference.

The array returned by the Filter() function contains only enough elements to store the number
of matched items. To use the Filter() function, you must declare an array without specifying its
dimensions, which will accept the selected strings. Let’s say you have declared the Names array as
follows:

Dim selNames() As String
Dim Names() As String = {“Abe”, “John”, “John”, “Ruth”, “Pat”}

You can find out if the name stored in the variable myName is in the Names array by calling the
Filter() function as follows:

selNames = Filter(Names, myName)

If the name stored in the variable myName isn’t part of the Names array, selNames is an array with no
elements (its Length property is 0). If the name stored in the variable myName is “Abe,” the upper
bound of the array selNames will be 0, and the element selNames(0) will be “Abe.” If the value of the
myName variable is “John,” the upper bound of the selNames array will be 1, and the elements sel-
Names(0) and selNames(1) will have the value “John.”

You can also create an array that contains all the elements in the original, except for a specific
value. The array selNames created with the statement

selNames = Filter(Names, “Ruth”, False)

will have 4 elements, which are all the elements of the array Names except for “Ruth.”

Replace(expression, find, replacewith[, start][, count][, compare])
This function returns a string in which a specified substring has been replaced with another
substring, a specified number of times. The expression argument is a string on which the Replace
function acts. The find argument is the substring to be replaced, and replacewith is the replacement
string. The remaining arguments are optional. The start argument is the character position where
the search begins. If it is omitted, the search starts at the first character. The count argument
is the number of replacements to be performed. If it is omitted, all possible replacements will
take place. Finally, the compare argument specifies the kind of comparison to be performed. The
values of the compare argument are the members of the CompareMethod enumeration, described
in Table 8.

chF21STRING MANIPULATION

Join(list[, delimiter])
This function returns a string created by joining a number of substrings contained in an array.
The list argument is a one-dimensional array containing the strings to be joined, and the optional
delimiter argument is a character used to separate the substrings in the returned string. If it is omitted,
the space character (“ ”) is used. If delimiter is a zero-length string, all items in the list are concate-
nated with no delimiters.

Split(expression[, delimiter][, count][, compare])
This function is the counterpart of the Join() function. It returns a one-dimensional array containing
a number of substrings. The expression argument is a string that contains the original string that will
be broken into smaller strings, and the optional delimiter argument is a character delimiting the sub-
strings in the original string. If delimiter is omitted, the space character (“ ”) is assumed to be the
delimiter. If delimiter is a zero-length string, a single-element array containing the entire expression
string is returned. The count argument is also optional, and it determines the number of substrings
to be returned. If it’s –1, all substrings are returned. The last argument, compare, is also optional and
indicates the kind of comparison to use when evaluating substrings. Its value can be one of the
CompareMethod enumeration’s members (Table 8).

Let’s say you have declared a string variable with the following path name:

path = “c:\win\desktop\DotNet\Examples\Controls”

The Split() function can extract the path’s components and assign them to the parts array, if called
as follows:

parts = Split(“c:\win\desktop\DotNet\Examples\Controls”, “\”)

To display the parts of the path, set up a loop such as the following:

For i = 0 To parts.GetUpperBound(0)
Console.WriteLine(parts(i))

Next

Data Formatting
In addition to the ToString method exposed by all VB.NET variables, all VB6 formatting functions
are supported by VB.NET.

Format(expression[, format[, firstdayofweek[, firstweekofyear]]])
This function returns a string containing an expression formatted according to instructions con-
tained in a format expression. The expression variable is the number, string, or date to be converted,
and format is a string that tells Visual Basic how to format the value. The string “hh:mm.ss”, for
example, displays the expression as a time string (if the first argument is a date expression).

The Format() function is used to prepare numbers, dates, and strings for display. Atan(1)*4 cal-
culates pi with double precision; if you attempt to display the following expression:

Console.WriteLine(Math.Atan(1)*4)

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF22

the number 3.14159265358979 is displayed. If this value must appear in a text control, chances are
good that it will overflow the available space.

You can control the number of decimal digits to be displayed with the following call to the For-
mat() function:

Console.WriteLine(Format(Math.Atan(1)*4, “##.####”))

This statement displays the result 3.1416. If you are doing financial calculations and the result turns
out to be 13,454.332345201, it would best to display it as a proper dollar amount, with a statement
such as the following:

amount = 13454.332345201
Console.WriteLine(Format(amount, “$###,###.##”))

These statements display the value $13,454.33.
The firstdayofweek and firstweekofyear arguments are used only in formatting dates. The firstdayofweek

argument determines the week’s first day and can have one of the values in Table 11. Similarly, first-
weekofyear determines the first week of the year, and it can have one of the values in Table 12.

Table 11: The DayOfWeek Enumeration

Constant Value Description

System 0 Use NLS API setting

Sunday 1 Sunday (default)

Monday 2 Monday

Tuesday 3 Tuesday

Wednesday 4 Wednesday

Thursday 5 Thursday

Friday 6 Friday

Saturday 7 Saturday

Table 12: The WeekOfYear Enumeration

Constant Value Description

System 0 Uses NLS API setting

FirstJan1 1 Year starts with the week of January 1

FirstFourDays 2 Year starts with the week that has at least four days

FirstFullWeek 3 Year starts with the first full week

chF23DATA FORMATTING

There are many formatting strings for all three types of variables: numeric, string, and date and
time. Tables 13 through 15 show them.

Table 13: User-Defined Time and Date Formatting

Character Description

: Time separator. In some locales, other characters may be used to represent the time sepa-
rator. The time separator separates hours, minutes, and seconds when time values are
formatted.

/ Date separator. In some locales, other characters may be used to represent the date separa-
tor. The date separator separates the day, month, and year when date values are formatted.

d Displays day as a number (1–31).

dd Displays day as a number with a leading zero (01–31).

ddd Displays day as an abbreviation (Sun–Sat).

dddd Displays day as a full name (Sunday–Saturday).

w Displays day of the week as a number (1 for Sunday through 7 for Saturday).

ww Displays week of the year as a number (1–54).

M Displays month as a number (1–12). If M immediately follows h or hh, the minute rather
than the month is displayed.

MM Displays month as a number with a leading zero (01–12). If M immediately follows h or hh,
the minute rather than the month is displayed.

MMM Displays month as an abbreviation (Jan–Dec).

MMMM Displays month as a full month name (January–December).

q Displays quarter of the year as a number (1–4).

y Displays day of the year as a number (1–366).

yy Displays year as a 2-digit number (00–99).

yyyy Displays year as a 4-digit number (0100–9999).

h Displays hours as a number (0–12).

hh Displays hours with leading zeros (00–12).

H Displays hours as a number in 24-hour format (0–24)

HH Displays hours with a leading zero as a number in 24-hour format (00–24)

m Displays minutes without leading zeros (0–59).

mm Displays minutes with leading zeros (00–59).

s Displays seconds without leading zeros (0–59).

Continued on next page

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF24

Table 13: User-Defined Time and Date Formatting (continued)

Character Description

ss Displays seconds with leading zeros (00–59).

AM/PM Uses the 12-hour format and displays the indication AM/PM.

am/pm Uses the 12-hour format and displays the indication am/pm.

A/P Uses the 12-hour format and displays the indication A/P

a/p Uses the 12-hour format and displays the indication a/p.

AMPM Uses the 12-hour format and displays the AM/PM string literal as defined by the system.
Use the Regional Settings applet in the Control Panel to set this literal for your system.

Table 14: User-Defined Number Formatting

Character Description Explanation

None Displays the number with no formatting.

0 Digit placeholder Displays a digit or a zero. If the expression has a digit in the
position where the 0 appears in the format string, display
it; otherwise, display a zero in that position. If the number
has fewer digits than there are zeros in the format expres-
sion, leading or trailing zeros are displayed. If the number
has more digits to the right of the decimal separator than
there are zeros to the right of the decimal separator in the
format expression, round the number to as many decimal
places as there are zeros. If the number has more digits to
the left of the decimal separator than there are zeros to the
left of the decimal separator in the format expression, dis-
play the extra digits without modification.

Digit placeholder Displays a digit or nothing. If the expression has a digit in
the position where the # appears in the format string, dis-
play it; otherwise, display nothing in that position. This
symbol works like the 0 digit placeholder, except that lead-
ing and trailing zeros aren’t displayed if the number has the
same or fewer digits than there are # characters on either
side of the decimal separator in the format expression.

. Decimal placeholder The decimal placeholder determines how many digits are
displayed to the left and right of the decimal separator. If
the format expression contains only number signs to the
left of this symbol, numbers smaller than 1 begin with a
decimal separator. To display a leading zero displayed with
fractional numbers, use 0 as the first digit placeholder to
the left of the decimal separator.

Continued on next page

chF25DATA FORMATTING

Table 14: User-Defined Number Formatting (continued)

Character Description Explanation

% Percentage placeholder The expression is multiplied by 100. The percent character
(%) is inserted in the position where it appears in the for-
mat string.

, Thousands separator Separates thousands from hundreds within a number
greater than 1,000. Two adjacent thousands separators or a
thousands separator immediately to the left of the decimal
separator (whether or not a decimal is specified) means
“scale the number by dividing it by 1,000, rounding as
needed.” For example, you can use the format string
“##0,,” to represent 100 million as 100. Numbers smaller
than 1 million are displayed as 0. Two adjacent thousands
separators in any position other than immediately to the
left of the decimal separator are treated as a thousands
separator.

: Time separator Separates hours, minutes, and seconds when time values
are formatted.

/ Date separator Separates the day, month, and year when date values are
formatted.

E-, E+, e-, e+ Scientific format If the format expression contains at least one digit place-
holder (0 or #) to the right of E-, E+, e-, or e+, the number is
displayed in scientific format, and E or e is inserted between
the number and its exponent. The number of digit place-
holders to the right determines the number of digits in the
exponent. Use E- or e- to place a minus sign next to negative
exponents. Use E+ or e+ to place a minus sign next to nega-
tive exponents and a plus sign next to positive exponents.

+ $ (space) Displays a literal character To display a character other than one of those listed,
precede it with a backslash (\) or enclose it in double quota-
tion marks (“ ”).

\ To display a character that has special meaning as a literal
character, precede it with a backslash (\). The backslash
itself isn’t displayed. Using a backslash is the same as
enclosing the next character in double quotation marks. To
display a backslash, use two backslashes (\\). Examples of
characters that can’t be displayed as literal characters are
the date-formatting and time-formatting characters (a, c,
d, h, m, n, p, q, s, t, w, y, / and :), the numeric-formatting
characters (#, 0, %, E, e, comma, and period), and the
string-formatting characters (@, &, <, >, and !).

“ABC” To include a string in format from within code, you must
use Chr(34) to enclose the text (34 is the character code for
a quotation mark (“)).

Displays the string inside
the double quotation
marks (“ ”)

Escape character; displays
the next character in the
format string

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF26

Table 15: User-Defined String Formatting

Character Description Explanation

@ Character placeholder Displays a character or a space. If the string has a character
in the position where the @ symbol appears in the format
string, it is displayed. Otherwise, a space in that position is
displayed. Placeholders are filled from right to left unless
there is an exclamation point character (!) in the format
string.

& Character placeholder If the string has a character in the position where the
ampersand (&) appears, it is displayed. Otherwise, nothing
is displayed. Placeholders are filled from right to left unless
there is an exclamation point character (!) in the format
string.

< Force lowercase All characters are first converted to lowercase.

> Force uppercase All characters are first converted to uppercase.

! The default order is to use placeholders from right to left.

FormatCurrency(expression[, numDigitsAfterDecimal]
[, includeLeadingDigit][, useParensForNegativeNumbers][, groupDigits])
This function returns a numeric expression formatted as a currency value (dollar amount) using the
currency symbol defined in Control Panel. All arguments are optional, except for the expression argu-
ment, which is the number to be formatted as currency. numDigitsAfterDecimal is a value indicating how
many digits will appear to the right of the decimal point. The default value is –1, which indicates that
the computer’s regional settings must be used. includeLeadingDigit is a tristate constant that indicates
whether a leading zero is displayed for fractional values. The useParensForNegativeNumbers argument is
also a tristate constant that indicates whether to place negative values within parentheses. The last
argument, groupDigits, is another tristate constant that indicates whether numbers are grouped using the
group delimiter specified in the computer’s regional settings.

Note A tristate variable is one that has three possible values: True, False, and UseDefault. The last value uses the
computer’s regional settings. When one or more optional arguments are omitted, values for omitted arguments are provided
by the computer’s regional settings.

FormatDateTime(date[, namedFormat])
This function formats a date or time value. The date argument is a date value that will be formatted,
and the optional argument namedFormat indicates the date/time format to be used. It can have the
values shown in Table 16.

Scans placeholders from
left to right

chF27DATA FORMATTING

Table 16: The DateFormat Enumeration

Value Description

GeneralDate Displays a date and/or time. If a date part is present, it is displayed as a short date. If a time
part is present, it is displayed as a long time. If both parts are present, both parts are displayed.

LongDate Displays a date using the long date format, as specified in the client computer’s regional settings.

ShortDate Displays a date using the short date format, as specified in the client computer’s regional settings.

LongTime Displays a time using the time format specified in the client computer’s regional settings.

ShortTime Displays a time using the 24-hour format.

FormatNumber(expression[, numDigitsAfterDecimal]
[, includeLeadingDigit][, useParensForNegativeNumbers][, groupDigits])
This function returns a numeric value formatted as a number. The arguments of the FormatNum-
ber() function are identical to the arguments of the FormatCurrency() function, described earlier.

FormatPercent(expression[, numDigitsAfterDecimal]
[, includeLeadingDigit][, useParensForNegativeNumbers][, groupDigits])
This function returns an expression formatted as a percentage (multiplied by 100) with a trailing %
character. Its syntax and arguments are identical to the FormatCurrency() function, described earlier.

LSet(string, len), RSet(string, len)
These two functions left- or right-align a string within a string variable and return a new string with
the proper number of spaces before or after. The statements:

Console.WriteLine(“[“ & RSet(“Hohnecker”, 20) & “]”)
Console.WriteLine(“[“ & LSet(“Richard”, 20) & “]”)

will print the following string in the Output window:

[Hohnecker]
[Richard]

The last name is right-aligned in a string of 20 characters, and the first name is left-aligned in a
string of 20 characters. If you create multiple strings like the previous and place them one below the
other (on a TextBox or ListBox control, for example), the commas will not align unless a mono-
spaced font such as Courier is used.

The LSet() and RSet() functions can also be used with numeric values. The statements

Console.WriteLine(RSet(34.56, 10))
Console.WriteLine(RSet(4356.99, 10))
Console.WriteLine(RSet(4.01, 10))

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF28

will produce the following output on the Output window:

34.56
4356.99

4.01

Val(string), Str(number)
The Val() function accepts as argument a string and returns its numeric value. The Str() function
accepts as argument a number and returns its string representation. The Val() function starts reading
the string from the left and stops when it reaches a character that isn’t part of a number. If the value
of the variable a is:

Dim a As String = “18:6.05”

then the statement

Console.WriteLine(Val(a))

returns 18. Conversely, the following statement returns the string “18”:

Dim a As Integer = 18
Console.WriteLine(Str(a))

Math
All the Math functions of VB6 have been replaced by the methods of the Math class. Since I haven’t
discussed these methods in the book, I’m listing them in this section. To use any of the math meth-
ods of VB.NET, you must import the Math class or prefix the names of the methods with the name
of the class (Math.Abs, Math.Cos, and so on).

The following methods perform math operations. Their arguments are double-precision values
and so are their results.

Abs(expression)
This method returns the absolute value of its argument. Both Abs(1.01) and Abs(-1.01) return the
value 1.01.

Atan(expression)
This method returns the arctangent of an angle. The value returned is in radians.

Tip To convert a radian value to degrees, multiply by (180 / pi).

Cos(expression)
This method returns the cosine of an angle. The value of expression must be in radians.

Tip To convert a degree value to radians, multiply by (pi / 180).

chF29MATH

Exp(expression)
This method returns the base of the natural logarithm to a power. The expression variable is the
power, and its value can be a noninteger, positive or negative value. The Exp() method complements
the operation of the Log() method and is also called antilogarithm.

Int(expression), Fix(expression)
Both of these methods accept a numeric argument and return an integer value. If expression is positive,
both methods behave the same. If it’s negative, the Int() method returns the first negative integer less
than or equal to expression, and Fix() returns the first negative integer greater than or equal to
expression. For example, Int(-1.1) returns –2, and Fix(-1.1) returns –1. The expressions Int(1.8)
and Fix(1.8) both return 1.

If you want to get rid of the decimal part of a number and round it as well, you can use the fol-
lowing expression:

Int(value + 0.5)

The value argument is the number to be rounded. However, the new Round() method (see next
entry) provides a simpler technique for rounding values to any desired precision.

Round(expression[, numdecimalplaces])
This method returns a numeric expression rounded to a specified number of decimal places. The
numdecimalplaces argument is optional and indicates how many places to the right of the decimal are
included in the rounding. If it is omitted, an integer value is returned.

The expression Round(3.49) returns 3, and the expression Round(3.51) returns 4. Both
Round(3.49, 1) and Round(3.51, 1) return 3.5.

Log(expression)
The Log() method returns the natural logarithm of a number. The expression variable must be a posi-
tive number. The expression Log(Exp(N)) returns N, and so does the expression Exp(Log(N)). If you
combine the logarithm with the antilogarithm, you end up with the same number.

The natural logarithm is the logarithm to the base e, which is approximately 2.718282. The pre-
cise value of e is given by the expression Exp(1). To calculate logarithms to other bases, divide the
natural logarithm of the number by the natural logarithm of the base. The following statement cal-
culates the logarithm of a number in base 10:

Log10 = Log(number) / Log(10)

Hex(expression), Oct(expression)
These two methods accept a decimal numeric value as an argument and return the octal and hexadec-
imal representation of the number in a string. The expression Hex(47) returns the value “2F”, and
the expression Oct(47) returns the value “57”. To specify a hexadecimal number, prefix it with &H.
The equivalent notation for octal numbers is &O. Given the following definitions:

Dvalue = 199: Ovalue = &O77

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF30

the expression Oct(Dvalue) returns the string “307”, and the expression Hex(Ovalue) returns “3F”.
To display the decimal value of 3F, use a statement such as the following:

MsgBox (“The number 3F in decimal is “ & &H3F)

The actual value that will be displayed is 63.

Pow(value1, value2)
The Pow() method accepts two numeric arguments and returns the first number raised to the power
specified by the second argument. The statement

Console.WriteLine(Math.Pow(2, 3))

will print the value 8 (2 to the power of 3, or 2 × 2 × 2) on the Output window.

Sin(expression)
This method returns the sine of an angle, specified in radians. See the Cos() entry earlier in this
reference.

Sqrt(expression)
This method returns the square root of its expression.

Tan(expression)
This method returns the tangent of an angle, which must be expressed in radians. See the Atan()
entry earlier in this reference.

Date and Time
Figuring out the number of hours, days, or weeks between two days could be a project on its own.
Not with Visual Basic. There are so many functions and statements for manipulating time and date
values, all you have to do is select the one you need for your calculations and look up its arguments.

Now()
This function returns both the system date and time. The statement

MsgBox(Now())

displays a date/time combination such as 9/13/1998 09:23:10 PM in a message box. There’s only
one space between the date and the time.

To extract the date or time part of the value returned by the Now() function, use the Date and
TimeOfDay properties:

Console.WriteLine(Now.Date.ToString)
Console.WriteLine(Now.TimeOfDay.ToString)

chF31DATE AND TIME

Day(date)
This function returns the day number of the date specified by the argument. The date argument must
be a valid date (such as the value of the Now() function). If the following function had been called
on 12/15/2000, it would have returned 15:

Day(Now())

Weekday(date[, firstdayofweek])
This function returns an integer in the range 1 through 7, representing the day of the week (1 for
Sunday, 2 for Monday, and so on). The first argument, date, can be any valid date expression. The
second argument, which is optional, specifies the first day of the week and can have any of the values
shown in Table 11, in the Format() entry earlier in this reference.

WeekdayName(weekday[, abbreviate[, firstdayofweek]])
This function returns the name of the weekday specified by the weekday argument (a numeric value,
which is 1 for the first day, 2 for the second day, and so on). The optional abbreviate argument is a
Boolean value that indicates whether the name is to be abbreviated. By default, day names are not
abbreviated. The last argument, firstdayofweek, is also optional and determines the first day of the
week. Its valid values are shown in Table 11, in the Format() entry earlier in this reference. By
default, the first day of the week is Sunday.

Month(date)
This function returns an integer in the range 1 through 12, representing the number of the month of
the specified date. Month(Date()) returns the current month number.

MonthName(month[, abbreviate])
This function returns the name of the month specified by the month argument (a numeric value,
which is 1 for January, 2 for February, and so on). The optional abbreviate argument is a Boolean
value that indicates whether the month name is to be abbreviated. By default, month names are not
abbreviated.

Year(date)
This function returns an integer representing the year of the date passed to it as an argument. The
function Year(Now()) returns the current year.

Hour(time)
This function returns an integer in the range 0 through 24 that represents the hour of the specified
time. The following statements:

Console.WriteLine(Now())
Console.WriteLine(Hour(Now()))

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF32

produce something such as:

9/5/2001 1:43:19 AM
1

Minute(time)
This function returns an integer in the range 0 through 60 that represents the minute of the speci-
fied time. The following statements:

Console.WriteLine(Now())
Console.WriteLine(Minute(Now()))

produce something such as:

9/5/2001 1:43:19 AM
43

Second(time)
This function returns an integer in the range 0 through 60 that represents the seconds of the speci-
fied time. The following statements:

Console.WriteLine(Now())
Console.WriteLine(Second(Now()))

produce something such as:

9/5/2001 1:43:19 AM
19

DateSerial(year, month, day)
This function accepts three numeric arguments that correspond to a year, a month, and a day and
returns the corresponding date. The following statement:

MsgBox(DateSerial(2002, 10, 1))

displays the string “10/1/02” in a message box.
The DateSerial function can handle arithmetic operations with dates. For example, you can find

out the date of the 90th day of the year by calling DateSerial() with arguments like these:

DateSerial(1996, 1, 90)

(3/30/1996, if you are curious). To find out the date 1,000 days from now, call the DateSerial()
function as follows:

MsgBox(DateSerial(Year(Now.Date), Month(Now.Date), Weekday(Now.Date) + 1000))

You can also add (or subtract) a number of months to the month argument and a number of years to
the year argument.

chF33DATE AND TIME

DateValue(date)
This function accepts a string that represents a Date value and returns the corresponding date value
If you call the DateValue() function with the argument “December 25, 2002”, you will get back the
date 12/25/2002. DateValue() is handy if you are doing financial calculations based on the num-
ber of days between two dates. The difference in the following statement:

MsgBox(DateDiff(DateInterval.Day, DateValue(“12/25/1993”), _
DateValue(“12/25/1996”)))

is the number of days between the two dates, which happens to be 1,096 days.

TimeSerial(hours, minutes, seconds)
This function returns a time, as specified by the three arguments. The following function:

TimeSerial(4, 10, 55)

returns:

4:10:55 AM

The TimeSerial() function is frequently used to calculate relative times. The following call to
TimeSerial() returns the time 2 hours, 15 minutes, and 32 seconds before 4:13:40 P.M.:

TimeSerial(16 - 2, 13 - 15, 40 - 32)

which is 1:58:08 P.M..

TimeValue(time)
This function accepts a string as argument and returns a date value. Like the DateValue() function,
it can be used in operations that involve time.

DateAdd(interval, number, date)
This function returns a date that corresponds to a date plus some interval. The interval variable is a
time unit (days, hours, weeks, and so on), number is the number of intervals to be added to the initial
date, and date is the initial date. If number is positive, the date returned by DateAdd() is in the future.
If it’s negative, the date returned is in the past. The interval argument can take one of the values in
Table 17.

Table 17: The DateInterval Enumeration

Value

Year

Quarter

Month

DayOfYear

Continued on next page

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF34

Table 17: The DateInterval Enumeration (continued)

Value

Day

WeekDay

WeekOfYear

Hour

Minute

Second

To find out the date one month after December 31, 2002, use the following statement:

Console.WriteLine(DateAdd(DateInterval.Month, 1, #12/31/2002#))

The result is:

1/31/2003 12:00:00 AM

The DateAdd() function is similar to the DateSerial() function (described earlier), but it takes
into consideration the actual duration of a month. For DateSerial(), each month has 30 days. The
following statements:

day1 = #1/31/2002#
Console.WriteLine(DateSerial(year(day1), month(day1) + 1, day(day1)))

result in:

3/2/02

which is a date in March, not February.

DateDiff(interval, date1, date2[, firstdayofweek[, firstweekofyear]])
This function is the counterpart of the DateAdd() function and returns the number of intervals between
two dates. The interval argument is the interval of time you use to calculate the difference between the two
dates (see Table 17, in the preceding DateAdd() entry, for valid values). The date1 and date2 arguments
are dates to be used in the calculation, and firstdayofweek and firstweekofyear are optional arguments that
specify the first day of the week and the first week of the year.

Table 11 shows the valid values for the firstdayofweek argument, and Table 12 shows the valid val-
ues for the firstweekofyear argument. (These tables can be found earlier, in the Format() entry.)

You can use the DateDiff() function to find how many days, weeks, and even seconds are
between two dates. The following statement displays the number of days and minutes since the turn
of century:

Dim century As Date
century = #1/1/2000#
MsgBox(DateDiff(DateInterval.Day, century, Now()))

chF35DATE AND TIME

DatePart(interval, date[,firstdayofweek[, firstweekofyear]])
This function returns the specified part of a given date. The interval argument is the desired format in
which the part of the date will be returned (see Table 13, earlier in this reference, for its values), and
date is the date you are examining. The optional arguments firstdayofweek and firstdayofmonth are the
same as for the DateDiff() function. On October 23, 2001, the following WriteLine statements
would produce results like those shown in bold:

Dim Day1 As DateTime
day1 = Now()
Console.WriteLine(DatePart(“yyyy”, day1))

2001
Console.WriteLine(DatePart(“q”, day1))

3
Console.WriteLine(DatePart(“m”, day1))

10
Console.WriteLine(DatePart(“d”, day1))

23
Console.WriteLine(DatePart(“w”, day1))

3
Console.WriteLine(DatePart(“ww”, day1))

43
Console.WriteLine(DatePart(“h”, day1))

15
Console.WriteLine(DatePart(“n”, day1))

3
Console.WriteLine(DatePart(“s”, day1))

30

Financial
The following functions can be used to calculate the parameters of a loan or an investment. I will
explain only the functions that return the basic parameters of a loan (such as the monthly payment
or the loan’s duration). The more advanced financial functions are listed in a table at the end of this
section and described in the Visual Basic online documentation.

IPmt(rate, per, nper, pv[, fv[, type]])
This function returns the interest payment for a given period of an annuity based on periodic, fixed
payments and a fixed interest rate. The result is a Double value.

The rate argument is a Double value specifying the interest rate for the payment period. For
example, if the loan’s annual percentage rate (APR) is 10 percent, paid in monthly installments, the
rate per period is 0.1 / 12 = 0.0083.

The per argument is a Double value specifying the current payment period; per is a number in the
range 1 through nper.

The nper argument is a Double value specifying the total number of payments. For example, if you
make monthly payments on a five-year loan, nper is 5 × 12 = 60.

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF36

The pv argument is a Double value specifying the principal or present value. The loan amount is
the present value to the lender of the monthly payments and it’s a negative value.

The fv argument is a Double specifying the future value or cash balance after the final payment.
The future value of a loan is $0 because that’s its value after the final payment. If you want to accu-
mulate $10,000 in your savings account over some period of time, however, the future value is
$10,000. If the fv argument is omitted, 0 is assumed.

The type argument specifies when payments are due, and its value can be a member of the Due-
Date enumeration. Use DueDate.EndOfPeriod if payments are due at the end of the payment period;
use DueDate.BegOfPeriod if payments are due at the beginning of the period. If the type argument is
omitted, EndOfPeriod is assumed.

Suppose you borrow $30,000 at an annual percentage rate of 11.5%, to be paid off in three years
with payments at the end of each month. Here’s how you can calculate the total interest, as well as
the monthly interest:

Dim PVal, FVal, mPayments As Integer
Dim APR, iPayment, TotInt As Decimal
PVal = 30000
FVal = 0
APR = 0.115 / 12
mPayments = 3 * 12
Dim period As Integer
For period = 1 To mPayments

iPayment = IPmt(APR, period, mPayments, -PVal, FVal, 1)
Console.WriteLine(iPayment)
TotInt = TotInt + iPayment

Next
Console.WriteLine(“Total interest paid: “ & TotInt)

The interest portion of the first payment is $287.10, and the interest portion of the last payment
is less than $10. The total interest is $5,276.

PPmt(rate, per, nper, pv[, fv[, type]])
This function is similar to the IPmt() function except that it returns the principal payment for a
given period of a loan based on periodic, fixed payments and a fixed interest rate. For a description
of the function’s arguments, see the IPmt() entry.

The code for calculating the principal payment of the previous example is nearly the same as that
for calculating the interest:

Dim PVal, FVal, mPayments As Integer
Dim APR, pPayment, TotPrincipal As Double
PVal = 30000
FVal = 0
APR = 0.115 / 12
mPayments = 3 * 12
Dim period As Integer
For period = 1 To mPayments

pPayment = PPmt(APR, period, mPayments, -PVal, FVal, 1)

chF37FINANCIAL

Console.WriteLine(pPayment)
TotPrincipal = TotPrincipal + pPayment

Next period
Console.WriteLine(“Total principal paid: “ & TotPrincipal)

In this example, the principal payments increase with time (that’s how the total payment remains
fixed). The total amount will be equal to the loan’s amount, of course, and the fixed payment is the
sum of the interest payment (as returned by the IPmt() function) plus the principal payment (as
returned by the PPmt() function).

Pmt(rate, nper, pv[, fv[, type]])
This function is a combination of the IPmt() and PPmt() functions. It returns the payment (includ-
ing both principal and interest) for a loan based on periodic, fixed payments and a fixed interest rate.
For a description of the function’s arguments, see the IPmt() entry. Notice that the Pmt() function
doesn’t require the per argument because all payments are equal.

The code for calculating the monthly payment is similar to the code examples in the IPmt() and
PPmt() entries.

FV(rate, nper, pmt[, pv[, type]])
This function returns the future value of a loan based on periodic, fixed payments and a fixed inter-
est rate. The arguments of the FV() function are explained in the IPmt() entry, and the pmt argument
is the payment made in each period.

Suppose you want to calculate the future value of an investment with an interest rate of 6.25%,
48 monthly payments of $180, and a present value of $12,000. Use the FV() function with the fol-
lowing arguments:

Dim PVal, FVal As Integer
Dim APR, Payment As Double
Dim TotPmts As Integer
Payment = 180
APR = 6.25 / 100
TotPmts = 48
PVal = 12000
FVal = FV(APR / 12, TotPmts, -Payment, -PVal, DueDate.BegOfPeriod)
MsgBox(“After “ & TotPmts & “ months your savings will be worth $” & FVal)

The actual result is close to $25,000.

NPer(rate, pmt, pv[, fv[, type]])
This function returns the number of periods for a loan based on periodic, fixed payments and a
fixed interest rate. For a description of the function’s arguments, see the IPmt() entry.

Suppose you borrow $25,000 at 11.5%, and you can afford to pay $450 per month. To figure
out what this means to your financial state in the future, you would like to know how may years it
will take you to pay off the loan. Here’s how you can use the NPer() function to do so:

Dim PVal, FVal As Integer
Dim APR, Payment As Double

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF38

Dim TotPmts As Integer
FVal = 0
PVal = 25000
APR = 0.115 / 12
Payment = 450
TotPmts = NPer(APR, -Payment, PVal, FVal, DueDate.EndOfPeriod)
If Int(TotPmts) <> TotPmts Then TotPmts = Int(TotPmts) + 1
Console.WriteLine(“The loan’s duration will be: “ & TotPmts & “ months”)

The actual duration of this loan is 80 months, which corresponds to nearly 6.5 years. If the pay-
ment is increased from $450 to $500, the loan’s duration will drop to 69 months, and a monthly
payment of $550 will bring the loan’s duration down to 60 months.

Rate(nper, pmt, pv[, fv[, type[, guess]]])
You use this function to figure out the interest rate per payment period for a loan. Its arguments are
the same as with the preceding financial functions, except for the guess argument, which is the esti-
mated interested rate. If you omit the guess argument, the value 0.1 (10%) is assumed.

Table 18 lists and describes the remaining financial functions. All return values are Doubles.

Table 18: Additional Financial Functions

Function Returns

PV() The present value of an investment

NPV() The net present value of an investment based on a series of periodic cash flows and a
discount rate

IRR() The internal rate of return for an investment

MIRR() The modified internal rate of return for a series of periodic cash flows

DDB() The depreciation of an asset for a specific time period using the double-declining balance
method or some other method you specify

SYD() The sum-of-years’ digits depreciation of an asset for a specified period

SLN() The straight-line depreciation of an asset for a single period

File I/O
An important aspect of any programming other language, is its ability to access and manipulate files.
Visual Basic supports three types of files:

◆ Sequential

◆ Random-access files

◆ Binary files

chF39FILE I/O

Sequential files are mostly text files (the ones you can open with a text editor such as Notepad).
These files store information as it’s entered, one byte per character. Even the numbers in a sequen-
tial file are stored as string and not as numeric values (that is, the numeric value 33.4 is not stored
as a Single or Double value, but as the string “33.4”). These files are commonly created by text-
processing applications and are used for storing mostly text, not numbers.

Sequential files are read from the beginning to the end. Therefore, you can’t read and write at the
same time to a sequential file. If you must read from and write to the file simultaneously, you must
open two sequential files, one for reading from and another one for writing to.

If your application requires frequent access to the file’s data (as opposed to reading all the data
into memory and saving them back when it’s done), you should use random-access files. Like the
sequential files, random-access files store text as characters, one byte per character. Numbers, how-
ever, are stored in their native format (as Integers, Doubles, Singles, and so on). You can display a
random-access file in a DOS window with the TYPE command and see the text, but you won’t be
able to read the numbers.

Random-access files are used for storing data that are organized in segments of equal length.
These segments are called records. Random-access files allow you to move to any record, as long as
you know where the desired record is located. Since all records have the same length, it’s easy to
locate any record in the file by its index. Moreover, unlike sequential files, random-access files can be
opened for reading and writing at the same time. If you decide to change a specific record, you can
write the new record’s data on top of the old record, without affecting the adjacent records.

Binary files, finally, are similar to sequential files, and they make no assumption as to the type of
data stored in them. The bytes of a binary file can be characters, or the contents of an executable file.
Images, for instance, are stored in binary files.

The manipulation of files is more or less independent of its type and involves three stages:

Opening the file The operating system reserves some memory for storing of the file’s data. If
the file does not exist, it’s first created and then opened. To open a file (and create it if necessary),
use the FileOpen() function.

Processing the file A file can be opened for reading from, writing to, or reading and writing.
Data are read, processed, and then stored back to the same, or to another, file.

Closing the file When the file is closed, the operating system releases the memory reserved for
the file. To close an open file, use the FileClose() function.

In the following sections, we’ll look at Visual Basic’s file-manipulation functions. The .NET Frame-
work provides high-level functions for accessing files, and you should use these functions in your
projects. The file I/O functions provided by the Framework are discussed in Chapter 13.

FreeFile(file_number)
During the course of an application, you may open and close many files, and you may not always
know in advance which file numbers are available. Visual Basic provides the FreeFile() function,
which returns the next available file number. The FreeFile() function is used in conjunction with the
FileOpen() function to open a file:

fNum = FreeFile()
FileOpen(fNum, fileName)

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF40

After these two statements execute, all subsequent commands that operate on the specified file
can refer to it as fNum. The FreeFile() function returns the next available file number, and unless this
number is assigned to a file, FreeFile() returns the same number if called again. The following state-
ments will not work:

fNum1 = FreeFile()
fNum2 = FreeFile() ‘ WRONG !
FileOpen(fNum1, file1)
FileOpen(fNum2, file2)

Each time you call FreeFile() to get a new file number, you must use it. The statements should
have been coded as follows:

fNum1 = FreeFile()
FileOpen(fNum1, file1)
fNum2 = FreeFile()
FileOpen(fNum, file2)

FileOpen(number, path, mode[, access][, share][, recordLen])
To use a file, you must first open it—or create it, if it doesn’t already exist. The FileOpen() func-
tion, which opens files, accepts a number of arguments, most of which are optional.

The FileOpen() function replaces the Open statement of VB6, which is no longer supported in
VB.NET.

The argument path is the path of the file to be opened, and number is a number you assign to the
file (usually through the FreeFile function). The mode argument determines the mode in which
the file will be opened and can be one of the constants shown in Table 19.

Table 19: The OpenMode Enumeration

Value Description

Input File is opened for input (reading from) only.

Output File is opened for output (writing to) only.

Append File is opened to appending new data to its existing contents.

Random File is opened for random access (read or write one record at a time).

Binary File is opened in binary mode.

The first three file modes refer to sequential files. Random is used with random-access files, and
Binary is used with binary files. When you open a sequential file, you can’t change its data. You can
either read them (and store them to another file) or overwrite the entire file with the new data. To
do so, you must open the file for Input, read its data, and then close the file. To overwrite it, open it
again (this time for Output) and save the new data to it.

chF41FILE I/O

If you don’t want to overwrite an existing file, but just to append data to it (without changing any
of the existing data), open it for Append. If you open a file for Output, Visual Basic wipes out its con-
tents, even if you don’t write anything to it. Moreover, VB won’t warn you that it’s about to over-
write a file, as applications do. This is how the FileOpen() function works and you can’t change
your mind after opening a sequential file for Output.

The access argument determines whether the file can be opened for reading from (Read), writing to
(Write), or both (ReadWrite). If you open a file with Read access, your program can’t modify it even
by mistake. The access method has nothing to do with file types. Sequential files are open for Input
or Output only, because they can’t be opened in both modes. The access type is specified for reasons
of safety. If you need to open a file only to read data from it, open it with Read access (there’s no
reason to risk modifying the data).

The share argument allows you to specify the rights of other Windows applications, while your
application keeps the file open. Under Windows, many applications can be running at the same
time, and one of them may attempt to open a file that is already open. In this case, you can specify
how other applications are to access the file. The share argument can have one of the values listed in
Table 20.

Table 20: The OpenAccess Enumeration

Value Description

Shared Other applications can share the file.

LockRead The file is locked for reading.

LockWrite The file is locked for writing.

LockReadWrite Other applications can’t access this file.

File locking is a very important function, especially in a networked environment. Imagine two
users attempting to write to the same file at the same time. Using the file-locking features, you can
write programs that work properly in networked environments, too. However, if you are going to
build applications that will be run by many users who access the same files, you should probably
consider building a database.

Finally, if the file is a random-access one, you must declare the length of the record with the last
argument, which is the record’s length in bytes. When you create a random-access file, Visual Basic
doesn’t record any information regarding the record’s length, or structure, to the file. You should
know, therefore, the structure of each record in a random-access file before you can open it. The
record’s length is the sum of the bytes taken by all record fields. You can either calculate it, or you
can use the function Len(record) to let Visual Basic calculate it. The record argument is the name of
the structure you use with the random-access file.

The following command opens the file c:\samples\vb\cust.dat as a sequential file with a num-
ber obtained through the FreeFile() function:

Dim Fnum As Integer = FreeFile()
FileOpen(Fnum, “c:\samples\vb\cust.dat”, OpenMode.Output, OpenAccess.ReadWrite)

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF42

FileClose(file_number)
The FileClose() function closes an open file, whose number is passed as argument. The statement

FileClose(fNum1)

closes the file opened as fNum1.

Reset()
The Reset() function closes all files opened with FileOpen(). Use this statement to close all the files
opened by your application.

EOF(file_number), LOF(file_number)
These are two more frequently used functions in file manipulation. The EOF() function accepts as
an argument the number of an open file and returns True if the end of the file (EOF) has been
reached. The LOF() function returns the length of the file, whose number is passed as argument.

You use the EOF() function to determine whether the end of the file has been reached, with a
loop such as the following:

{get first record}
While Not EOF(fNum)

{ process current record }
{ get next record }

End While

With the help of the LOF() function, you can also calculate the number of records in a random-
access file:

Rec_Length = LOF(file_number) / Len(record)

Print (file_number, output_list), PrintLine(file_number, output_list)
The Print() function writes data to a sequential file. The first argument is the number of the file to
be written, and the following arguments are the values, or variables, to be written to the file. The sec-
ond argument is a parameter array, which means you can pass any number of values to the function:

Print(fNum, var1, var2, “some literal”, 333.333)

The Print() function doesn’t insert line breaks between successive calls. The following statements
write a single line of text to the file opened as fNum:

Print(fNum, "This is the first half of the line ")
Print(fNum, "and this is the second half of the same line.")

The PrintLine() function does the same thing as the Print() function, but it also adds a new
line character at the end of the values it writes to the file. Its syntax is identical to the syntax of the
Print() function. Multiple values are separated by commas, and each comma specifies that the next
character will be printed in the next print zone. Each print zone corresponds to 14 columns. In other
words, the Print() function writes data to the file exactly as the TYPE command (of DOS) displays

chF43FILE I/O

them on the screen. (That’s why the data saved by the Print() function are called display-formatted
data.) You must keep in mind that the text will be displayed correctly only when printed with a
monospaced typeface, such as Courier. If you place the text on a TextBox with a proportional type-
face, the columns will not align.

Data saved with the Print() function can be read with the LineInput() and Input() functions.
However, isolated fields are not delimited in any way, and you must extract the fields from the line
read. The Print() function is used to create text files that can be viewed on a DOS window. To for-
mat the fields on each line, you can use the Tab to position the pointer at the next print zone, or
Tab(n) to position the pointer at an absolute column number. The following statements create a
text file:

On Error Resume Next
Kill(“c:\test.txt”)
Dim fNum As Integer = FreeFile()
FileOpen(fNum, “c:\test.txt”, OpenMode.Output)
PrintLine(fNum, “John”, TAB(12), “Ashley”, TAB(25), “Manager”, TAB(45), 33)
PrintLine(fNum, “Michael”, TAB(12), “Staknovitch”, TAB(25), “Programmer”, _

TAB(45), 28)
PrintLine(fNum, “Tess”, TAB(12), “Owen”, TAB(25), “Engineer”, TAB(45), 41)
PrintLine(fNum, “Joe”, TAB(12), “Dow”, TAB(25), “Administrator”, TAB(45), 25)
PrintLine(fNum, “*************************”)
PrintLine(fNum, “John”, TAB, “Ashley”, TAB, “Manager”, TAB, 3)
PrintLine(fNum, “Michael”, TAB, “Staknovitch”, TAB, “Programmer”, TAB, 28)
PrintLine(fNum, “Tess”, TAB, “Owen”, TAB, “Engineer”, TAB, 41)
PrintLine(fNum, “Joe”, TAB, “Dow”, TAB, “Administrator”, TAB, 25)
FileClose(fNum)

This is the output produced by this example:

John Ashley Manager 33
Michael Staknovitch Programmer 28
Tess Owen Engineer 41
Joe Dow Administrator 25

John Ashley Manager 33
Michael Staknovitch Programmer 28
Tess Owen Engineer 41
Joe Dow Administrator 25

Input(file_number, var)
The Input() function reads data from a sequential file and assigns them to the variable passed with
the second argument The following lines read two values from the open file, a numeric value and
a date:

Dim numVal As Long, DateVal As Date
Input(1, numVal)
Input(1, DateVal)

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF44

LineInput(file_number)
To read from sequential files, use the LineInput() function. The file_number argument is the file’s
number, and the function returns the next text line in the file. This statement reads all the characters
from the beginning of the file to the first newline character. When you call it again, it returns the
following characters, up to the next newline character. The newline characters are not part of the
information stored to or read from the file, and they are used only as delimiters. If we close the file
of the last example and open it again, the following lines will read the first two text lines and assign
them to the string variables Line1 and Line2:

Line1 = LineInput(fNum)
Line2 = LineInput(fNum)

If you want to store plain text to a disk file, create a sequential file and store the text there, one
line at a time. To read it back, open the file and read one line at a time with the LineInput() func-
tion, or use the FileGet() function to read the entire text.

FilePut(file_number, value[, record_number]),
FileGet(file_number, value[, record_number])
These functions are used for writing records to and reading records from a random-access file. Both
functions need know the record number you want to access (write or read).

The record_number argument is the number of the record we are interested in, and value is a record
variable that is written to the file. The record_number argument is optional; if you omit it, the record
will be written to the current record position. After a record is written to or read from the file, the
next record becomes the current one. If you’ve read the second record, the FilePut() function will
store the field values in the third record in the file. If you call FilePut() 10 times sequentially without
specifying a record number, it will create (or overwrite) the first ten records of the random-access file.

The arguments of the FileGet() function have the same meaning.
At this point, I’ll outline the basics of random-access file manipulation, since this is the most flex-

ible file type. Let’s say you want to create a random-access file for storing a product list. Each prod-
uct’s information is stored in a ProductRecord variable, whose declaration is shown next:

Structure ProductRecord
ProductID As String
Description As String
Price As Decimal

End Type

The structure ProductRecord will be used for storing each product’s information before moving it to
the file. Let’s start by defining a variable of type ProductRecord:

Dim PRec As ProductRecord

You can then assign values to the fields of the PRec variable with statements such as the following:

PRec.ProductID = “TV00180-A”
PRec.Description = “SONY Trinitron TV”
PRec.Price = 799.99

chF45FILE I/O

The PRec record variable can be stored to a random-access file with the FilePut() function. Of
course, you must first create the file with the following statements:

fNum = FreeFile()
FileOpen(fNum, “c:\products.dat”,OpenMode.Random)

You will notice that I’ve skipped the last argument, which is the length of the record. Since our
record contains strings, it has a variable length, so we’ll let the function handle the records. (Each
string’s length is stored along with the string and you need not worry about the actual length of each
record.) You can then write the PRec variable to the file with the statement

FilePut(fNum, Prec)

Notice that you can omit the number of the record where the data will be stored. You can change
the values of the fields and keep storing additional records with the same Put statement (as long as
PRec is populated with different field values). After all the values are stored to the file, you can close
the file with this statement:

FileClose(fNum)

To read the records, open the file with the same FileOpen() function you used to open it for sav-
ing the records:

fNum = FreeFile()
FileOpen(fNum, “c:\products.dat”, OpenMode.Random)

You can then set up a loop to read the records.
The following code segment demonstrates how to write records of different lengths to a random

file with the FilePut() function and read them with the FileGet() function. First, insert the following
structure declaration somewhere on the form’s declarations section:

Structure ProductRecord
Dim ProductID As String
Dim Description As String
Dim Price As Decimal

End Structure

Then enter the following statements in a button’s Click event handler:

Dim PRec As ProductRecord
PRec.ProductID = “TV00180-A”
PRec.Description = “SONY Trinitron TV”
PRec.Price = 799.99

fNum = FreeFile()
FileOpen(fNum, “c:\products.dat”, OpenMode.Random)
FilePut(fNum, PRec)

PRec = New ProductRecord()
PRec.ProductID = “TV-RCA”
PRec.Description = “This is an RCA Trinitron TV”
PRec.Price = 699.99
FilePut(fNum, PRec)

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF46

PRec = New ProductRecord()
PRec.ProductID = “TV810X”
PRec.Description = “And this is the real cheap BIG Trinitron TV”
PRec.Price = 399.99
FilePut(fNum, PRec)

FileClose(fNum)

fNum = FreeFile()
FileOpen(fNum, “c:\products.dat”, OpenMode.Random)
PRec = New ProductRecord()
FileGet(fNum, PRec, 2)
FileClose(fNum)

Console.WriteLine(PRec.ProductID)
Console.WriteLine(PRec.Description)
Console.WriteLine(PRec.Price)

As you can see, the IDs and descriptions of the various products are strings of different lengths.
The first segment of the code writes three records to the random file and then closes it. The last part
of the code reads the second record and prints its fields to the Output window. In previous versions
of VB, each record in a random-access file had to have the same length. The new functions allow
you to create records with strings, which inherently are records of variable length. The Put() and
Get() functions handle all the details, and you can access the random-access file using the record as
the basic unit of length.

Write(file_number, output_list), WriteLine(file_number, output_list)
The Write() function writes data to a sequential file. The data to be written are supplied in the out-
put_list, which is a comma-separated list of variables and literals. Data written with the Write() func-
tion are usually read with the Input function. The following line will write a numeric and a date
value to a sequential file:

NumVal = 3300.004
DateVal = #04/09/1999#
Write(1, NumVal, DateVal)

The WriteLine() function does the same, but it also inserts a newline character at the end of each
line of data.

The following lines write the same data as the example of the FilePrint() function, explained ear-
lier in the entry of the Print() function.

Dim fNum As Integer = FreeFile()
FileOpen(fNum, “c:\test.txt”, OpenMode.Output)
WriteLine(fNum, “John Ashley”, 33, “Manager”)
WriteLine(fNum, “Michael Staknovitch”, 24, “Programmer”)
WriteLine(fNum, “Tess Owen”, 37, “Engineer”)
WriteLine(fNum, “Joe Dow”, 28, “Administrator”)

chF47FILE I/O

The structure of the text file, however, is quite different. Here’s the output of the Write()
function:

“John Ashley”,33,”Manager”
“Michael Staknovitch”,24,”Programmer”
“Tess Owen”,37,”Engineer”
“Joe Dow”,28,”Administrator”

Seek(file_number[, position]), Loc(file_number)
The Loc() function returns the current read/write position in a file. The Seek() function does the
same if called without the position argument. For a random-access file, the value returned by either
function is the number of the last record read from, or written to, the file. For sequential files, this
value is the current byte divided by 128. For binary files, it’s the number of the last byte read from,
or written to, the file. If you specify the position argument of the Seek() function, you can set the
current read/write position in the file. To move to the beginning of the third record in a random
access file, use a statement like the following:

Seek(fNum, 3)

Lock(file_number[, fromRecord][, toRecord]),
Unlock(file_number[, fromRecord][, toRecord])
The Lock() function allows you to lock a file or some of the records in a random-access file. The
locked records are not available to other applications that are currently running. Your application,
however, has access to the entire file. If another application attempts to open a locked file or to
access one of the locked records, Visual Basic will generate a runtime exception.

If you omit the optional arguments, then the entire file is locked. If you specify the fromRecord
argument, then all following records are locked. Finally, you can lock a range of records by specify-
ing both optional arguments.

Width(fNum, length)
This is another useful statement that applies to sequential files only. The Width() function sets the
maximum line length that can be written to a file. The maximum line length is specified by the sec-
ond argument, length. A line with fewer characters than length is stored to the file as is. Longer lines are
broken; Visual Basic automatically inserts newline characters to enforce the specified maximum line
length. Use this function with the Print() and Write() functions, which append data to the same
line, to limit the length of each data line. Even better, you should use the PrintLine() and Write-
Line() methods to control how much information goes to the same line.

FileAttr(file_number)
The FileAttr() function returns an integer representing the file mode for files opened using the
FileOpen() function. The file_number argument is the number of the file. The value returned is one of
those in Table 21.

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF48

Table 21: Values Returned by the FileAttr() Function

Value Mode

1 Input

2 Output

4 Random

8 Append

32 Binary

Random-Number Generation
Visual Basic .NET supports the random-number generator of VB6, but it also provides a class for
generating random numbers, the System.Random class.

Rnd([seed])
This function returns a pseudo-random number in the range 0 to 1. The optional argument is called
a seed and is used as a starting point in the calculations that generate the random number.

Note The sequence of random numbers produced by Visual Basic is always the same! Let’s say you have an application
that displays three random numbers. If you stop and rerun the application, the same three numbers will be displayed. This
is not a bug. It’s a feature of Visual Basic that allows you to debug applications that use random numbers (if the sequence
were different, you wouldn’t be able to re-create the problem). To change this default behavior, call the Randomize state-
ment at the beginning of your code. This statement will initialize the random-number generator based on the value of the
computer’s Timer, and the sequences of random numbers will be different every time you run the application.

If seed is negative, the Rnd() function always returns the same sequence of random numbers. As
strange as this behavior may sound, you may need this feature to create repeatable random numbers
to test your code. If seed is positive (or omitted), the Rnd() function returns the next random number
in the sequence. Finally, if seed is zero, the Rnd() function returns the most recently generated ran-
dom number.

In most cases, you don’t need a random number between 0 and 1, but between two other integer
values. A playing card’s value is an integer in the range 1 through 13. To simulate the throw of a
dice, you need a number in the range 1 through 6. To generate a random number in the range lower
to upper, in which both bounds are integer numbers, use the following statement:

randomNumber = Int((upper - lower + 1) * Rnd() + lower)

The following statement displays a random number in the range 1 to 49:

Console.WriteLine(Int(Rnd() * 49 + 1))

chF49RANDOM-NUMBER GENERATION

Randomize [seed]
The Randomize statement initializes the random-number generator. The seed argument is a numeric
value, used to initialize the random-number generator. To create a different set of random numbers
every time the application is executed, use the current date as seed. However, using the same seed will
not return the same run of random numbers.

Graphics
This section discusses the two Visual Basic functions for color definition. The LoadPicture() and
SavePicture() functions, as well as the drawing statements of VB6, are no longer supported by
VB.NET.

QBColor(color)
This function returns an Integer representing the RGB color code corresponding to the specified
color number. The color argument is a number in the range 0 through 15. Each value returns a differ-
ent color, as shown in Table 22.

Table 22: Values for the color Argument

Value Color

0 Black

1 Blue

2 Green

3 Cyan

4 Red

5 Magenta

6 Yellow

7 White

8 Gray

9 Light Blue

10 Light Green

11 Light Cyan

12 Light Red

13 Light Magenta

14 Light Yellow

15 Bright White

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF50

Use the QBColor() function to specify colors if you want to address the needs of users with the
least-capable graphics adapter (one that can’t display more than the basic 16 colors). Also use it for
business applications that don’t require many colors.

RGB(red, green, blue)
This function returns an Integer representing a color value. The red, green, and blue arguments are inte-
ger values in the range 0 through 255, representing the values of the three basic colors. Table 23 lists
some of the most common colors and their corresponding red, green, and blue components. The
colors correspond to the eight corners of the RGB color cube.

Table 23: Common Colors and Their Corresponding RGB Components

Color Red Green Blue

Black 0 0 0

Blue 0 0 255

Green 0 255 0

Cyan 0 255 255

Red 255 0 0

Magenta 255 0 255

Yellow 255 255 0

White 255 255 255

The statement

Text1.BackColor = RGB(255, 0, 0)

assigns a pure red color to the background of the Text1 control.

Registry
Visual Basic provides a few special functions for storing values in the Registry. These functions are
safer than manipulting the Registry directly, and they access only a single branch of the Registry (in
other words, you can’t ruin by mistake the branch of another application).

SaveSetting(appname, section, key, setting)
This function stores a new setting in the Registry or updates an existing one. The appname argument is
the name of the application (or project) that stores the information in the Registry. It doesn’t have
to be the actual name of the application; it can be any string you supply, as long as it’s unique for
your application. The section argument is the name of the Registry section in which the key setting
will be saved. The key argument is the name of the key setting that will be saved. The last argument,

chF51REGISTRY

setting, is the value of the key to be saved. If setting can’t be saved for any reason, a runtime trappable
error is generated.

The following statements store the keys “Left” and “Top” in the Startup section of the applica-
tion’s branch in the Registry:

SaveSetting(“MyApp”, “Startup”, “Top”, Me.Top)
SaveSetting(“MyApp”, “Startup”, “Left”, Me.Left)

These values should be saved to the Registry when the application ends, and they should be read
when it starts, to place the form on the desktop. You can start the Registry Editor utility (select
Start ➢ Run and type regedit) and search for the string “MyApp.” When the corresponding
branch in the Registry is found, you will see how the keys “Top” and “Left” were stored there.

DeleteSetting(appname, section[, key])
This function deletes a section or key setting from an application’s entry in the Windows Registry.
Its arguments are the same as the ones by the same name of the SaveSetting function except for the
last one (the key’s setting). If the last argument is omitted, then all the keys in the specified section
are deleted. To remove the two keys added with the sample statements in the previous entry, use the
following statements:

DeleteSetting(“MyApp”, “Startup”, “Top”)
DeleteSetting(“MyApp”, “Startup”, “Left”)

Or delete them both with a single call to the DeleteSetting function:

DeleteSetting(“MyApp”, “Startup”)

GetSetting(appname, section, key[, default])
This function returns a key setting from an application’s branch in the Registry. The arguments app-
name, section, and key are the same as in the previous entries. The last argument, default, is optional and
contains the value to return if no value for the specified key exists in the Registry.

To read the key values stored in the Registry by the statements in the SaveSetting() entry, use the
following code segment:

Me.Top = GetSetting(“MyApp”, “Startup”, “Top”, 100)
Me.Left = GetSetting(“MyApp”, “Startup”, “Left”, 150)

Don’t omit the default values here, because the form may be sized oddly if these keys are missing.

GetAllSettings(appname, section)
This function returns a list of keys and their respective values from an application’s entry in the
Registry. The appname argument is the name of the application (or project) whose key settings are
requested. The section argument is the name of the section whose key settings are requested. The
GetAllSettings() function returns all the keys and settings in the specified section of the Registry in a
two-dimensional array. The element (0,0) of the array contains the name of the first key, and the ele-
ments (0,1) contains the setting of this key. The next two elements (1,0) and (1,1) contain the key
and setting of the second element, and so on. To find out how many keys are stored in the specific
section of the Registry, use the Length property of the array.

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF52

The following statement retrieves all the keys in the Startup section for the MyApp application
and stores them in the array AllSettings:

AllSettings = GetAllSettings(“MyApp”, “Startup”)

You can then set up a loop that scans the array and displays the key and setting pairs:

For i = 0 To AllSettings.GetUpperBound(0)
Console.WriteLine(AllSettings(i, 0) & “ = “ & AllSettings(i, 1))

Next

Application Collaboration
In this section I present the Shell() function, which allows you to start another application from
within your VB application. Once the application has been started successfully, you can activate its
window from within another application. This is a rude way of automating another application, but
if the application you want to automate doesn’t support VBA, the Shell() function and related state-
ments are the only options.

Shell(path_name[, style][, wait][, timeout])
This function starts another application and returns a value representing the program’s task ID if suc-
cessful; otherwise, it returns zero. The path_name argument is the full path name of the application to be
started and any arguments it may expect. The optional argument style determines the style of the win-
dow in which the application will be executed, and it can have one of the values shown in Table 24.

Table 24: The AppWinStyle Enumeration

Value Description

Hide The window is hidden, and focus is passed to it.

NormalFocus The window has the focus and is restored to its original size and position.

MinimizedFocus The window is displayed as an icon that has the focus.

MaximizedFocus The window is maximized and has the focus.

NormalNoFocus The window is restored to its most recent size and position. The currently active win-
dow remains active.

MinimizedNoFocus The window is displayed as an icon. The currently active window remains active.

The wait argument is a True/False value indicating whether the calling application should wait
for the shelled process to terminate or not. The default value is False. By default, the Shell() function
runs other programs asynchronously. This means that a program started with Shell() might not fin-
ish executing before the statements following the Shell() function are executed. The last argument is
the number of milliseconds you’re willing to wait for the shelled process to terminate. If the speci-
fied number of milliseconds elapses, then a timeout exception will occur. The default value of the
timeout argument is –1, which means that no timeout will ever occur.

chF53APPLICATION COLLABORATION

To start Notepad from within your VB application, use the following statement:

NPAD = Shell(“notepad.exe”, AppWinStyle.NormalFocus)

Notice that you need not specify the path name of the executable file, if it’s on the path (the
NOTEPAD.EXE file resides in the Windows folder). The NPAD value identifies the specific instance of
the Notepad application, and you can use it from within your code to activate the external application.

The SendKeys statement of VB6 is not supported by VB.NET.

AppActivate(title[, wait])
This function (which does not return a value) lets you activate an application that you started previ-
ously from within your VB code with the Shell() function. The first argument, title, specifies the title
of the application (as it appears in the titlebar of the application’s window). You can also use the
ID of the application returned by the Shell() function. The wait argument is optional; it’s a Boolean
value that determines whether the calling application has the focus before activating another. If it’s
False (the default value), the specified application is immediately activated, even if the calling appli-
cation does not have the focus. If it’s True, your application must wait until it gets the focus before
it can activate the external application. The AppActivate statement changes the focus to the named
application or window but does not affect whether it is maximized or minimized.

If you’re using the application’s title to activate it, make sure you provide enough information
to make it unique. Word’s title is “Microsoft Word” followed by the name of the active document.
If you specify only the string “Microsoft Word” and multiple instances of Word are running, you
don’t know which one will be activated by the AppActivate statement. It is best to use the ID of the
application you started with the Shell() function.

Option Statements
The Option statements let you specify options (like the subscripting of arrays and sorting order) in a
module. The Option statements appear at the beginning of a module and affect the code in that spe-
cific module.

Option Compare
This statement, which takes effect in the module in which it appears, determines how Visual Basic
will perform string comparisons. While comparing numeric values is straightforward and there’s no
question as to the order of numeric values, things aren’t as trivial with strings. String comparisons
can be case-sensitive or case-insensitive, and the Compare option can be set to one of the following
two values:

Option Compare Binary Sorts strings based on the internal binary representation of the char-
acters. With the Binary sort option, all uppercase characters come before the lowercase characters,
and foreign symbols are at the end, again with uppercase characters ahead of lowercase characters:

A < B < C … < Z < a < b < c … < z < À < Á < Â < …<à < á <â …

Option Compare Text Sorts strings using case-sensitive order (that is, A = a < À = à < … B
= b < … so on). This is the natural sort order for names.

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF54

Option Explicit
This statement tells the compiler to check each variable in the module before using it and to issue an
error message if you attempt to use a variable without having previously declared it. If you decide to
declare all variables in your projects (to avoid excessive use of variants), you can ask Visual Basic to
insert the Option Explicit statement automatically in every module by setting the Option Explicit
item to On in the Build tab of the Project Property Pages.

When Option Explicit appears in a module, you must explicitly declare all variables. If you
don’t use the Option Explicit statement, all undeclared variables are of Object type.

Option Strict
The Explicit option forces you to declare all variables before using them in your code, but it doesn’t
force every variable to have a specific type. The Strict option requires that all variables be declared
with a specific type. Moreover, when the Strict option is on, you must explicitly convert between
data types. The defult value of this Strict option is off and you can turn it on in individual files, or
turn it on for all the files in a project from within the Build tab of the Project Property Pages.

Miscellaneous
This section describes the functions and statements that don’t fit in any other category.

Choose(index, choice1[, choice2, ...])
The Choose() function selects and returns a value from a list of arguments. The index argument is a
numeric value between 1 and the number of available choices. The following arguments, choice1,
choice2, and so on, are the available options. The function will return the first choice if index is 1, the
second option if index is 2, and so on.

One of the uses of the Choose() function is to translate single digits to strings. The function Int-
ToString() returns the name of the digit passed as an argument:

Function IntToString(int As Integer) As String
IntToString = Choose (int + 1, “zero”, “one”, “two”, “three”, _

“four”, “five”, “six”, “seven”, “eight”, “nine”)
End Function

If index is less than one or larger than the number of options, the Choose() function returns a
Null value. To test the IntToString() function, call it with a statement like the following:

MsgBox(IntToString(8))

IIf(expression, truepart, falsepart)
This function returns one of two parts, depending on the evaluation of expression. If the expression
argument is True, the truepart argument is returned. If expression is not True, the falsepart argument is
returned. The IIf() function is equivalent to the following If clause:

If expression Then
result = truepart

Else
result = falsepart

End If

chF55MISCELLANEOUS

In many situations, this logic significantly reduces the amount of code. The Min() and Max()
functions, for instance, can be easily implemented with the IIf() function:

Min = IIf(a < b, a, b)
Max = IIf(a > b, a, b)

Switch(expression1, value1, expression2, value2, …)
This function evaluates a list of expressions and returns a value associated with the first expression in
the list that happens to be True. If none of the expressions is True, the function returns Null. The
following statement selects the proper quadrant depending on the signs of the variables X and Y:

Quadrant = Switch(X>0 and Y>0, 1, X<0 and Y>0, 2, X<0 and Y<0, 3, X<0 and Y<0, 4)

If both X and Y are negative, the Quadrant variable is assigned the value 1. If X is negative and Y is
positive, Quadrant becomes 2, and so on. If either X or Y is zero, none of the expressions are True,
and Quadrant becomes Null.

Environ()
This function returns the environment variables (operating system variables set with the SET com-
mand). To access an environment variable, use a numeric index or the variable’s name. If you access
the environment variables by index, as in

Console.WriteLine(Environ(2))

you’ll get a string that contains both the name of the environment variable and its value, such as:

TMP=C:\WINDOWS\TEMP

To retrieve only the value of the TMP environment variable, use the expression

Console.WriteLine(Environ(“TMP”))

and the function will return the value:

C:\WINDOWS\TEMP

If you specify a nonexistent environment variable name, a zero-length string (“”) is returned.

Beep
This statement sounds a tone of short duration through the computer’s speaker. The pitch and dura-
tion of the beep depend on the target computer and can’t be adjusted. This is the simplest form of
audio warning you can add to your application, as it doesn’t require a sound card.

CallByName(object, procedurename, calltype[, arguments()])
This function executes a method of an object, or sets/returns an object property. The object argument
is the name of the object, whose method will be called or whose property will be set or read. proce-
durename is the name of a property or method of the object, on which the function will act. The call-
type argument specifies the type of procedure being called and can have one of the values shown in
Table 25.

BONUS REFERENCE VB.NET FUNCTIONS AND STATEMENTSchF56

Table 25: The CallType Enumeration

Constant Definition

Get Reads a property value

Set Sets a property value

Method Calls a method of the object

The last argument is an array, which contains the arguments required by the method, or the value
of the property to be set.

To set the Text property of the Text1 control, you’d write a statement like:

TextBox1.Text = “Welcome to VB.NET”

You can call the CallByName() function to set the same property to the same value as follows:

CallByName(TextBox1, “Text”, CallType.Set, “Welcome to VB.NET”)

Notice that the first argument is the actual object, not a string variable with the name of the
object. The statements

ObjectName = “TextBox1”
CallByName ObjectName, “Text”, CallType.Set, “Welcome to VB.NET”

will generate a runtime error. If you want to use a variable, you must first set it to an existing object,
as shown next:

Dim MyObject As Object
MyObject = TextBox1
CallByName MyObject, “Text”, CallType.Set, “Welcome to VB.NET”

To retrieve the value of the Text property of the same control, use the following statement:

MyText = CallByName(TextBox1, “Text”, CallType.Get)

The CallByName() function can be used to invoke a method of an object.
It’s simpler to invoke methods and set or read property values with the notation ojbect.property

or object.method. There may be situations where you must call one of several methods that are not
known at design time, and this is when the CallByName() function will come in handy.

chF57MISCELLANEOUS

	VB.NET Functions and Statements
	File and Folder Manipulation
	Data Type Identification
	Variable Type Conversion
	String Manipulation
	Data Formatting
	Math
	Date and Time
	Financial
	File I/O
	Random-Number Generation
	Graphics
	Registry
	Application Collaboration
	Option Statements
	Miscellaneous
	Input/Output

