

Contents

Overview 1

Defining Classes 2

Creating and Destroying Objects 16

Demonstration: Creating Classes 23
Lab 5.1: Creating the Customer Class 24

Inheritance 31

Demonstration: Inheritance 43
Interfaces 44

Demonstration: Interfaces and
Polymorphism 50

Working with Classes 51
Lab 5.2: Inheriting the Package Class 65

Review 74

Module 5: Object-
Oriented Programming
in Visual Basic .NET

This course is based on the prerelease version (Beta 2) of Microsoft® Visual
Studio® .NET Enterprise Edition. Content in the final release of the course may be
different from the content included in this prerelease version. All labs in the course are to
be completed with the Beta 2 version of Visual Studio .NET Enterprise Edition.

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted
in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or
for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

© 2001 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, BizTalk, FrontPage, IntelliSense, JScript,
Microsoft Press, Outlook, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#, Visual
InterDev, Visual Studio, and Windows Media are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 5: Object-Oriented Programming in Visual Basic .NET iii

Instructor Notes

This module provides students with the knowledge required to create object-
oriented applications that use many of the new features of Microsoft®
Visual Basic ® .NET, such as inheritance, overloading, shared members, and
event handling.

In the first lab, students will create part of the Customer class for the Cargo
system that they designed in Lab 4.1, Creating Diagrams from Use Cases. They
will define the properties, methods, and constructors, based on those shown in
Lab 4.1. Finally, they will write the code in a form to test the Customer class.

In the second lab, students will create a base class called Package and a derived
class called SpecialPackage . The classes contain some pre-written code,
including the properties. Students will add methods to both classes and create
the inheritance relationship. They will then complete a pre-written form to test
their classes.

After completing this module, students will be able to:

n Define classes.

n Instantiate and use objects in client code.

n Create classes that use inheritance.

n Define interfaces and use polymorphism.

n Create shared members.

n Create class events and handle them from a client application.

Presentation:
90 Minutes

Labs:
105 Minutes

iv Module 5: Object-Oriented Programming in Visual Basic .NET

Materials and Preparation
This section provides the materials and preparation tasks that you need to teach
this module.

Required Materials
To teach this module, you need the following materials:

n Microsoft PowerPoint® file 2373A_05.ppt

n Module 5, “Object-Oriented Programming in Visual Basic .NET”

n Lab 5.1, Creating the Customer Class

n Lab 5.2, Inheriting the Package Class

Preparation Tasks
To prepare for this module, you should:

n Read all of the materials for this module.

n Read the instructor notes and the margin notes for the module.

n Practice the demonstrations.

n Complete the labs.

 Module 5: Object-Oriented Programming in Visual Basic .NET v

Demonstrations
This section provides demonstration procedures that will not fit in the margin
notes or are not appropriate for the student notes.

Creating Classes
å To examine the Employee class

1. Open the Classes.sln solution in the install folder\DemoCode\
Mod05\Classes folder.

2. View the code for the Employee class and point out the private variables,
the properties, and the multiple constructors. Specifically point out the
EmployeeId read-only property.

å To test the New Employee code
1. Run the project.

2. Enter values for the First Name and the Last Name.

3. Click the New Employee button on the form. The code will enter break
mode at the preset breakpoint.

4. Step through the code, and explain each line as you go. Inc lude the Dispose
method but not the Finalize method. Point out that, in a real situation, the
Dispose method would be used for saving data and closing a database
connection.

å To test the Existing Employee code

1. Enter a positive integer value for the Id (any number will work), and then
click the Existing button.

2. Point out that this time the constructor takes the intEmpId as a parameter,
so it can load the data from a database immediately.

3. Step through the code until the object has been instantiated, and then press
F5 to allow the remaining code to run.

vi Module 5: Object-Oriented Programming in Visual Basic .NET

å To test the Improved New Employee code

1. Click the Improved New button on the form, and then step through the
code when execution halts at the preset breakpoint.

2. Point out that the constructor takes strFirstName and strLastName as
parameters so that it can create a new Employee immediately.

3. Step through the initialization code, and then press F5 to display the form
again.

4. Click the Close button to close the form and stop the application. Explain
that this will cause all remaining objects to be destroyed, and that the
Finalize methods will execute.

Remind students that the Finalize method should only be used when
resources need to be manually reclaimed (such as database connections)
because it creates more work for the garbage collector. In this case the
Finalize method calls the Dispose method again to ensure that the resources
have been reclaimed in case the class user has forgotten to call the Dispose
method explicitly. The Finalize method is not necessary if the class user has
called the Dispose method. A call to GC.SuppressFinalize within the
Dispose method would have stopped the Finalize method from executing
and would therefore have improved performance.

5. Quit the Microsoft Visual Studio ® .NET integrated development
environment (IDE).

Inheritance
å To examine the Person class

1. Open the Inheritance.sln solution in the install folder\DemoCode\
Mod05\Inheritance folder.

2. View the code for the Person class, and point out the private variables, the
properties, and the methods.

3. View the code for the Employee class, and point out that it is a simplified
version of the class used in the previous demonstration in that it has only
one constructor. Show that it inherits from the Person class and only stores
the EmployeeId value. Also, point out that the FirstName and LastName
properties are not defined in this class.

 Module 5: Object-Oriented Programming in Visual Basic .NET vii

å To test the project

1. Run the project.

2. Type values in the First Name and the Last Name boxes.

3. Click the New Person button on the form. The code will enter break mode
at the first preset breakpoint.

4. Step through the code, explaining each line of code as you go. This will
include the Dispose method and the Finalize method when the GC.Collect
method is executed.

5. Point out that the Finalize method also calls the Dispose method of the
Person by means of the MyClass object.

6. Enter a positive integer value for the Id (any number will work), and click
Existing Emp.

7. Point out that this time many of the inherited properties of the Person class
are called rather than those of Employee.

8. Step through the code until the form appears again.

9. Close the form and quit the Visual Studio .NET IDE.

Interfaces and Polymorphism
å To view the application code

1. Open the Polymorphism.sln solution in the install folder\DemoCode\
Mod05\Polymorphism folder.

2. View the code for the IPerson interface. Point out the property and method
definitions and that there is no implementation code.

3. View the code for the Employee class, and point out that it now implements
the IPerson interface and stores the intEmployeeId, strFName, and
strLName values. Also point out the Public EmployeeId property, the
Private FirstName and Private LastName properties, and the new syntax
for the Implements keyword in each method signature. Explain that
because the properties are marked as private, they will only be visible from
the IPerson interface. Also explain that marking the properties as private is
optional. They could have been marked as public, making them visible from
both the IPerson interface and the Employee class.

4. View the code for the Student class, and point out that it implements the
IPerson interface and stores the strCourse, strFName, and strLName
values. Also point out that the Public Save method implements the Save
method of the IPerson interface.

Delivery Tip
Explain that students can
use either public or private
methods within the class
when implementing the
interface.

viii Module 5: Object-Oriented Programming in Visual Basic .NET

å To test the application

1. Run the project.

2. Click the New Employee button on the form. The Visual Basic .NET
process will halt at the first preset breakpoint.

3. Step through the code, explaining each line as you go. Point out that both
the Employee class and the IPerson interface are used to access the various
members. The perPerson.Save method is called first to show what happens
if you use the IPerson interface. The empEmployee.SaveEmployee
method shows that you can use any name that you choose for the
implemented method.

4. Click the New Student button on the form. The code will enter break mode
at the preset breakpoint.

5. Step through the code, explaining each line as you go. Point out the
similarity in the calling code for the IPerson methods of both the Student
and Employee objects, and explain how this aids code reuse.

6. Close the form and quit the Visual Studio .NET IDE.

Handling Events
å To view the code

1. Open the Events.sln solution in the install folder\DemoCode\Mod05\Events
folder.

2. View the code for the Employee class, and point out the DataChanged
event in the declarations section and its purpose. In the FirstName property,
point out the raising of the event and the purpose of the code that checks the
blnCancelled value.

3. View the code for the frmEvents form, and point out the module-level
variable that uses WithEvents.

4. Click the Class Name combo box, and then click empEmployee. In the
Method Name combo box, click DataChanged. Examine the default event
handler code, and point out the Handles keyword in the function declaration.

å To test the events
1. Run the project.

2. Click the WithEvents button on the form. The code will enter break mode
at the preset breakpoint.

3. Step through the code, explaining each line of code as you go. This will
include the RaiseEvent code in the Employee class.

4. Click the AddHandler button on the form. The code will enter break mode
at the preset breakpoint.

5. Explain the AddHandler statement, and examine the
EmployeeDataChange method at the end of the code for the form.

6. Continue debugging as the events are raised to the EmployeeDataChange
method.

7. Close the form and quit the Visual Studio .NET IDE.

 Module 5: Object-Oriented Programming in Visual Basic .NET ix

Module Strategy
Use the following strategy to present this module:

n Defining Classes

This lesson describes how to create classes in Visual Basic .NET. Students
will learn how to declare methods and properties, and how to overload class
members. When you introduce students to class constructors and destructors,
including multiple constructors, point out that the Finalize method should
only be used when resources need to be manually reclaimed (such as
database connections) because this method adds overhead to the disposing
of objects.

Some of this lesson contains simple tasks such as how to create classes and
methods. Cover these areas quickly so that more time can be spent on new
features, such as the syntax for defining properties and constructors.

n Creating and Destroying Objects

This lesson describes how to declare, instantiate, and initialize objects.
Contrast this approach to the approach used in previous versions of
Visual Basic to show the usefulness of constructors.

Introduce garbage collection as an important change in the way objects are
destroyed. Ensure that students understand this process, because many
developers will be unaware of the potential dangers. Present the Dispose
method as a suggested way to handle issues raised by garbage collection.
Point out that the notes present two common techniques for creating the
Dispose method, and that the IDisposable interface provides a more
consistent approach. If time permits, you may want to show students the
“GC Class” topic in the Visual Studio .NET documentation.

Use the instructor-led demonstration to demonstrate how to create classes
that contain multiple constructors. In this demonstration, you will also show
how to instantiate and use classes from calling code.

Have students complete the first lab after the demonstration.

n Inheritance

This lesson explains how to use the new Visual Basic .NET class
inheritance features. Introduce students to member overriding, the MyBase
keyword, and the MyClass keyword. These important features will be new
to many students, so be prepared to demonstrate different scenarios to
reiterate the concepts.

Use the instructor-led inheritance demonstration to show how to use the
various keywords to create a simple Person class that is used as a base class
for an Employee class.

x Module 5: Object-Oriented Programming in Visual Basic .NET

n Interfaces

This lesson explains how to define interfaces in Visual Basic .NET and
examines the various ways to achieve polymorphism.

Use the instructor-led polymorphism demonstration to show how to use
interfaces to define an IPerson interface that is then implemented by
Student and Employee classes.

This lesson will be a challenge for many students. You will need to gauge
the level of understanding and decide how much time to spend on the
material and the demonstration. Tell students where they can find additional
information about this topic, possibly including books or white papers.

For more information about interfaces and polymorphism, search for
“interfaces and polymorphism” in the Visual Studio .NET documentation
and at http://msdn.microsoft.com

n Working with Classes

This lesson shows how to create shared members, events, and delegates.

The Event Handing topic mentions the AddressOf operator but does not
explain it in depth because it is not new to Visual Basic .NET. Some
students, however, may require a more detailed explanation.

Students may also find the concept of delegates to be difficult. A detailed
example is provided in the student notes, and you may need to go through
this example with the students. This example is also provided in the
DemoCode folder, although no instructions accompany this code.

Use the instructor-led demonstration to show how to define and handle
events in a simple class.

 Module 5: Object-Oriented Programming in Visual Basic .NET 1

Overview

n Defining Classes

n Creating and Destroying Objects

n Inheritance

n Interfaces

n Working with Classes

In this module, you will learn how to implement object-oriented programming
in Microsoft® Visual Basic® .NET version 7.0. You will learn how to define
classes, their properties, and their methods. You will learn about the life cycle
of an object, from creation to destruction. You will also learn how to work with
classes by using inheritance, interfaces, polymorphism, shared members, events,
and delegates.

After completing this module, you will be able to:

n Define classes.

n Instantiate and use objects in client code.

n Create classes that use inheritance.

n Define interfaces and use polymorphism.

n Create shared members.

n Create class events and handle them from a client application.

Topic Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module, you will learn
how to implement object-
oriented programming in
Visual Basic .NET.

Delivery Tip
This module introduces
many important new
features of
Visual Basic .NET. Ensure
that students fully
understand these concepts
before moving on to the next
module.

2 Module 5: Object-Oriented Programming in Visual Basic .NET

u Defining Classes

n Procedure for Defining a Class

n Using Access Modifiers

n Declaring Methods

n Declaring Properties

n Using Attributes

n Overloading Methods

n Using Constructors

n Using Destructors

In this lesson, you will learn how to define classes in Visual Basic .NET. After
completing this lesson, you will be able to:

n Specify access modifiers (scope) for classes and their procedures.

n Declare methods and properties within a class.

n Use attributes to provide metadata about your code.

n Pass different parameters to one method by using overloading.

n Create and destroy objects.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
This lesson explains how to
define classes.

 Module 5: Object-Oriented Programming in Visual Basic .NET 3

Procedure for Defining a Class

Add a Class to the Project

Provide an Appropriate Name for the Class

Create Constructors As Needed

Create a Destructor, If Appropriate

Declare Properties

Declare Methods and Events

To define a class in Visual Basic .NET, you can follow this general procedure:

1. Add a class to the project.

2. Provide an appropriate file name for the class when you add it. This will
name both the file and the class itself. If you do not change the file name
when you add it, you can change the class name at any time by changing the
class definition in the code window.

3. Create constructors as needed.

4. Create a destructor if appropriate.

5. Declare properties.

6. Declare methods and events.

In Visual Basic .NET, you can define more than one class in a single file.
You are not limited to one class per file, as you are in previous versions of
Visual Basic, because classes are a block level construct.

Topic Objective
To outline the procedure for
defining a class.

Lead-in
Defining a class is a simple
procedure.

Delivery Tip
Point out that you can define
as many classes as you
need in a module. You are
not limited to one class per
file, as you are in previous
versions of Visual Basic.

Note

4 Module 5: Object-Oriented Programming in Visual Basic .NET

Using Access Modifiers

n Specify Accessibility of Variables and Procedures

DefinitionKeyword

Only for use on class members. Accessible within
the class itself and any derived classes.

Protected

The union of Protected and Friend.Protected
Friend

Accessible within the type itself and all
namespaces and code within the same assembly.

Friend

Accessible only within the type itself.Private

Accessible everywhere.Public

You can use access modifiers to specify the scope of the variables and
procedures in the class that you define. Visual Basic .NET retains three access
modifiers that are used in previous versions of Visual Basic and adds two more:
Protected and Protected Friend. The following table defines the five access
modifiers available in Visual Basic .NET.

Access modifier Definition

Public Accessible everywhere.

Private Accessible only within the type itself.

Friend Accessible within the type itself and all namespaces and code
within the same assembly.

Protected Accessible within the class itself and, if other classes are inheriting
from the class, within any derived classes. Protected members are
available outside of an assembly when inherited by derived
classes.

Protected Friend The union of Protected and Friend. Accessible to code within the
same assembly and to any derived classes regardless of the
assembly to which they belong.

Inheritance in Visual Basic .NET is described in detail in the Inheritance
lesson of this module.

Topic Objective
To describe the access
modifiers that are available
in Visual Basic .NET.

Lead-in
Before looking at the details
for defining classes, you
need to understand how
access modifiers affect
classes.

Note

 Module 5: Object-Oriented Programming in Visual Basic .NET 5

Declaring Methods

n Same Syntax As in Visual Basic 6.0

Public Sub TestIt(ByVal x As Integer)
...
End Sub

Public Function GetIt() As Integer
...
End Function

Public Sub TestIt(ByVal x As Integer)
...
End Sub

Public Function GetIt() As Integer
...
End Function

You use the same syntax to declare a method in Visual Basic .NET that you
used in Visual Basic 6.0, as shown in the following example:

Public Class TestClass

 Public Sub TestIt(ByVal x As Integer)
 ...
 End Sub

 Public Function GetIt() As Integer
 ...
 End Function

End Class

Topic Objective
To explain how to declare
methods in a class.

Lead-in
The syntax for declaring
methods in a class has
not changed in
Visual Basic .NET.

6 Module 5: Object-Oriented Programming in Visual Basic .NET

Declaring Properties

n Syntax Differs from That of Visual Basic 6.0

Public Property MyData() As Integer
Get

Return intMyData 'Return local variable value
End Get
Set (ByVal Value As Integer)

intMyData = Value 'Store Value in local variable
End Set

End Property

Public Property MyData() As Integer
Get

Return intMyData 'Return local variable value
End Get
Set (ByVal Value As Integer)

intMyData = Value 'Store Value in local variable
End Set

End Property

Public ReadOnly Property MyData() As Integer
Get

Return intMyData
End Get

End Property

Public ReadOnly Property MyData() As Integer
Get

Return intMyData
End Get

End Property

n ReadOnly, WriteOnly, and Default Keywords

The syntax for declaring class properties has changed significantly in
Visual Basic .NET.

Syntax for Declaring Properties
In Visual Basic 6.0, you create properties by declaring two separate procedures:
one for the Get and one for the Let orSet. In Visual Basic .NET, you declare
your properties by using two code blocks in a single procedure, as follows:

 [Default|ReadOnly|WriteOnly] Property varname ([parameter
list]) [As typename]
 Get
 [block]
 End Get
 Set (ByVal Value As typename)
 [block]
 End Set
End Property

When you create a property declaration, the Visual Basic .NET Code Editor
inserts a template for the remainder of the property body.

Topic Objective
To explain how to declare
properties in a class.

Lead-in
The syntax for declaring
class properties has
changed significantly in
Visual Basic .NET.

Delivery Tip
This is an animated slide. It
begins by showing the
property syntax. Click the
slide to reveal a ReadOnly
example.

 Module 5: Object-Oriented Programming in Visual Basic .NET 7

Example
The following example shows how to declare a property called MyData of type
Integer. The Get block returns an unseen local variable called intMyData by
using a Return statement. The Set block uses the Value parameter to store the
passed-in property value to the intMyData local variable.

Private intMyData As Integer

Public Property MyData() As Integer
 Get
 Return intMyData
 End Get
 Set (ByVal Value As Integer)
 intMyData = Value
 End Set
End Property

Using Read-Only Properties
You can create read-only properties by using the ReadOnly keyword when you
declare the property. Read-only properties cannot be used in an assignment
statement. The following example shows how to specify a read-only property:

Public ReadOnly Property MyData() As Integer
 Get
 Return intMyData
 End Get
End Property

You cannot use the Set block when defining read-only properties because the
property cannot be updated. The compiler will generate an error if you attempt
to do this.

Using Write-Only Properties
You can create write-only properties by using the WriteOnly keyword when
you declare the property. Write-only properties cannot be used to retrieve the
value of the property. The following example shows how to create a write-only
property:

Public WriteOnly Property MyData() As Integer
 Set (ByVal Value As Integer)
 intMyData = Value
 End Set
End Property

You cannot use the Get block when defining write-only properties because the
property is not readable. The compiler will generate an error if you attempt to
do this.

8 Module 5: Object-Oriented Programming in Visual Basic .NET

Using Default Properties
You can create a default property for a class by using the Default keyword
when you declare the property. You must code the property to take at least one
argument, and you must specify Public, Protected, or Friend access.

The following example shows how to declare a default property that takes an
index as an argument and returns a Boolean value:

Default Public Property Item(ByVal index As Integer) _
 As Boolean
 Get
 Return myArray(index) 'Uses a private module-level array
 End Get
 Set(ByVal Value As Boolean)
 myArray(index) = Value
 End Set
End Property

 Module 5: Object-Oriented Programming in Visual Basic .NET 9

Using Attributes

n Extra Metadata Supplied by Using “< >” Brackets

n Supported for:

l Assemblies, classes, methods, properties, and more

n Common Uses:

l Assembly versioning, Web Services, components,
security, and custom

<Obsol e t e (" P l e a s e u s e method M2 ") > Publ ic Sub M1 ()
' Resul ts in warn ing in IDE when used by c l ient code

End Sub

<Obsol ete("Please use method M2")> Publ i c Sub M1()
' Resul ts in warn ing in IDE when used by c l ient code

End Sub

You can use attributes to provide extra information or metadata to the
developers who read your code. In Visual Basic .NET, you use angular brackets
(< and >) to specify an attribute.

You can apply attributes to many items within your application, including
assemblies, modules, classes, methods, properties, parameters, and fields in
modules, classes, and structures.

Here are some examples of how to use attributes:

n In assemblies, you can specify metadata including the title, description, and
version information of the assembly.

n When creating a Web Service, you can define which methods are accessible
as part of the service, in addition to adding descriptions to the methods.

n When designing Windows Forms controls, you can specify information to
display in the property browser, or you can set the Toolbox icon.

n For components that use enterprise services, you can set transaction and
security settings.

Functionality is provided by the Microsoft .NET Framework to allow you to
create your own custom attributes and use them as you want in your
applications.

For more information about creating custom attributes, see “Writing
Custom Attributes” in the Microsoft Visual Studio ® .NET documentation.

Topic Objective
To explain how to use
attributes.

Lead-in
Attributes provide extra
information about your code.

Delivery Tip
Discuss some of the
common uses for attributes,
but point out that we will
cover individual attributes
throughout the course.

Note

10 Module 5: Object-Oriented Programming in Visual Basic .NET

Example
The following example shows how to use the Obsolete attribute to warn
developers that a method can no longer be used. An optional message is
displayed in the Task List window if a developer attempts to use this method.
Using the Obsolete method will not create an error when the application is
compiled, but will generate a warning as follows:

<Obsolete("Please use method M2")> Public Sub M1()
 'Results in warning in IDE when used by client code
End Sub

All attributes are simply classes that inherit from the Attribute class and
provide constructors. The Obsolete class provides a single constructor that
takes a string as the parameter.

Note

 Module 5: Object-Oriented Programming in Visual Basic .NET 11

Overloading Methods

n Methods with the Same Name Can Accept Different
Parameters

n Specified Parameters Determine Which Method to Call

n The Overloads Keyword is Optional Unless Overloading
Inherited Methods

Public Function Display(s As String) As String
MsgBox("String: " & s)
Return "String"

End Sub
Public Function Display(i As Integer) As Integer

MsgBox("Integer: " & i)
Return 1

End Function

Public Function Display(s As String) As String
MsgBox("String: " & s)
Return "String"

End Sub

Public Function Display(i As Integer) As Integer
MsgBox("Integer: " & i)
Return 1

End Function

Overloading is a powerful object-oriented feature that allows multiple methods
to have the same name but accept different parameters. Overloading allows
calling code to execute one method name but achieve different actions,
depending on the parameters you pass in.

For overloading to occur, the method signature must be unique. You can
achieve this by changing the number of parameters in the signature or by
changing the data types of the parameters. Changing the way a parameter is
passed (that is, by value or by reference) does not make a signature unique, nor
does changing a function return data type.

You can optionally specify a method as overloaded with the Overloads
keyword. If you do not use the keyword, the compiler assumes it by default
when you declare multiple methods that have the same name. However, when
overloading a method from an inherited class, you must use the Overloads
keyword.

Overloading a method from an inherited class will be discussed in the
Inheritance lesson of this module.

Topic Objective
To introduce the concept
and syntax of overloading in
Visual Basic .NET.

Lead-in
Overloading is a powerful
object-oriented feature that
allows multiple methods to
have the same name but
accept different parameters.

Delivery Tip
Students who are familiar
with Microsoft Visual C++
will understand operator
overloading. You might want
to ask for examples from
these students.

Note

12 Module 5: Object-Oriented Programming in Visual Basic .NET

The following example shows how to overload a method. This code allows
different types of information (string, integers, and so on) to be displayed by
calling the Display method of a class and passing in different parameters.

Public Function Display(s As String) As String
 MsgBox("String: " & s)
 Return "String"
End Sub

Public Function Display(i As Integer) As Integer
 MsgBox("Integer: " & i)
 Return 1
End Function

When you call the Display method, the parameters you specify determine
which overloaded method will be called.

Without using overloading, you need two different methods , such as
DisplayString and DisplayInteger, to accept the different types of parameters
in the preceding example.

If the Option Strict compiler option is on, you must explicitly declare
values as specific types when passing them to the overloaded methods as
parameters, and the compiler can identify which instance of the method to call.
If Option Strict is off and a generic variable (such as Object) is passed as a
parameter, the decision of which instance of the method to call is left until run
time. For more information about overload resolution, see “Procedure
Overloading” in the Visual Studio .NET documentation.

Note

 Module 5: Object-Oriented Programming in Visual Basic .NET 13

Using Constructors

n Sub New Replaces Class_Initialize

n Executes Code When Object Is Instantiated
Public Sub New()

'Perform simple initialization
intValue = 1

End Sub

Public Sub New()
'Perform simple initialization
intValue = 1

End Sub

Public Sub New(ByVal i As Integer) 'Overloaded without Overloads
'Perform more complex initialization
intValue = i

End Sub

Public Sub New(ByVal i As Integer) 'Overloaded without Overloads
'Perform more complex initialization
intValue = i

End Sub

n Can Overload, But Does Not Use Overloads Keyword

In Visual Basic 6.0, you place initialization code in the Class_Initialize event
of your class. This code is executed when the object is instantiated, and you can
use it to set initial values of local variables, to open resources, or to instantiate
other objects.

In Visual Basic .NET, you control the initialization of new objects by using
procedures called constructors. The Sub New constructor replaces the
Class_Initialize event and has the following features:

n The code in the Sub New block will always run before any other code in a
class.

n Unlike Class_Initialize , the Sub New constructor will only run once: when
an object is created.

n Sub New can only be called explicitly in the first line of code of another
constructor, from either the same class or a derived class using the MyBase
keyword.

Using Sub New
The following example shows how to use the Sub New constructor:

Public Sub New()
 'Perform simple initialization
 intValue = 1
End Sub

The change in Visual Basic .NET from the Class_Initialize event to the Sub
New constructor means you can overload the New subroutine and create as
many class constructors as you require. This is useful if you want to initialize
your object when you instantiate it. To do this in Visual Basic 6.0, you must
call methods or properties after the object is created.

Topic Objective
To explain the concept and
syntax of class constructors.

Lead-in
Visual Basic .NET allows
you to create class
constructors.

Delivery Tip
This is an animated slide. It
begins by showing the first
example. Click the slide to
reveal an example of
overloading.

14 Module 5: Object-Oriented Programming in Visual Basic .NET

Overloading Constructors
You can overload constructors just as you can overload any other method in a
class. However, you cannot us e the Overloads keyword when overloading
constructors. The following example shows how to overload the New
subroutine and create multiple class constructors:

Public Sub New() 'Perform simple initialization
 intValue = 1
End Sub

Public Sub New(ByVal i As Integer)
 'Perform more complex initialization
 intValue = i
End Sub

Public Sub New(ByVal i As Integer, _
 ByVal s As String)
 intValue = i
 strValue = s
End Sub

 Module 5: Object-Oriented Programming in Visual Basic .NET 15

Using Destructors

n Sub Finalize Replaces Class_Terminate Event

n Use to Clean Up Resources

n Code Executed When Destroyed by Garbage Collection

l Important: destruction may not happen immediately

Protected Overrides Sub Finalize()

'Can close connections or other resources

conn.Close

End Sub

Protected Overrides Sub Finalize()

'Can close connections or other resources

conn.Close

End Sub

In Visual Basic .NET, you can control what happens during the destruction of
objects by using procedures called destructors.

The new Finalize destructor replaces the Class_Terminate event found in
previous versions of Visual Basic. This subroutine is executed when your object
is destroyed, and you can use it to clean up open resources, such as database
connections, or to release other objects in an object model hierarchy.

The following example shows how to use the Finalize destructor:

Protected Overrides Sub Finalize()
 'Can close connections of other resources
 conn.Close
End Sub

You will learn about the Overrides keyword in the Inheritance lesson of
this module.

In Visual Basic 6.0, the Class_Terminate event runs when an object is no
longer being referenced by any variables. You use the Set x = Nothing
statement to release a particular reference. When all the references are gone, the
event executes and resources can be cleaned up.

In Visual Basic .NET, when you set an object reference to Nothing, you still
release variables. However, the object may not be destroyed until a later stage
due to the introduction of garbage collection.

Topic Objective
To explain destructors
and their syntax in
Visual Basic .NET.

Lead-in
Destructors are used to
destroy objects in
Visual Basic .NET.

Delivery Tip
Point out that the Finalize
method should only be used
where necessary so it
doesn’t cause unnecessary
processing during object
clean-up.

Note

Delivery Tip
Point out that garbage
collection is covered in more
depth in the next lesson.

16 Module 5: Object-Oriented Programming in Visual Basic .NET

u Creating and Destroying Objects

n Instantiating and Initializing Objects

n Garbage Collection

n Using the Dispose Method

In this lesson, you will learn about creating and destroying objects. After
completing this lesson, you will be able to:

n Instantiate and initialize objects.

n Explain the role that garbage collection plays in the object life cycle.

n Use the Dispose method to destroy an object and safely clean up its
resources.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
In this lesson, you will learn
about creating and
destroying objects.

 Module 5: Object-Oriented Programming in Visual Basic .NET 17

Instantiating and Initializing Objects

‘declare but don’t instantiate yet
Dim c1 As TestClass
‘other code
c1 = New TestClass() ‘instantiate now

‘declare but don’t instantiate yet
Dim c1 As TestClass
‘other code
c1 = New TestClass() ‘instantiate now

‘declare but don’t instantiate yet
Dim c1 As TestClass
‘other code
c1 = New TestClass() ‘instantiate now

‘declare, instantiate & initialize using default constructor
Dim c2 As TestClass = New TestClass()

‘declare but don’t instantiate yet
Dim c1 As TestClass
‘other code
c1 = New TestClass() ‘instantiate now

‘declare, instantiate & initialize using default constructor
Dim c2 As TestClass = New TestClass()

‘declare but don’t instantiate yet
Dim c1 As TestClass
‘other code
c1 = New TestClass() ‘instantiate now

‘declare, instantiate & initialize using default constructor
Dim c2 As TestClass = New TestClass()

‘declare, instantiate & initialize using default constructor
Dim c3 As New TestClass

‘declare but don’t instantiate yet
Dim c1 As TestClass
‘other code
c1 = New TestClass() ‘instantiate now

‘declare, instantiate & initialize using default constructor
Dim c2 As TestClass = New TestClass()

‘declare, instantiate & initialize using default constructor
Dim c3 As New TestClass

n Instantiate and Initialize Objects in One Line of Code

'Declare but do not instantiate yet
Dim c1 As TestClass
'Other code
c1 = New TestClass() 'Instantiate now

'Declare, instantiate & initialize using default constructor
Dim c2 As TestClass = New TestClass()

'Declare, instantiate & initialize using default constructor
Dim c3 As New TestClass()

'Declare, instantiate & initialize using alternative constructor
Dim c4 As New TestClass(10)
Dim c5 As TestClass = New TestClass(10)

'Declare but do not instantiate yet
Dim c1 As TestClass
'Other code
c1 = New TestClass() 'Instantiate now

'Declare, instantiate & initialize using default constructor
Dim c2 As TestClass = New TestClass()

'Declare, instantiate & initialize using default constructor
Dim c3 As New TestClass()

'Declare, instantiate & initialize using alternative constructor
Dim c4 As New TestClass(10)
Dim c5 As TestClass = New TestClass(10)

You can now instantiate and initialize objects in one line of code. This means
you can write simpler and clearer code that can call different class constructors
for multiple variables.

Example 1
The following example shows how to declare a variable in one line and
instantiate it in a following line. Remember that the Set keyword is no longer
needed.

'Declare but do not instantiate yet
Dim c1 As TestClass
'Other code
c1 = New TestClass() 'Instantiate now

Example 2
The following example shows how to declare, instantiate, and initialize an
object in one statement. The default constructor for the class will be executed.

'Declare, instantiate & initialize using default constructor
Dim c2 As TestClass = New TestClass()

Topic Objective
To explain how to instantiate
and initialize objects.

Lead-in
The method for instantiating
and initializing objects
has changed in
Visual Basic .NET.

Delivery Tip
This is an animated slide. It
begins by showing the first
part of the example. Click
the slide to reveal the
following sections:
1. c2 example
2. c3 example
3. c4 and c5 example

Delivery Tip
Ensure that students are
aware of the differences
between the behavior of the
following statement in
Visual Basic .NET as
opposed to previous
versions of Visual Basic:
Dim x As New TestClass

18 Module 5: Object-Oriented Programming in Visual Basic .NET

Example 3
The following example performs the same functionality as Example 2. It looks
similar to code from previous versions of Visual Basic, but behaves quite
differently.

'Declare, instantiate & initialize using default constructor
Dim c3 As New TestClass

Visual Basic 6.0
In Visual Basic 6.0, the preceding code creates the object when the object is
first used. If you destroy the variable by assigning the Nothing keyword, it will
automatically be recreated w hen it is next referenced.

Visual Basic .NET
In Visual Basic .NET, the preceding code declares and instantiates the object
variables immediately. If you destroy the variable by assigning the Nothing
keyword, it will not automatically be recreated when it is next referenced.

Example 4
The following examples show how to declare, instantiate, and initialize objects
in single statements. Both statements call alternative constructors for the class.

'Declare, instantiate & initialize using alternate constructor
Dim c4 As New TestClass(10)
Dim c5 As TestClass = New TestClass(10)

 Module 5: Object-Oriented Programming in Visual Basic .NET 19

Garbage Collection

n Background Process That Cleans Up Unused Variables

n Use x = Nothing to Enable Garbage Collection

n Detects Objects or Other Memory That Cannot Be
Reached by Any Code (Even Circular References!)

n Calls Destructor of Object

l No guarantee of when this will happen

l Potential for resources to be tied up for long periods of
time (database connections, files, and so on)

l You can force collection by using the GC system class

In previous versions of Visual Basic, object destruction is based on a reference
count. References are removed when you set the object to Nothing or when the
variable goes out of scope. When all references to an object have been removed,
the object is destroyed. This is effective in most situations, but some objects,
such as those left orphaned in a circular reference relationship, may not be
destroyed.

In Visual Studio .NET, setting an object reference to Nothing or allowing it to
go out of scope removes the link from the variable to the object and allows
garbage collection to take place. This background process traces object
references and destroys those that cannot be reached by executing code,
including objects that are not referenced. The garbage collector executes the
object destructor (the Finalize method discussed earlier in this module.)

Garbage collection provides several performance advantages:

n It cleans up circular references and improves code performance because
objects do not need to keep a reference count.

n Because reference counting is no longer required, the time taken to
instantiate an object is reduced.

n The time taken to release an object variable reference is reduced.

n No storage is required for the reference count, which means that the amount
of memory that an object uses is also reduced.

Topic Objective
To explain garbage
collection and how it affects
object lifetime.

Lead-in
Garbage collection
significantly alters how
objects are destroyed.

20 Module 5: Object-Oriented Programming in Visual Basic .NET

It is important to note that garbage collection introduces a time delay between
when the last reference to an object is removed and when the collector destroys
the object and reclaims the memory. This time delay can be quite significant if
the object is holding open resources that may affect the scalability or
performance of the application, such as database connections.

It is possible to attempt to force the collection of unused objects by using the
GC (Garbage Collector) system class’ Collect method as follows:

GC.Collect()

However, using the Collect method is not recommended because forcing
garbage collection may result in poor performance because of the unnecessary
collection of other unused objects. You should instead use a standard method
such as Dispose , which is discussed in the next topic.

 Module 5: Object-Oriented Programming in Visual Basic .NET 21

Using the Dispose Method

n Create a Dispose Method to Manually Release Resources
'Class code

Public Sub Dispose()

'Check that the connection is still open

conn.Close 'Close a database connection

End Sub

'Class code

Public Sub Dispose()

'Check that the connection is still open

conn.Close 'Close a database connection

End Sub

'Client code
Dim x as TestClass = New TestClass()
...
x.Dispose() 'Call the object's dispose method

'Client code
Dim x as TestClass = New TestClass()
...
x.Dispose() 'Call the object's dispose method

n Call the Dispose Method from Client Code

Because of the potential time delay created by garbage collection, you may
want to create a standard method called Dispose for your class. Many
Visual Studio .NET objects use this method to clean up resources.

When client code has no further need for an object’s resources, it can directly
call code placed in the Dispose method of the object. If the client code does not
call the Dispose method explicitly before garbage collection occurs, the
Finalize method of the class can also call the Dispose method. However, note
that you may cause an exception if you attempt to run the Dispose code twice.
An exception can occur if you have already closed or released an object and do
not test to determine whether it still exists in the second execution of the
Dispose code.

Example
The following simple example shows how to create a Dispose method to
manually release resources:

'Class code
Public Sub Dispose()
 'Check that the connection is still open
 ...
 conn.Close 'Close a database connection
End Sub

Protected Overrides Sub Finalize()
 Dispose() 'Optional call to Dispose
End Sub

'Client code
Dim x as TestClass = New TestClass()
...
x.Dispose() 'Call the object's dispose method

Topic Objective
To explain how to use the
Dispose method to aid
resource management.

Lead-in
One way to overcome the
time delay issue of garbage
collection is to use a
standard method such as
the Dispose method.

Delivery Tip
This is an animated slide. It
begins by showing the
Dispose example. Click the
slide to reveal the client
code example.

Point out that you must be
cautious when executing
code in the Finalize method
if resources have been
cleaned up in a Dispose
method.

22 Module 5: Object-Oriented Programming in Visual Basic .NET

The IDisposable Interface
Visual Basic .NET provides an interface called IDisposable to improve
accuracy and consistency among objects. This interface provides one method,
Dispose, which does not take any arguments. By implementing this interface in
all of your classes, you will consistently provide a Dispose method that can be
easily called by client code.

You will learn how to implement interfaces in the Interfaces lesson of
this module.

If you completely clean up your object in a Dispose method (whether you use
IDisposable or not), garbage collection does not need to execute your Finalize
method. You can disable the execution of the Finalize method by calling the
SuppressFinalize method on the GC object, as shown in the following
example. This method accepts a single argument that is a reference to the object
that should not have its Finalize method called. In Visual Basic .NET, this is
done with the Me keyword.

In the following example, if the client code called the Dispose method directly,
the connection would be closed and the Finalize method would not be called by
garbage collection. If the client did not call the Dispose method, the Finalize
method will still execute when garbage collection destroys the object.

'Class code
Public Sub Dispose()
 'Check that the connection is still open
 ...
 conn.Close 'Close a database connection
 GC.SuppressFinalize(Me)
End Sub

Protected Overrides Sub Finalize()
 Dispose() 'Optional call to Dispose
End Sub

Note

 Module 5: Object-Oriented Programming in Visual Basic .NET 23

Demonstration: Creating Classes

In this demonstration, you will learn how to define a simple class that uses
multiple constructors. You will also learn how to instantiate and use the class
from within client code.

Topic Objective
To demonstrate how to
create and use simple
classes.

Lead-in
This demonstration will
show you how to define
classes and instantiate and
destroy objects.

Delivery Tip
The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

24 Module 5: Object-Oriented Programming in Visual Basic .NET

Lab 5.1: Creating the Customer Class

Objectives
After completing this lab, you will be able to:

n Create classes.

n Instantiate, initialize, and use classes from calling code.

Prerequisites
Before working on this lab, you should be familiar with creating classes in
Visual Basic .NET.

Scenario
In this lab, you will begin creating the Cargo system. You will create the
Customer class and a test application to instantiate, initialize, and test the class.

Starter and Solution Files
There are starter and solution files associated with this lab. The starter files are
in the install folder\Labs\Lab051\Starter folder, and the solution files are in the
install folder\Labs\Lab051\Solution folder.

Estimated time to complete this lab: 45 minutes

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will define
the Customer class for the
Cargo system.

Explain the lab objectives.

 Module 5: Object-Oriented Programming in Visual Basic .NET 25

Exercise 1
Defining the Customer Class

In this exercise, you will define the Customer class. The starter project
contains several forms that you will use to test your Customer class.

å To open the starter project
1. Open Visual Studio .NET.

2. On the File menu, point to Open, and then click Project. Set the folder
location to install folder\Labs\Lab051\Starter, click Lab051.sln, and then
click Open.

å To create the Customer class

1. On the Project menu, click Add Class.

2. In the Add New Item dialog box, change the name of the class file to
Customer.vb, and click Open.

å To define the class properties
1. Add the following private variables to the class definition.

Variable name Data type

intCustomerID Integer

strFName String

strLName String

strEmail String

strPassword String

strAddress String

strCompany String

2. Add the following public properties, and use these to access the private
variables created in the previous step.

Property name Read/Write access Data type

CustomerID Read-only Integer

FirstName Read-write String

LastName Read-write String

Email Read-write String

Password Read-write String

Address Read-write String

Company Read-write String

3. Save the project.

26 Module 5: Object-Oriented Programming in Visual Basic .NET

å To define the class methods

1. Add the following methods to the class definition.

Method name Type Parameters

LogOn Public Sub ByVal strEmail As String

ByVal strPassword As String

AddCustomer Public Function ByVal strEmail As String
ByVal strPassword As String
ByVal strFName As String
ByVal strLName As String
ByVal strCompany As String
ByVal strAddress As String
<RETURN VALUE> As Integer

New Public Sub <None>

New Public Sub ByVal intID As Integer

2. On the File menu, point to Open, and click File. In the Files of type list,
click Text Files . Click Code.txt, and then click Open.

3. Locate the LogOn code in Code.txt. Copy the procedure code to the LogOn
method of the Customer class.

4. Locate the AddCustomer code in Code.txt. Copy the procedure code to the
AddCustomer method of the Customer class.

å To complete the class constructors

1. In the Customer class, locate the default constructor definition (the Sub
New without parameters), and initialize the intCustomerID variable to -1.

2. Locate the alternative constructor code in Code.txt. Copy the procedure
code to the parameterized constructor of the Customer class.

3. Save the project.

 Module 5: Object-Oriented Programming in Visual Basic .NET 27

Exercise 2
Testing the LogOn Procedure

In this exercise, you will test the LogOn procedure from a simple form.

å To create the Logon button code

1. Open frmLogOn in the Code Editor and locate the btnLogOn_Click event
procedure.

2. Declare and instantiate a Customer variable called cusCustomer.

3. Call the LogOn method of the cusCustomer object, passing in the text
properties of txtEmail and txtPassword as parameters.

4. Display the properties of the cusCustomer object in the appropriate text
boxes. Use the information in the following table:

Text box Property of cusCustomer

txtID CStr(CustomerID)

txtFName FirstName

txtLName LastName

txtAddress Address

txtCompany Company

5. Set cusCustomer to Nothing.

6. Save the project.

28 Module 5: Object-Oriented Programming in Visual Basic .NET

å To test the LogOn code

1. Set a breakpoint on the first line of the btnLogOn_Click procedure.

2. On the Debug menu, click Start. On the menu form, click Test ‘Logon’ to
display the test form, and then type the following values in the appropriate
text boxes.

Text box Value

E-mail karen@wingtiptoys.msn.com

Password password

3. Click the Logon button, and step through the procedure.

4. Confirm that your code retrieves the customer information and displays it
correctly in the text boxes. Close the form.

5. Reopen the LogOn form and enter the following incorrect values in the
appropriate text boxes.

Textbox Value

E-mail john@tailspintoys.msn.com

Password john

6. Click the Logon button, and step through the procedure.

7. Confirm that your code causes an exception to be generated and handled by
the form.

8. Click the Close button to quit the application. Remove the breakpoint on
btnLogOn_Click.

 Module 5: Object-Oriented Programming in Visual Basic .NET 29

Exercise 3
Testing Customer Retrieval

In this exercise, you will test the parameterized constructor that retrieves the
customer details from a simple form. A sales agent who needs full access to the
customer’s information could use this type of form.

å To create the Retrieve button code

1. Open frmRetrieve in the Code Editor, and locate the btnRetrieve_Click
event procedure.

2. Declare and instantiate a Customer variable called cusCustomer. Use the
parameterized constructor to pass in the existing customer ID from the txtID
text box. (Use the CInt function to convert it to an integer value.)

3. Display the properties of the cusCustomer object in the appropriate text
boxes. Use the information in the following table:

Textbox Property of cusCustomer

txtEmail Email

txtPassword Password

txtFName FirstName

txtLName LastName

txtAddress Address

txtCompany Company

4. Save the project.

å To test the Retrieve code
1. Set a breakpoint on the first line of the btnRetrieve_Click procedure.

2. On the Debug menu, click Start. On the menu form, click Test ‘Get
Details’ to display the test form, and then type the value 1119 in the
CustomerID text box.

3. Click the Retrieve button, and step through the procedure.

4. Confirm that your code retrieves the customer information and displays it
correctly in the text boxes.

5. Click the Clear Data button to reset the information, and type the value
1100 in the CustomerID text box.

6. Click the Retrieve button, and step through the procedure.

7. Confirm that your code causes an exception to be generated and handled by
the form.

8. Click the Close button to quit the application. Remove the breakpoint on
btnRetrieve_Click.

30 Module 5: Object-Oriented Programming in Visual Basic .NET

Exercise 4
Testing the AddCustomer Procedure

In this exercise, you will test the AddCustomer procedure from a simple form.

å To create the Add Customer button code

1. Open frmNew in the Code Editor, and locate the btnNew_Click event
procedure.

2. Declare and instantiate a Customer variable called cusCustomer.

3. Call the AddCustomer function of the cusCustomer object, passing in the
appropriate values and displaying the return value in a message box. Use the
CStr function to convert the integer value to a string. Use the information in
the following table:

Parameter name Value

strEmail txtEmail.Text

strPassword txtPassword.Text

strFName txtFName.Text

strLName txtLName.Text

strCompany txtCompany.Text

strAddress txtAddress.Text

4. Save the project.

å To test the Add Customer code
1. Set a breakpoint on the first line of the btnNew_Click procedure.

2. On the Debug menu, click Start. On the menu form, click Test ‘New
Customer’ to display the test form.

3. Enter values in all text boxes.

4. Click the New Customer button, and step through the procedure.

5. Confirm that your code passes the information to the procedure correctly,
and that a new ID is returned.

6. Click the Close button and quit the application. Remove the breakpoint on
btnNew_Click.

 Module 5: Object-Oriented Programming in Visual Basic .NET 31

u Inheritance

n What Is Inheritance?

n Overriding and Overloading

n Inheritance Example

n Shadowing

n Using the MyBase Keyword

n Using the MyClass Keyword

In this lesson, you will learn how to implement class inheritance. After
completing this lesson, you will be able to:

n Inherit from an existing class.

n Override and overload some base class methods in a derived class.

n Use the MyBase keyword to access the base class from a derived class.

n Use the MyClass keyword to ensure that you call the correct class.

Topic Objective
To provide an ov erview of
the topics covered in this
lesson.

Lead-in
In this lesson, you will learn
about inheritance.

Delivery Tip
Inform students that
although inheritance is an
important new feature of
Visual Basic .NET, you can
continue to create classes
without inheritance, as in
previous versions of
Visual Basic.

32 Module 5: Object-Oriented Programming in Visual Basic .NET

What Is Inheritance?

n Derived Class Inherits from a Base Class

n Properties, Methods, Data Members, Events, and Event
Handlers Can Be Inherited (Dependent on Scope)

n Keywords

l Inherits – inherits from a base class

l NotInheritable – cannot be inherited from

l MustInherit – instances of the class cannot be created;
must be inherited from as a base class

l Protected – member scope that allows use only by
deriving classes

In Visual Basic .NET , you can use inheritance to derive a class from an existing
base class. The derived class can inherit all the base class properties, methods,
data members, events, and event handlers, making it easy to reuse the base class
code throughout an application.

The Inherits Keyword
The following example shows how to use the Inherits keyword to define a
derived class that will inherit from an existing base class:

Public Class DerivedClass
 Inherits BaseClass
...
End Class

The NotInheritable Keyword
The following example shows how to use the NotInheritable keyword to
define a class that cannot be used as a base class for inheritance. A compiler
error is generated if another class attempts to inherit from this class.

Public NotInheritable Class TestClass
...
End Class
Public Class DerivedClass
 Inherits TestClass 'Generates a compiler error
...
End Class

Topic Objective
To explain the keywords
and syntax for class
inheritance.

Lead-in
Inheriting a class allows you
to use the features of a base
class without rewriting the
code.

Delivery Tip
Point out that inheritance
can be used to create highly
reusable code. However,
many applications do not
need inheritance and can
perform perfectly well
without it. Make clear that if
inheritance is used, students
should not create complex
hierarchies that will become
unmanageable.

 Module 5: Object-Oriented Programming in Visual Basic .NET 33

The MustInherit Keyword
You use the MustInherit keyword to define classes that are not intended to be
used directly as instantiated objects. The resulting class must be inherited as a
base class for use in an instantiated derived class object. If the client code
attempts to instantiate an object based on this type of class, a compiler error is
generated, as shown in the following example:

Public MustInherit Class BaseClass
...
End Class
...
'Client code
Dim x As New BaseClass() 'Generates a compiler error

The Protected Keyword
You use Protected access to limit the scope of a property, method, data
member, event, or event handler to the defining class and any derived class
based on that base class. Following is an example:

Public Class BaseClass
 Public intCounter As Integer 'Accessible anywhere

 'Accessible only in this class or a derived class
 Protected strName As String
...
End Class

The derived class is also known as a subclass, and the base class is
known as a superclass in Unified Modeling Language (UML) terminology.

Note

34 Module 5: Object-Oriented Programming in Visual Basic .NET

Overriding and Overloading

n Derived Class Can Override an Inherited Property or
Method

l Overridable – can be overridden

l MustOverride – must be overridden in derived class

l Overrides – replaces method from inherited class

l NotOverridable – cannot be overridden (default)

n Use Overload Keyword to Overload Inherited Property
or Method

When a derived class inherits from a base class, it inherits all the functions,
subroutines, and properties of the base class, including any implementation in
the methods. Occasionally you may want to create implementation code
specific to your derived class rather than using the inherited methods. This is
known as overriding. You can also overload methods defined in the base class
with the Overloads keyword.

Overriding
Use the following keywords to create your own implementation code within a
derived class:

n Overridable

To create your own special implementation of the derived class, specify the
Overridable keyword in a base class member definition for a function,
subroutine, or property, as shown in the following example:

Public Overridable Sub OverrideMethod()
 MsgBox("Base Class OverrideMethod")
End Sub

n MustOverride

To create a base class member that must be overridden in all derived classes,
define the member with the MustOverride keyword. Only the member
prototype can be created in the base class, with no implementation code.
You can only use this keyword in a base class that is marked as
MustInherit. The following example shows how to define a method that
must be overridden:

Public MustOverride Sub PerformAction()

MustOverride methods are useful in base classes because they allow you to
define baseline functionality without locking in implementation details that
can make them difficult to extend.

Topic Objective
To explain how to override
and overload methods and
properties in a derived
class.

Lead-in
You may want to implement
your own logic in a derived
class rather than use that of
the base class. This is
called overriding . You can
also extend members of the
base class with the
Overload keyword.

Delivery Tip
Point out that examples are
shown in the student notes
but that a fuller example will
be discussed on the next
slide.

 Module 5: Object-Oriented Pro gramming in Visual Basic .NET 35

n Overrides

To specify that a derived class method overrides the implementation of the
base class method, use the Overrides keyword. If the base class method that
is being overridden is not marked as Overridable, a compile-time error will
occur. The method signature must exactly match the method being
overridden, except for the parameter names. The following example shows
how to declare a derived class method that overrides the base class
implementation:

Public Overrides Sub OverrideMethod()
 MsgBox("Derived Class OverrideMethod")
End Sub

You can override methods by selecting (Overrides) in the Class Name
drop-down list in the IDE, and then selecting the method you want to
override.

n NotOverridable

Base class members without the Overridable keyword are, by default, not
overridable. However, if a base class member is marked as overridable, then
the member will be overridable in any derived classes based on the
immediate deriving class. To prevent this behavior, mark the overridden
method in the derived class as NotOverridable. This will stop subsequent
inheritance from overriding the method.

The following example shows how to declare a derived class method that
overrides the base class implementation but does not allow any further
overriding:

Public NotOverridable Overrides Sub OverrideMethod()
 MsgBox("Derived Class OverrideMethod")
End Sub

Overloading
You can create a method in a derived class that overloads a method defined in a
base class by using the Overloads keyword. Just as for overloading methods
within the same class, the method signatures must include different parameters
or parameter types. The following example shows how to overload a method
from a base class:

Public Overloads Sub Other(ByVal i As Integer)
 MsgBox("Overloaded CannotOverride")
End Sub

Note that the base class method does not need to be marked as Overridable to
be overloaded.

Note

36 Module 5: Object-Oriented Programming in Visual Basic .NET

Inheritance Example

Public Class BaseClass

Public Overridable Sub OverrideMethod()
MsgBox("Base OverrideMethod")

End Sub
Public Sub Other()

MsgBox("Base Other method – not overridable")
End Sub

End Class

Public Class BaseClass

Public Overridable Sub OverrideMethod()
MsgBox("Base OverrideMethod")

End Sub

Public Sub Other()
MsgBox("Base Other method – not overridable")

End Sub
End Class

Public Class DerivedClass
Inherits BaseClass

Public Overrides Sub OverrideMethod()
MsgBox("Derived OverrideMethod")

End Sub
End Class

Public Class DerivedClass
Inherits BaseClass

Public Overrides Sub OverrideMethod()
MsgBox("Derived OverrideMethod")

End Sub
End Class

Dim x As DerivedClass = New DerivedClass()
x.Other 'Displays "Base Other method – not overridable"
x.OverrideMethod 'Displays "Derived OverrideMethod"

Dim x As DerivedClass = New DerivedClass()
x.Other 'Displays "Base Other method – not overridable"
x.OverrideMethod 'Displays "Derived OverrideMethod"

There are three parts to this inheritance example:

n Code for the base class

n Code for the derived class

n Code for the calling client

Base Class Code
The base class in the following example is specified as MustInherit. This
means that the class must be inherited from because it cannot be instantiated
directly.

Public MustInherit Class BaseClass
 Public MustOverride Sub PerformAction()

 Public Overridable Sub OverrideMethod()
 MsgBox("Base OverrideMethod")
 End Sub

 Public Sub Other()
 MsgBox("Base Other method – not overridable")
 End Sub
End Class

Topic Objective
To provide an example of
inheritance.

Lead-in
Let’s look at a full example
of inheritance.

Delivery Tip
This is an animated slide. It
begins by showing an
example of code for base
class. Click the slide to
reveal the following
sections:
1. Derived class example
2. Client code example

Explain the example from
the slide, and then look at
the examples in the notes.

 Module 5: Object-Oriented Programming in Visual Basic .NET 37

The following table explains the methods used in the preceding code.

Method Declared as Description

PerformAction MustOverride Any implementation for this method must be

created in the deriving class.

OverrideMethod Overridable Any implementation for this method can be
overridden as a derived class.

Other NotOverridable
(by default)

Any implementation for this method cannot be
overridden in a derived class.

NotOverridable is the default for any method.

Derived Class Code
The derived class in the following example inherits from the base class. This
means that the class inherits all of the methods and properties of the base class.

Public Class DerivedClass
 Inherits BaseClass

 Public NotOverridable Overrides Sub PerformAction()
 MsgBox("Derived PerformAction")
 End Sub

 Public Overrides Sub OverrideMethod()
 MsgBox("Derived OverrideMethod")
 End Sub

 Public Overloads Sub Other(ByVal i As Integer)
 MsgBox("Overloaded Other")
 End Sub
End Class

Because the PerformAction method was marked as MustOverride in the base
class, it must be overridden in this derived class. This derived class also marks
the method as NotOverridable so that no other class can override this method
if DerivedClass is used as a base class for inheritance.

The method OverrideMethod is overridden in this derived class. Any calls to
OverrideMethod will result in the derived class implementation being
executed rather than the base class implementation.

The Other method cannot be overridden, but can be overloaded by the derived
class using the Overloads keyword.

Calling Code
The preceding example defines and instantiates a DerivedClass variable. The
following example shows how to call all the individual methods for the derived
class. The results are shown as comments in the code.

Dim x As DerivedClass = New DerivedClass()
x.Other() 'Displays "Base Other method – not overridable"
x.Other(20) 'Displays "Overloaded Other"
x.OverrideMethod() 'Displays "Derived OverrideMethod"
x.PerformAction() 'Displays "Derived PerformAction"

38 Module 5: Object-Oriented Programming in Visual Basic .NET

Shadowing

Class aBase
Public Sub M1() 'Non-overridable by default
...
End Sub

End Class

Class aShadowed
Inherits aBase
Public Shadows Sub M1(ByVal i As Integer)

'Clients can only see this method
...
End Sub

End Class

Class aBase
Public Sub M1() 'Non-overridable by default
...
End Sub

End Class

Class aShadowed
Inherits aBase
Public Shadows Sub M1(ByVal i As Integer)

'Clients can only see this method
...
End Sub

End Class

n Hides Base Class Members, Even If Overloaded

Dim x As New aShadowed()
x.M1() 'Generates an error
x.M1(20) 'No error

Dim x As New aShadowed()
x.M1() 'Generates an error
x.M1(20) 'No error

When a derived class inherits from a base class, it can either override a method
on the base class or shadow it. Overriding replaces the existing method based
on the method name and signature. Shadowing effectively hides the method in
the base class, based solely on the method name. This means shadowing a
method also hides any overloaded methods within the base class. You can
shadow a method regardless of whether the base method is specified as
overridable.

To learn how shadowing works, consider an example of a derived class that
shadows a method from the base class. The method in the base class has not
been specified as overridable.

Topic Objective
To describe the concept of
shadowing and explain how
to shadow a method in a
derived class.

Lead-in
Visual Basic .NET allows
you to shadow a method in
a derived class.

 Module 5: Object-Oriented Programming in Visual Basic .NET 39

The following example shows a base class that defines a single method called
M1. The derived class declares an M1 method that automatically shadows the
base class method and accepts a single argument. The client code can only
access the shadowed method that accepts the argument, and an error will be
generated if it attempts to access the base class method.

Class aBase
 Public Sub M1() 'Non-overridable by default
 ...
 End Sub
End Class

Class aShadowed
 Inherits aBase
 Public Shadows Sub M1(ByVal i As Integer)
 'Clients can only see this method
 ...
 End Sub
End Class

'Client Code
Dim x As New aShadowed()
x.M1() 'Generates an error because method is hidden
x.M1(20) 'No error

40 Module 5: Object-Oriented Programming in Visual Basic .NET

Using the MyBase Keyword

n Refers to the Immediate Base Class

n Can Only Access Public, Protected, or Friend Members
of Base Class

n Is Not a Real Object (Cannot Be Stored in a Variable)

Public Class DerivedClass
Inherits BaseClass

Public Overrides Sub OverrideMethod()
MsgBox("Derived OverrideMethod")
MyBase.OverrideMethod()

End Sub
End Class

Public Class DerivedClass
Inherits BaseClass

Public Overrides Sub OverrideMethod()
MsgBox("Derived OverrideMethod")
MyBase.OverrideMethod()

End Sub
End Class

You can use the MyBase keyword to access the immediate base class from
which a derived class is inheriting. When using MyBase, you should be aware
of some limitations:

n It refers only to the immediate base class in the hierarchy. You cannot use
MyBase to gain access to classes higher in the hierarchy.

n It allows access to all of the public, protected, or friend members of the base
class.

n It is not a real object, so you cannot assign MyBase to a variable.

If a derived class is overriding a method from a base class but you still want to
execute the code in the overridden method, you can use MyBase. This is a
common practice for constructors and destructors. The following example
shows how to use the MyBase keyword to execute a method as implemented in
the base class:

Public Class DerivedClass
 Inherits BaseClass
 Public Sub New()
 MyBase.New() 'Call the constructor of the base class
 intValue = 1
 End Sub
 Public Overrides Sub OverrideMethod()
 MsgBox("Derived OverrideMethod")
 MyBase.OverrideMethod() 'Call the original method
 End Sub
End Class

Topic Objective
To explain how to use the
MyBase keywor d.

Lead-in
Sometimes you need to
access the base class from
a derived class.

Delivery Tip
Calling the constructor of a
base class is a common use
of the MyBase keyword.

 Module 5: Object-Oriented Programming in Visual Basic .NET 41

Using the MyClass Keyword

n Ensures Base Class Gets Called, Not Derived Class

Public Class BaseClass
Public Overridable Sub OverrideMethod()

MsgBox("Base OverrideMethod")
End Sub

Public Sub Other()
MyClass.OverrideMethod()'Will call above method
OverrideMethod() 'Will call derived method

End Sub
End Class

Public Class BaseClass
Public Overridable Sub OverrideMethod()

MsgBox("Base OverrideMethod")
End Sub

Public Sub Other()
MyClass.OverrideMethod()'Will call above method
OverrideMethod() 'Will call derived method

End Sub
End Class

Dim x As DerivedClass = New DerivedClass()
x.Other()
Dim x As DerivedClass = New DerivedClass()
x.Other()

You can use the MyClass keyword to ensure that a base class implementation
of an overridable method is called, rather than that of a derived class. When
using MyClass, you should be aware of some limitations:

n It allows access to all of the public, protected, or friend members of the
deriving class.

n It is not a real object, so you cannot assign MyClass to a variable.

Example
The following example shows how to call a base class method from a derived
class by using the MyClass keyword:

Public Class BaseClass
 Public Overridable Sub OverrideMethod()
 MsgBox("Base OverrideMethod")
 End Sub

 Public Sub Other()
 MyClass.OverrideMethod() 'Will call above method
 End Sub
End Class

Public Class DerivedClass
 Inherits BaseClass
 Public Overrides Sub OverrideMethod()
 MsgBox("Derived OverrideMethod")
 End Sub
End Class

Dim x As DerivedClass = New DerivedClass()
x.Other()

Topic Objective
To explain how to use the
MyClass keyword.

Lead-in
It is important that you call
the correct class in
inheritance. The MyClass
keyword can help you call
the right one.

Delivery Tip
Point out the important note
in the student notes
regarding the differences
between the MyClass and
Me keywords.

42 Module 5: Object-Oriented Programming in Visual Basic .NET

Output
The output from the execution of the preceding code is as follows:

Base OverrideMethod

Flow of Execution
The code in the example is executed as follows:

1. The Other method is called on the DerivedClass object, but because there
is no implemented code in the derived class, the base class code is executed.

2. When the MyClass.OverrideMethod call is executed, the
OverrideMethod subroutine is implemented in the base class.

3. Execution returns to the client code.

The Me keyword in previous versions of Visual Basic is not the
same as the MyClass keyword. The Me keyword has the same effect as if no
keyword were used. In the example in this topic, the derived class
implementation would be executed even if Me were used within the base class.

Important

 Module 5: Object-Oriented Programming in Visual Basic .NET 43

Demonstration: Inheritance

In this demonstration, you will see how to define a base class with a mixture of
overridable and non-overridable methods. You will see how to derive a class
that inherits from the base class, and how to use the MyBase keyword.

Topic Objective
To demonstrate class
inheritance.

Lead-in
This demonstration
examines how to create and
use class inheritance.

Delivery Tip
The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

44 Module 5: Object-Oriented Programming in Visual Basic .NET

u Interfaces

n Defining Interfaces

n Achieving Polymorphism

In this lesson, you will learn how to use interfaces to achieve polymorphism.
After completing this lesson, you will be able to:

n Define an interface by using the Interface keyword.

n Add member signatures that define the properties, methods, and events that
your interface supports.

n Implement an interface by using the Implements keyword.

Topic Objectiv e
To provide an overview of
the topics covered in this
lesson.

Lead-in
In this lesson, you will learn
about interfaces and
polymorphism.

Delivery Tip
This lesson assumes some
knowledge about interfaces
and polymorphism.

The topic is not covered
extensively because
interfaces and
polymorphism are not new
to Visual Basic .NET. You
should ensure that students
are aware of additional
appropriate information.

 Module 5: Object-Oriented Programming in Visual Basic .NET 45

Defining Interfaces

n Interfaces Define Public Procedure, Property, and Event
Signatures

n Use the Interface Keyword to Define an Interface Module

n Overload Members as for Classes

n Use the Inherits Keyword in an Interface to Inherit From
Other Interfaces

Interface IMyInterface
Function Method1(ByRef s As String) As Boolean
Sub Method2()
Sub Method2(ByVal i As Integer)

End Interface

Interface IMyInterface
Function Method1(ByRef s As String) As Boolean
Sub Method2()
Sub Method2(ByVal i As Integer)

End Interface

An interface defines signatures for procedures, properties, and events but
contains no implementation code. These signatures define the names of the
members, the parameter details, and the return values. Interfaces form a binding
contract between clients and a server. This contract enables a client application
to ensure that a class will always support particular member signatures or
functionality, and this aids in the versioning of components.

In Visual Basic 6.0, interfaces are created automatically whenever a public
class is compiled as part of a COM component. This functionality works fine in
most situations; however, you need to create a class in order to define an
interface, which is not always necessary from a developer’s perspective.

Visual Basic .NET introduces the Interface keyword, which allows you to
explicitly create an interface without creating a class. Interfaces can be defined
in the Declarations section of any module. This new approach creates a visible
distinction between a class and an interface, and this makes the concept clearer
for the developer.

You can use overloading when you define interfaces— just as you use it to
define classes— to create multiple versions of a member signature with different
parameters.

Topic Objective
To explain how to
create interfaces in
Visual Basic .NET.

Lead-in
Interfaces are a new and
powerful feature of
Visual Basic .NET.

Delivery Tip
Check student
understanding of the
concept of interfaces. Give a
brief review if necessary,
with a simple example of
interfaces (such as the
IPerson, Student,
Employee example used in
the notes).

46 Module 5: Object-Oriented Programming in Visual Basic .NET

Example
The following example shows how to define an interface that includes three
method signatures, two of which are overloaded:

Interface IMyInterface
 Function Method1(ByRef s As String) As Boolean
 Sub Method2()
 Sub Method2(ByVal i As Integer)
End Interface

An interface can also inherit another interface if you use the Inherits keyword
before any member signatures are defined. If an interface is inherited from the
above example, it will contain all of the base interface signatures, in addition to
those defined in the new interface definition.

 Module 5: Object-Oriented Programming in Visual Basic .NET 47

Achieving Polymorphism

n Polymorphism

l Many classes provide the same property or method

l A caller does not need to know the type of class the
object is based on

n Two Approaches

l Interfaces
Class implements members of interface
Same approach as in Visual Basic 6.0

l Inheritance
Derived class overrides members of base class

Polymorphism is achieved when multiple classes provide the same properties or
methods and the calling code does not need to know what type of class the
object is based on. This creates a form of reuse because you can write generic
client code to handle multiple types of classes without knowing about the
methods of each individual class. You can use two different approaches to
achieve polymorphism in Visual Basic .NET: interfaces and inheritance.

Interfaces
In Visual Basic 6.0, you can achieve polymorphism by creating an abstract
class— with the sole purpose of defining an interface— and then implementing
that interface in other classes by using the Implements keyword. This approach
allows multiple classes to share the same interface and allows classes to have
multiple interfaces.

In Visual Basic .NET, you do not need abstract classes to achieve
polymorphism. You can create interfaces explicitly by using a combination of
the Interface and Implements keywords.

Topic Objective
To explain how to use
polymorphism in
Visual Basic .NET.

Lead-in
Visual Basic .NET combines
a traditional use of
interfaces— to create
polymorphism— with the
new class inheritance
features.

Delivery Tip
The code shown in the
student notes is
demonstrated immediately
after this topic.

48 Module 5: Object-Oriented Programming in Visual Basic .NET

Example
The following example shows how to implement polymorphism in
Visual Basic .NET. As you examine this code, note the following:

n The IPerson interface defines two member signatures: LastName and
Display.

n The Employee class implements the IPerson interface and both of its
members.

n By using the Implements keyword for each individual method, you can
specify your own name for the method and it will still be executed if a client
application requests the original name of the interface.

Interface IPerson 'IPerson interface definition
 Property LastName() As String
 Sub Display()
End Interface

Class Employee 'Employee class definition
 Implements IPerson 'Implements IPerson interface
 Private strName As String
 Private strCompany As String

 'This method is public but also implements IPerson.Display
 Public Sub Display() Implements IPerson.Display
 MsgBox(LastName & " " & Company,, "Employee")
 End Sub

 'This property is private but implements IPerson.LastName
 Private Property LastName() As String _
 Implements IPerson.LastName
 Get
 Return strName
 End Get
 Set (ByVal Value As String)
 ...
 End Property

 Public Property Company() As String
 ...
 End Property
End Class

 Module 5: Object-Oriented Programming in Visual Basic .NET 49

Client Code Example
The following code shows how the Employee class and IPerson interface
could be used in a client application or within the same assembly as the class
and interface definitions.

n An Employee object is instantiated and details specific to the employee,
such as the Company property, are assigned.

n An IPerson interface variable is then assigned to the Employee object to
access methods that can only be accessed through the IPerson interface,
such as the LastName property.

n Both calls to the Display methods actually call the same code within the
Employee class, as shown in the previous example.

Dim perPerson As IPerson, empEmployee As New Employee()
empEmployee.Company = "Microsoft"
perPerson = empEmployee
perPerson.LastName = "Jones"
perPerson.Display() 'Call the display method on the interface
empEmployee.Display() 'Display method is defined as public

Inheritance
Another way to ac hieve polymorphism with Visual Basic .NET is to use class
inheritance. A base class can be created that contains member signatures and
that optionally contains implementation code that can be inherited in a derived
class. The derived class must then override the individual methods with its own
implementation code, achieving unique functionality while retaining a common
method signature.

For more information about polymorphism, search for “Polymorphism”
in the Visual Studio .NET documentation.

Delivery Tip
Point out that the
p.Display() and
emp.Display() methods
are actually the same call to
the Employee object, but by
means of different
interfaces.

Note

50 Module 5: Object-Oriented Programming in Visual Basic .NET

Demonstration: Interfaces and Polymorphism

In this demonstration, you will learn how to create an interface and implement
it to achieve polymorphism in two separate classes.

Topic Objective
To demonstrate how to use
interfaces to achieve
polymorphism.

Lead-in
This demonstration shows
how to use interfaces to
achieve polymorphism.

Delivery Tip
The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

 Module 5: Object-Oriented Programming in Visual Basic .NET 51

u Working with Classes

n Using Shared Data Members

n Using Shared Procedure Members

n Event Handling

n What Are Delegates?

n Using Delegates

n Comparing Classes to Structures

In this lesson, you will learn how to work with classes. After completing this
lesson, you will be able to:

n Use shared data members to share data across class instances.

n Use shared procedure members.

n Define and handle class events.

n Use delegates in event handling.

n Describe how structures differ from classes.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
This lesson examines how
to work with classes in
Visual Basic .NET.

52 Module 5: Object-Oriented Programming in Visual Basic .NET

Using Shared Data Members

n Allow Multiple Class Instances to Refer to a Single
Class-Level Variable Instance

SavingsAccount . I n t e r e s t R a t e = 0.003
Di m acct1 As New SavingsAccount ("Joe Howard", 10000)
Ms g B o x (a c c t 1 . C a l c u l a t e I n t e r e s t , , " I n t e r e s t f o r " & a c c t 1 . N a me)

SavingsAccount . I n t e r e s t R a t e = 0.003
Di m acct 1 As New SavingsAccount ("Joe Howard", 10000)
M s g B o x (a c c t 1 . C a l c u l a t e I n t e r e s t , , " I n t e r e s t f o r " & a c c t 1 . N a m e)

Cl a s s SavingsAccount
Publ i c Shared I n t e r e s t R a t e As Double
Publ i c Name As Str ing, Balance As Double

Sub New(ByVal strName A s S t r i n g , ByVal dblAmount As Double)
Name = strName
Balance = dblAmount

End Sub

Publ i c F u n c t i o n Cal c u l a t e I n t e r e s t () As Doub le
Retu rn Ba lance * I n t e r e s t R a t e

End Function
End Class

Cl a s s SavingsAccount
P u b l i c Shared I n t e r e s t R a t e As Double
Publ ic Name As Str ing, Balance As Double

Sub New(ByVal strName A s S t r i n g , ByVal dblAmount As Double)
Name = strName
Balance = dblAmount

End Sub

Pub l i c Func t i on Cal c u l a t e I n t e r e s t () A s D o u b l e
Return Balance * I n t e r e s t R a t e

End Functi on
End Class

In Visual Basic 6.0, you can share data among objects by using a module file
and a global variable. This approach works, but there is no direct link between
the objects and the data in the module file, and the data is available for anyone
to access.

In Visual Basic .NET, you can use shared data members to allow multiple
instances of a class to refer to a single instance of a class-level variable. You
can use shared members for counters or for any common data that is required
by all instances of a class.

An advantage of shared data members is that they are directly linked to the
class and can be declared as public or private. If you declare data members as
public, they are accessible to any code that can access the class. If you declare
the data members as private, provide public shared properties to access the
private shared property.

Topic Objective
To explain how to use
shared data members to
share data across class
instances.

Lead-in
Shared data members allow
data sharing for all
instances of a class.

Delivery Tip
This is an animated slide. It
begins by showing the
Shared example code. Click
the slide to reveal an
example of client code.

 Module 5: Object-Oriented Programming in Visual Basic .NET 53

The following example shows how you can use a shared data member to
maintain interest rates for a savings account. The InterestRate data member of
the SavingsAccount class can be set globally regardless of how many instances
of the class are in use. This value is then used to calculate the interest on the
current balance.

Class SavingsAccount
 Public Shared InterestRate As Double

 Public Name As String, Balance As Double

 Sub New(ByVal strName As String, _
 ByVal dblAmount As Double)
 Name = strName
 Balance = dblAmount
 End Sub

 Public Function CalculateInterest() As Double
 Return Balance * InterestRate
 End Function
End Class

The following code shows how a client application can use the
SavingsAccount class in the previous example. As you examine this code, note
the following:

n The InterestRate can be set before and after any instances of the
SavingsAccount object are created.

n Any changes to the InterestRate will be seen by all instances of the
SavingsAccount class.

Sub Test()
 SavingsAccount.InterestRate = 0.003

 Dim acct1 As New SavingsAccount("Joe Howard", 10000)
 Dim acct2 As New SavingsAccount("Arlene Huff", 5000)

 MsgBox(acct1.CalculateInterest, , "Interest for " & _
 acct1.Name)
 MsgBox(acct2.CalculateInterest, , "Interest for " & _
 acct2.Name)
End Sub

54 Module 5: Object-Oriented Programming in Visual Basic .NET

The following example shows how to implement a public shared property for a
private shared data member:

Class SavingsAccount
 Private Shared InterestRate As Double

 Shared Property Rate()
 Get
 Return InterestRate
 End Get
 Set(ByVal Value)
 InterestRate = Value
 End Set
 End Property

The following code shows how a client application can use the shared property
in the previous example:

 SavingsAccount.Rate = 0.003

 Module 5: Object-Oriented Programming in Visual Basic .NET 55

Using Shared Procedure Members

n Share Procedures Without Declaring a Class Instance

n Similar Functionality to Visual Basic 6.0 “Global”
Classes

n Can Only Access Shared Data

'TestClass code
Public Shared Function GetComputerName() As String

...
End Function

'TestClass code
Public Shared Function GetComputerName() As String

...
End Function

'Client code

MsgBox(TestClass.GetComputerName())

'Client code

MsgBox(TestClass.GetComputerName())

You can use shared procedure members to design functions that can be called
without creating an instance of the class. Shared procedures are particularly
useful for creating library routines that other applications can easily access.
This concept is similar to the GlobalMultiUse and GlobalSingleUse classes
used in Visual Basic 6.0.

As described in the previous topic, shared members can only access data that is
marked as Shared. For example, a shared method cannot access a module level
variable that is marked as either Dim, Private, or Public.

Example
The following example shows how a commonly used function, such as
GetComputerName, can be created as a shared procedure member so that a
client application can easily use it. The client only needs to reference the
method prefixed by the class name because no instance of the class is required.

'TestClass code
Public Shared Function GetComputerName() As String
...
End Function

'Client code
MsgBox(TestClass.GetComputerName())

Topic Objective
To explain shared
procedure members.

Lead-in
You can create shared
procedure members that
allow you to call the method
without creating an instance
of the class.

Delivery Tip
Point out that this feature is
often used for library
routines.

56 Module 5: Object-Oriented Programming in Visual Basic .NET

Event Handling

n Defining and Raising Events: Same As Visual Basic 6.0

n WithEvents Keyword: Handles Events As in Visual Basic 6.0

l In Visual Basic .NET, works with Handles keyword to specify
method used to handle event

n AddHandler Keyword: Allows Dynamic Connection to Events

n RemoveHandler Keyword: Disconnects from Event Source

Dim x As New TestClass (), y As New TestClass()
AddHandler x.anEvent, AddressOf HandleEvent
AddHandler y.anEvent, AddressOf HandleEvent
...

Sub HandleEvent(ByVal i As Integer)
...

End Sub

Dim x As New TestClass(), y As New TestClass()
AddHandler x.anEvent, AddressOf HandleEvent
AddHandler y.anEvent, AddressOf HandleEvent
...

Sub HandleEvent(ByVal i As Integer)
...

End Sub

As a Visual Basic developer, you are familiar with creating events. However,
Visual Basic .NET provides powerful new event handling features with the
addition of the Handles, AddHandler and RemoveHandler keywords.

Defining and Raising Events
In Visual Basic .NET, you can define and raise events in the same way you do
in Visual Basic 6.0, by using the Event and RaiseEvent keywords.

Example
The following example shows how to define and raise an event:

'TestClass code
Public Event anEvent(ByVal i As Integer)

Public Sub DoAction()
 RaiseEvent anEvent(10)
End Sub

The WithEvents Keyword
You can use the WithEvents keyword in the same way that you used it in
Visual Basic 6.0. However, in Visual Basic .NET you also use the Handles
keyword to spec ify which method will be used to handle an event. You can link
an event to any handler, whether it is the default handler or your own method.
This approach allows you to link multiple events with a single method handler,
as long as the parameters match those of the events.

Topic Objective
To introduce event-handling
options that are new in
Visual Basic .NET.

Lead-in
Visual Basic .NET provides
some powerful new event-
handling enhancements.

Delivery Tip
The Handles keyword is
shown in the WithEvents
example in the student
notes.

 Module 5: Object-Oriented Programming in Visual Basic .NET 57

Example
The following example shows how you can use WithEvents in conjunction
with the new Handles keyword to link an event with a handler.

'Client code
Dim WithEvents x As TestClass
Dim WithEvents y As TestClass

Private Sub Button1_Click(...) Handles Button1.Click
 x = New TestClass()
 y = New TestClass()
 x.DoAction()
 y.DoAction()
End Sub

Private Sub HandleEvent(ByVal x As Integer) _
 Handles x.anEvent, y.anEvent
...
End Sub

The AddHandler Keyword
The new AddHandler keyword allows you to dynamically connect to the
events of an object and handle them in any chosen method. This has some
advantages over the WithEvents keyword: the variable does not need to be
declared at the module level, and you can point multiple events from the same
object to a single handler method. You can also point events from multiple
objects to the same handler method by using the AddHandler keyword.

Syntax
The syntax for AddHandler is shown below.

AddHandler object.EventName, AddressOf methodName

Example
The following example shows a single method handler called HandleEvent
being used for two instances of TestClass:

Dim x As New TestClass(), y As New TestClass()

AddHandler x.anEvent, AddressOf HandleEvent
AddHandler y.anEvent, AddressOf HandleEvent

58 Module 5: Object-Oriented Programming in Visual Basic .NET

The RemoveHandler Keyword
The new RemoveHandler keyword disconnects your event handler from the
object’s events.

Syntax
The syntax for RemoveHandler is shown below.

RemoveHandler object.EventName, AddressOf methodName

AddressOf creates a reference to a procedure that can be passed to
appropriate methods. It was introduced in previous versions of Visual Basic.
For more information about AddressOf, search for “AddressOf” in the
Visual Studio .NET documentation.

Note

 Module 5: Object-Oriented Programming in Visual Basic .NET 59

Demonstration: Handling Events

In this demonstration, you will learn how to define and raise events in a class
and how to handle them in client code.

Topic Objective
To demonstrate how to
define, raise, and handle
events.

Lead-in
Using events is a common
requirement for class
development.

Delivery Tip
The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

60 Module 5: Object-Oriented Programming in Visual Basic .NET

What Are Delegates?

n Objects That Call the Methods of Other Objects

n Similar to Function Pointers in Visual C++

n Reference Type Based on the System.Delegate Class

n Type-safe, Secure, Managed Objects

n Example:

l Useful as an intermediary between a calling procedure
and the procedure being called

The common language runtime supports objects called delegates that can call
the methods of other objects dynamically. Delegates are sometimes described
as type-safe function pointers because they are similar to the function
pointers used in other programming languages. Unlike function pointers,
Visual Basic .NET delegates are a reference type based on the class
System.Delegate and can reference both shared methods (methods that can be
called without a specific instance of a class) and instance methods. Delegates
provide the same flexibility as function pointers in Microsoft Visual C++®
without the risk of corrupted memory because they are type-safe, secure,
managed objects.

Delegates are useful when you need an intermediary between a calling
procedure and the procedure being called. For example, you might want an
object that raises events to be able to call different event handlers under
different circumstances. Unfortunately, the object raising events cannot
know ahead of time which event handler is handling a specific event.
Visual Basic .NET allows you to dynamically associate event handlers with
events by creating a delegate for you when you use the AddHandler statement.
At run time, the delegate forwards calls to the appropriate event handler.

Topic Objective
To provide an introduction to
the concept and use of
delegates.

Lead-in
Delegates are a powerful
new feature of
Visual Basic .NET.

 Module 5: Object-Oriented Programming in Visual Basic .NET 61

Using Delegates

n Delegate Keyword Declares a Delegate and Defines
Parameter and Return Types

n Methods Must Have the Same Function Parameter and
Return Types

n Use Invoke Method of Delegate to Call Methods

Delegate Function CompareFunc(_
ByVal x As Integer, ByVal y As Integer) As Boolean

Delegate Function CompareFunc(_
ByVal x As Integer, ByVal y As Integer) As Boolean

You use the Delegate keyword to declare a delegate function signature that
defines the parameter and return types. Only methods that have the same
function parameter and return types can be used with a particular delegate
object.

Example
To learn how delegates work, consider an example that shows how to declare a
delegate function signature, create methods to accept the parameter types you
have defined, and call the functions by using the delegate object. The final part
of this example shows how to use the delegate to perform a bubble sort.

Declaring a Delegate Function Signature
The following code shows how to create a delegate function called
CompareFunc, which takes two Integer parameters and returns a Boolean
value.

Delegate Function CompareFunc(_
 ByVal x As Integer, ByVal y As Integer) As Boolean

Creating Methods
After you create a delegate, you can then create methods that accept the same
parameter types, as follows:

Function CompareAscending(_
 ByVal x As Integer, ByVal y As Integer) As Boolean
 Return (y > x)
End Function
Function CompareDescending(_
 ByVal x As Integer, ByVal y As Integer) As Boolean
 Return (x > y)
End Function

Topic Objective
To provide an example of
how to use delegates in
event handling.

Lead-in
Let’s look at an example of
how you can use delegates
in event handling.

Delivery Tip
This is an advanced feature
of Visual Basic .NET. A
simple example is provided
in the notes. It is followed by
a more complex example.

Recommend that the
students look at the
advanced example if they
are interested in this topic.
The example is also
included in the Demo Code
folder.

62 Module 5: Object-Oriented Programming in Visual Basic .NET

Calling Methods
After you create the necessary functions, you can write a procedure to call these
two functions by using a delegate object as follows:

Sub SimpleTest()
 Dim delDelegate As CompareFunc

 delDelegate = New CompareFunc(AddressOf CompareAscending)
 MsgBox(delDelegate.Invoke(1, 2))

 delDelegate = New CompareFunc(AddressOf CompareDescending)
 MsgBox(delDelegate.Invoke(1, 2))
End Sub

Performing a Bubble Sort by Using Delegates
Now that you have created a delegate and defined its methods, you can start
using the delegate. A bubble sort routine is a good example of how you might
use delegates. This type of sort routine starts at the top of a list and compares
each item, moving it up the list if appropriate (bubbling it up), until the
complete list is sorted. The following method takes a sortType parameter that
will specify whether the sort should be ascending or descending. It also takes an
array of Integer values to be sorted. The appropriate delegate object is created,
depending on the order of the sort.

Sub BubbleSort(ByVal sortType As Integer, _
 ByVal intArray() As Integer)
 Dim I, J, Value, Temp As Integer
 Dim delDelegate As CompareFunc

 If sortType = 1 Then 'Create the appropriate delegate
 delDelegate = New CompareFunc(AddressOf CompareAscending)
 Else
 delDelegate = New CompareFunc(AddressOf _
 CompareDescending)
 End If

 For I = 0 To Ubound(intArray)
 Value = intArray(I)
 For J = I + 1 To Ubound(intArray)
 If delDelegate.Invoke(intArray(J), Value) Then
 intArray(I) = intArray(J)
 intArray(J) = Value
 Value = intArray(I)
 End If
 Next J
 Next I
End Sub

 Module 5: Object-Oriented Programming in Visual Basic .NET 63

The following code shows how to call the bubble sort procedure:

Sub TestSort()
 Dim a() As Integer = {4, 2, 5, 1, 3}

 BubbleSort(1, a) 'Sort using 1 as ascending order
 MsgBox(a(0) & a(1) & a(2) & a(3) & a(4), , "Ascending")

 BubbleSort(2, a) 'Sort using 2 as descending order
 MsgBox(a(0) & a(1) & a(2) & a(3) & a(4), , "Descending")
End Sub

64 Module 5: Object-Oriented Programming in Visual Basic .NET

Comparing Classes to Structures

Value typeReference type

Extensible by inheritance

Support Finalize method

Supports constructors and
member initialization

Can define data members,
properties, and methods

Classes Structures

Can define data members,
properties, and methods

Do not support inheritance

Do not support Finalize method;
implement IDisposable

No default constructor or
member initialization

Classes and structures are similar in several ways: both can define data
members, properties, and methods. However, classes provide some advanced
features that developers can use.

 Classes Structures

Initialization Supports constructors and member

initialization.
No default constructor and no initialization of
members.

Finalize method Support Finalize method. Do not support Finalize method. You must manually
release resources.. Structures can use interfaces, so
they can use the IDispose interface to implement the
Dispose method to release resources.

Inheritance Extensible by inheritance. Do not support inheritance.

Data type Reference data type.

When an object variable is passed to
a function, the address reference of
the data is passed rather than the
data itself.

Assigning one class variable to
another points both variables to the
same object. Any updates to either
variable will therefore affect the
other.

Value data type.

When a structure variable is passed to a function, the
actual data must be copied to the function.

Assigning one structure variable to another creates an
actual copy of the structure. Updates to one of the
variables will therefore not affect the other.

The difference in data type has a significant effect on
application performance. A class with a lot of internal
data will perform better than a large data structure
under these conditions.

Topic Objective
To explain the differences
between classes and
structures.

Lead-in
Classes and structures have
similar functionality, but
classes provide a more
powerful basis for object-
oriented dev elopment.

 Module 5: Object-Oriented Programming in Visual Basic .NET 65

Lab 5.2: Inheriting the Package Class

Objectives
After completing this lab, you will be able to:

n Create base classes.

n Create derived classes that use inheritance.

n Use inherited classes from calling code.

Prerequisites
Before working on this lab, you should be familiar with inheritance in
Visual Basic .NET.

Scenario
In this lab, you will continue creating the Cargo system. You will create the
Package base class, the SpecialPackage derived class, and the test application.
Some of the code has been created for you.

Starter and Solution Files
There are starter and solution files associated with this lab. The starter files are
in the install folder\Labs\Lab052\Starter folder, and the solution files are in the
install folder\Labs\Lab052\Solution folder.

Estimated time to complete this lab: 60 minutes

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will create a
base class and a class that
derives from it.

Explain the lab objectives.

66 Module 5: Object-Oriented Programming in Visual Basic .NET

Exercise 1
Completing the SpecialPackage Class

In this exercise, you will examine the pre-written Package class and complete
the partially written SpecialPackage class. You will inherit from the Package
class, and override some of its methods.

å To open the starter project

1. Open Visual Studio .NET.

2. On the File menu, point to Open, and click Project . Set the folder location
to install folder\Labs\Lab052\Starter, click Lab052.sln, and then click
Open.

å To examine the Package class

1. Open the Package.vb class.

2. Examine the existing properties and methods.

The Package class retrieves and stores information about a single package
that will be delivered to a customer. It contains information about the
package, including a description, size dimensions, instructions, weight, and
value. These properties have been created for you.

The Package class provides methods to simulate the creation, retrieval, and
deletion of package information. These methods are marked as overridable
for inheriting classes. Note that the IsSpecialPackage method is marked as
shared so that it can be accessed without instantiating object variables.
These methods have been created for you.

å To examine the SpecialPackage class

1. Open the SpecialPackage.vb class.

2. Examine the existing properties.

å To inherit from the Package class

1. At the top of the SpecialPackage class, locate the list of private variables.
Insert the following line immediately before the variable declarations:

Inherits Package

This will create the relationship between the Package base class and the
derived class SpecialPackage.

 Module 5: Object-Oriented Programming in Visual Basic .NET 67

2. Add the following methods to the SpecialPackage class definition:

Method name Type Parameters

GetDetails Public Overrides

Sub

ByVal intID As Integer

CreatePackage Public Overloads
Function

ByVal intDeliveryID As
Integer
ByVal strDescription As
String
ByVal strDimensions As
String
ByVal strInstructions As
String
ByVal strWeight As String
ByVal dblValue As Double
ByVal blnOxygen As Boolean
ByVal strTemperature As
String
ByVal strTimeLimit As
String
ByVal strExtra As String
<RETURN VALUE> As Integer

DeletePackage Public Overrides
Sub

ByVal intID As Integer

å To implement the GetDetails method

1. Locate the GetDetails method declaration and add code to call the
MyBase.GetDetails method, passing the intID as the parameter to retrieve
the simulated Package details.

2. After the call to MyBase.GetDetails, assign the following values to the
SpecialPackage properties to simulate a returned record from the database:

Property Value

OxygenRequired True

Temperature 80

TimeLimit 5 hours

ExtraInstructions Feed if time limit exceeded

68 Module 5: Object-Oriented Programming in Visual Basic .NET

å To implement the CreatePackage method

1. Locate the CreatePackage method declaration, and add code to call the
MyBase.CreatePackage method, passing in the following values as the
parameters to create the simulated Package record.

Parameter Name Value

intDeliveryID intDeliveryID

strDescription strDescription

strDimensions strDimensions

strInstructions strInstructions

strWeight strWeight

dblValue dblValue

2. After the call to MyBase.CreatePackage, assign the following values to the
SpecialPackage properties to simulate the update to the database.

Property Value

OxygenRequired blnOxygen

Temperature strTemperature

TimeLimit strTimeLimit

ExtraInstructions strExtra

3. After the property value assignments, use the MsgBox function to display
the message “Special instructions added”.

4. Return the PackageID as the return value of the CreatePackage method.

å To implement the DeletePackage method

1. Locate the DeletePackage method declaration, and insert code to use the
MsgBox function to display the message “Deleting special package details”
to simulate the deletion of the SpecialPackage database record.

2. After the displaying the message, call the MyBase.DeletePackage method,
passing intID as the parameter, to simulate the deletion of the Package
record.

3. Save the project.

 Module 5: Object-Oriented Programming in Visual Basic .NET 69

Exercise 2
Retrieving Packages

In this exercise, you will write the calling code for the Retrieve button that
calls either a Package or a SpecialPackage object. You will then test your code
by entering some values into the Package form.

å To create the Retrieve button code

1. Open frmPackage in the Code Editor, and locate the btnRetrieve_Click
event procedure.

2. Create an If statement that calls the Package.IsSpecialPackage shared
function, passing in the Text property of txtID as the parameter. (Use the
CInt function to convert the text value into an Integer.)

å To use a SpecialPackage object

1. In the true part of the If statement, declare and instantiate a SpecialPackage
variable called aSpecial.

2. Set the Checked property of chkSpecial to True.

3. Call the GetDetails method of the aSpecial object, passing in the Text
property of txtID as the parameter. (Use the CInt function to convert the
text value into an Integer.)

4. Display the properties of the aSpecial object in the appropriate text boxes.
Use the information in the following table to assign the text box values to
the properties of the aSpecial object.

Control Property of aSpecial

txtDeliveryID.Text DeliveryID

txtDescription.Text Description

txtDimensions.Text Dimensions

txtInstructions.Text Instructions

txtValue.Text Value

txtWeight.Text Weight

txtExtra.Text ExtraInstructions

txtTemperature.Text Temperature

txtTimeLimit.Text TimeLimit

chkOxygen.Checked OxygenRequired

70 Module 5: Object-Oriented Programming in Visual Basic .NET

å To use the Package object

1. In the false block of the If statement, set the Checked property of
chkSpecial to False, and declare and instantiate a Package variable called
aPackage.

2. Call the GetDetails method of the aPackage object, passing in the Text
property of txtID as the parameter. (Use the CInt function to convert the
text value into an Integer.)

3. Display the properties of the aPackage object in the appropriate textboxes.
Use the information in the following table to assign the text box values to
the properties of the aPackage object.

Control Property of aPackage

txtDeliveryID.Text DeliveryID

txtDescriptio n.Text Description

txtDimensions.Text Dimensions

txtInstructions.Text Instructions

txtValue.Text Value

txtWeight.Text Weight

txtExtra.Text “ ”

txtTemperature.Text “ ”

txtTimeLimit.Text “ ”

chkOxygen.Checked False

4. Save the project.

å To test the Re trieve button code

1. Set a breakpoint on the first line of the btnRetrieve_Click procedure. From
the Debug menu, click Start .

2. Enter the value 18 in the PackageID box, click the Retrieve button, and
then step through the procedure.

3. Confirm that your code retrieves the package information and displays it
correctly in the text boxes.

4. Click the Clear Data button to reset the information.

5. Enter the value 33 in the PackageID box, click the Retrieve button, and
step through the procedure.

6. Confirm that your code retrieves the special package information and
displays it correctly in the text boxes.

7. Click the Close button to quit the application. Remove the breakpoint on
btnRetrieve_Click.

 Module 5: Object-Oriented Programming in Visual Basic .NET 71

Exercise 3
Creating Packages

In this exercise, you will write the calling code for the New button that creates
either a Package or SpecialPackage object. You will then test your code by
entering some values into the Package form.

å To create the New Package button code

1. Locate the btnNew_Click event procedure.

2. Create an If statement that checks the Checked property of the chkSpecial
check box.

å To create a Package object

1. In the false part of the If statement, declare and instantiate a Package
variable called aPackage.

2. Call the CreatePackage method of the aPackage object, passing in the
following values as parameters.

Parameter TextBox

iDelivery CInt(txtDeliveryID.Text)

strDescription txtDescription.Text

strDimensions txtDimensions.Text

strInstructions txtInstructions.Text

strWeight txtWeight.Text

dblValue CDbl(txtValue.Text)

3. Store the return of the CreatePackage method in the Text property of the
txtID box. (Use the CStr function to convert the Integer to a String.)

å To create a SpecialPackage object

1. In the true part of the If statement, declare and instantiate a SpecialPackage
variable called aPackage.

2. Call the overloaded CreatePackage method of the aPackage object,
passing in the following values as parameters.

Parameter Value

iDelivery Cint(txtDeliveryID.Text)

strDescription txtDescription.Text

strDimensions txtDimensions.Text

strInstructions txtInstructions.Text

strWeight txtWeight.Text

dblValue CDbl(txtValue.Text)

blnOxygen chkOxygen.Checked

strTemperature txtTemperature.Text

strTimeLimit txtTimeLimit.Text

strExtra txtExtra.Text

72 Module 5: Object-Oriented Programming in Visual Basic .NET

3. Store the return of the overloaded CreatePackage method in the Text
property of the txtID box. (Use the CStr function to convert the Integer to a
String.)

4. Save the project.

å To test the standard Package code

1. Set a breakpoint on the first line of the btnNew_Click procedure.

2. On the Debug menu, click Start.

3. Enter the following values.

Control Value

DeliveryID 11

Description Software

Instructions None

Dimensions NA

Weight NA

Value 50

4. Click the New button, and step through the procedure.

5. Confirm that the code correctly passes the values to the package class.

6. Click the Clear Data button.

å To test the SpecialPackage code
1. Enter the following values.

Control Value

DeliveryID 43

Description Heart Transplant

Instructions Deliver to Joe Howard

Dimensions NA

Weight NA

Value 0

SpecialPackage checkbox Checked

ExtraInstructions Speed is essential

OxygenRequired checkbox Unchecked

Temperature 20

TimeLimit 2 hours

2. Click the New button, and debug the procedure.

3. Confirm that the code passes the values to the SpecialPackage class
correctly.

4. Click the Close button to quit the application, and remove the breakpoint on
btnNew_Click.

 Module 5: Object-Oriented Programming in Visual Basic .NET 73

Exercise 4
Deleting Packages

In this exercise, you will write the calling code for the Delete button that
deletes either a Package or SpecialPackage object. You will then test your
code by entering some values into the Package form.

å To create the Delete button code

1. Locate the btnDelete_Click event procedure.

2. Create an If statement that calls the Package.IsSpecialPackage shared
function, passing in the Text property of txtID as the parameter. (Use the
CInt function to convert the text value into an Integer.)

å To delete a SpecialPackage object

1. In the true part of the If statement, declare and instantiate a SpecialPackage
variable called aSpecial.

2. Call the DeletePack age method of the aSpecial object, passing in the Text
property of txtID as the parameter. (Use the CInt function to convert the
text value into an Integer.)

å To delete a Package object

1. In the false part of the If statement, declare and instantiate a Package
variable called aPackage.

2. Call the DeletePackage method of the aPackage object, passing in the Text
property of txtID as the parameter. (Use the CInt function to convert the
text value into an Integer.)

3. Save the project.

å To test the Delete button code

1. Set a breakpoint on the first line of the btnDelete_Click procedure, and, on
the Debug menu, click Start .

2. Enter the value 18 in the PackageID text box, and click the Delete button to
debug the procedure.

3. Confirm that your code simulates the deletion of the Package object.

4. Click the Clear Data button to reset the information.

5. Enter the value 33 in the PackageID text box, and click the Delete button to
debug the procedure.

6. Confirm that your code simulates the deletion of the SpecialPackage object.

7. Click the Close button to quit the application, and remove the breakpoint on
btnDelete_Click.

8. Close Visual Studio .NET.

74 Module 5: Object-Oriented Programming in Visual Basic .NET

Review

n Defining Classes

n Creating and Destroying Objects

n Inheritance

n Interfaces

n Working with Classes

1. Create code that defines multiple constructors for a Person class. The first
constructor will not take any arguments. The second will take two string
values: FirstName and LastName.

Class Person

 Sub New()

 'Default constructor

 End Sub

 Sub New(ByVal FirstName As String, _

 ByVal LastName As String)

 'Second constructor

 End Sub

End Class

2. Garbage collection occurs immediately after all references to an object are
removed. True or false? If false, explain why.

False. Garbage collection may happen at any time after all object
references have been removed.

3. Describe the functionality of the MyBase keyword.

MyBase is used in a derived class to access methods and properties in
the immediate base class.

Topic Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

 Module 5: Object-Oriented Programming in Visual Basic .NET 75

4. What is a potential problem that may result from the following class code
sample? How can you rewrite the code to resolve the problem?

Class Person
 Private Sub Save()
 'Save the local data in a database
 End Sub

 Sub Dispose()
 Save()
 End Sub

 Protected Overrides Sub Finalize()
 Dispose()
 MyBase.Finalize()
 End Sub
End Class

The Dispose method can be called directly from a client and might be
called again when the object is destroyed by garbage collection. This
would result in the Save method being called twice, which may create
data inconsistencies.

To avoid this, use the SuppressFinalize method of the GC class to stop
the Finalize method being called after Dispose. Add the line
"GC.SuppressFinalize()" in the Dispose method after the Save line as
follows):

Sub Dispose()

 Save()

 GC.SuppressFinalize()

End Sub

76 Module 5: Object-Oriented Programming in Visual Basic .NET

5. You can create an interface explicitly in Visual Basic .NET. True or false?
If false, explain why.

True. You can create an interface explicitly by using the
Interface…End Interface statement block.

6. Will the following code compile correctly? If not, why?

Class Person
 Event NameChanged()
 Private strName As String

 Sub ChangeName(ByVal strNewName As String)
 strName = strNewName
 RaiseEvent NameChanged()
 End Sub
End Class

Module TestCode
 Sub Main()
 Dim x As New Person()
 AddHandler x.NameChanged, AddressOf HandleIt
 x.ChangeName("Jeff")
 End Sub

 Sub HandleIt(ByVal strValue As String)
 MsgBox(strValue)
 End Sub
End Module

The code will not compile correctly because the signature of the event
does not match the signature of the delegate in the AddHandler
statement.

