

CS608 Lecture Notes

Visual Basic.NET Programming

Introduction to visual Basic.NET

Language Components – Graphical Elements Reference

These notes are for Reference Only! And will not be covered in class!

These notes are intended a reference for reviewing VB.NET graphical
controls and forms on your own time and when needed for the
projects

(Part IV of IV)

(Lecture Notes 1D)

Prof. Abel Angel Rodriguez

 2

CHAPTER 4 (CONT) GRAPHICAL ELEMENTS REFERENCE..3

4.5 Graphical Elements of .NET Framework – System.Windows.Forms Namespace ..3
4.5.1 Form Class ..3

Form Class Basics..3
Form Class Properties ..4
Form Class Methods ..5
Form Class Events & Event-Procedures..5
Using Forms in Your Projects ...6
Step 1 - Creating & Adding Forms to Project..6
Step 2- Create the User Interface Using Controls..6
Step 3- Displaying Forms ..7

4.5.2 Message Box...9
MessageBox Class Method As a Procedure ..9
MessageBox Class Method As a Function ..12

4.5.3 Controls...13
Naming Rules for Control Objects ..13
Control Objects In Visual Basic.NET..14

 3

Chapter 4 (Cont) Graphical Elements Reference

4.5 Graphical Elements of .NET Framework – System.Windows.Forms Namespace
 To create Windows Applications, we need to use graphical elements.
 The System.Windows.Forms namespace contains numerous GUI classes for us to use with our programs. Such as Labels,

TextBox, Button, ListBox, MessageBox etc.
 You must import the System.Windows.Forms namespace to make these graphical classes available to the compiler

4.5.1 Form Class
 Forms are the class objects used as the foundation for creating the User Interface (UI) in a windows application
 Forms are created using the IDE Form Designer.
 As with most Visual Basic Objects, Forms have a visible & invisible part. The visible part is the graphical Form that you see and

the invisible part is the Code written using the Code Editor Window.

Form Class Basics
 In Visual Basics.NET, when you create a Form, you are actually creating a Form Class.
 When you use the Code Editor Window to view the invisible part of a Form you will see the Class declaration:

Class
Declaration

Class Body Contains:
- Form Properties
- Form Methods
- Form Event-Procedures

 4

Form Class Properties
 Forms are Objects therefore they contain properties.
 The Form Properties can be viewed and modified using the Property Window

 The table below is a snapshot of some of the most commonly used Properties:

Common Form Class Properties:
BackColor Gets or sets the background color for the control
BackgroundImage Gets or sets the background image displayed in the control.
Enabled Gets or sets a value indicating whether the control can respond to user interaction.
Font Gets or sets the font of the text displayed by the control.
ForeColor Gets or sets the foreground color of the control.
FormBorderStyle Gets or sets the border style of the form.
Name Gets or sets the name of the control.
Size Gets or sets the size of the form.
StartPosition Gets or sets the starting position of the form at run time.
TabStop Gets or sets a value indicating whether the user can give the focus to this control using

the TAB key.
Text Gets or sets the text associated with this control.
Visible Gets or sets a value indicating whether the control is displayed.

Property Name

Property Value

 5

Form Class Methods
 The Form Class contains many Methods. If you go to the ONLINE HELP and search for Form Methods, you will see a table

with all the methods of the Form Class.
 The table below is a snapshot of some of the most commonly used Methods:

Common Form Class Methods:
Close Closes the form.
Hide (inherited from Control) Conceals the control from the user.
Show (inherited from Control) Displays the control to the user.
ShowDialog Shows the form as a modal dialog box.

Form Class Events & Event-Procedures
 Events are actions taken upon the Form Object by the User.
 These actions automatically execute a specialized method called an Event-Procedure
 The Form Class contains a list of these Event-Procedures. Go to the ONLINE-HELP for a complete listing.
 The table below is a snapshot of some of the most commonly used Event-Procedures:

Form Class Public Events:
Click Occurs when the control is clicked.
Closed Occurs when the form is closed.
Closing Occurs when the form is closing.
Deactivate Occurs when the form loses focus and is not the active form.
DoubleClick Occurs when the control is double-clicked.
Enter Occurs when the control is entered.
GotFocus Occurs when the control receives focus.
KeyDown Occurs when a key is pressed while the control has focus.
KeyPress Occurs when a key is pressed while the control has focus.
KeyUp Occurs when a key is released while the control has focus.
Load Occurs before a form is displayed for the first time.
LostFocus Occurs when the control loses focus.
MouseDown Occurs when the mouse pointer is over the control and a mouse button is pressed.
MouseEnter Occurs when the mouse pointer enters the control.
MouseHover Occurs when the mouse pointer hovers over the control.
MouseLeave Occurs when the mouse pointer leaves the control.
MouseMove Occurs when the mouse pointer is moved over the control.
MouseUp Occurs when the mouse pointer is over the control and a mouse button is released.
MouseWheel Occurs when the mouse wheel moves while the control has focus.
Resize Occurs when the control is resized.
TextChanged Occurs when the Text property value changes.

 6

Using Forms in Your Projects
 In order to use Forms in your project, you need to perform the following two steps:

1. Add Form to the project
2. Design the User Interface using Controls Class Objects (TexBox, Button, Labels etc)
3. Display the Form

Step 1 - Creating & Adding Forms to Project
 When you create a new project a default Form, Form1 is created by the IDE.
 When you add a form to a project what you are adding is actually a Form Class from the System.Windows.Forms

namespace
 You can add additional Forms to your project as desired.

Adding Forms to your project:

 To add a Form to your project in the Menu Bar select the following command:

Project|Add Windows Form..

 Another method:

In the Solution Explorer, Right-Click on the Project Name, in the context menu select Add|Add Windows Form…

Step 2- Create the User Interface Using Controls
 Controls from the Toolbox will be dropped onto Forms to create the GUI. (I will review controls in later lectures)
 When this is done, all controls or Object placed on a Form are now members or children objects of the Form Class.
 In other words the invisible part of the Control or the part where you will be writing code for the control will reside within the

boundaries of the Form Class.
 This makes sense since the Controls are now residing inside the Form.

 Note that all Controls placed on the Form, are actually members of the class, therefore their
properties, methods & event-procedures will be listed in the body of the class.

Class Body Contains:
- Form Properties
- Form Methods
- Form Event-Procedures

Class Body Also Contains:
- Control Properties
- Control Methods
- Control Event-Procedures

Class
Declaration

 7

Step 3- Displaying Forms
 In order to display a form from program code you need to perform two parts:

a) Create an object of the Form Class that you just added to the project
b) Display the Form Object.

Part A – Creating the Object

 So after you add the Form using step 1, then you need to create an Object of the Form class
 From previous lecture, we used the following syntax for creating objects:

 Dim| Public | Private ObjectName As ClassName = New ClassName()

 Another syntax used and my preference is the two step method. In this method, we first declare the class reference variable and

in another step we create the object. Note that this is the same syntax we used to create string variables.
 Syntax:

 Dim| Public | Private FormObjectName As ClassName

 FormObjectName = New ClassName()

Example:

 Assuming we have previously added a Form Class using step 1 above and named
the Class frmLogin. Creating an Object of the Form class is as follows:

'Create Object of the Form Class

 Dim objLoginForm As frmLogin
 objLoginForm = New frmLogin()

 8

Part B – Displaying the Form Object

 After you create the Form Object, now you need to display the form using one of the Form Class methods available to display the
Form

 Before I explain how to display the object, lets look at two definitions:

 Modal: When a window or Form displays, all other operations in the other windows are suspended until dialog closes
 Modeless: When a Form displays, you can still switch the focus back and forth between the dialog and other windows.

 There are two class methods available in the Form Class to display a form: ShowDialog() and Show()
 The difference between the two are that ShowDialog displays a Modal Form while Show() displays the Form Modeless.
 Syntax:

 FormObject.ShowDialog()

Example 1:
 Assuming we have previously added a Form Class using step 1 above and named

the Class frmLogin. Creating an Object of the Form class is as follows:

'Create Object of the Form Class
 Dim objLoginForm As frmLogin
 objLoginForm = New frmLogin()

 'Display Form
 objLoginForm.ShowDialog()

 9

4.5.2 Message Box
 Message Boxes are useful for alerting the user to something and requiring some sort of response, such as Ok, Cancel etc.
 They are used when you want to give the user a simple message, such as an error message, warning or simply informing the user

of something.
 Visual Basics.NET provides a Message Box Class. A Message Box Object does not contain Properties, but it does contain

several methods. The one that we are interested in is the Show() Method.
 The Show() Method allows you to display a message box with the desired text, icon and buttons.
 The 4 components of a Message Box:

 A message box comes in two flavors:

 As a Statement – Display the message and user simply clicks the available buttons, but results from clicking is not used in
code

 As a Function – Display the message, but the buttons clicked is trapped and returned by the code and used to determine
some condition

MessageBox Class Method As a Procedure

Message Box Object Show() Methods:
 The syntax to using the Show Method is as follows:

 Syntax 1 – Message Statement: Message box shows a text message that the user must acknowledge by clicking on the OK button
MessageBox.Show(TextMessage)

A Title

A Text Message

One or More Command Buttons

An Icon

Example:

 ‘Displaying a simple message with an OK button with no title text:

MessageBox.Show(“Access Granted”)

 10

Syntax 2 – Statement with Title Text: Message box shows a text message and the title text describing the message box
MessageBox.Show(TextMessage, TitlebarText)

Syntax 3 – Statement or Function with Title Text and other Buttons: Message box shows a text message, title text and buttons
MessageBox.Show(TextMessage, TitlebarText, MessageBoxButtons)

Where:
MessageBoxButtons.ButtonOptions
Example: MessageBoxButtons.OKCancel
(see table below)

 The Message Box Button Options:

Constant Appearance

OK

OKCancel

AbortRetryIgnore

YesNoCancel

YesNo

RetryCancel

Example:

 ‘Displaying a simple message with an OK button with title text:

MessageBox.Show(“Access Granted”, “Authentication Results”)

 11

Syntax 4 – Statement with Title Text, Buttons and Icons: Message box shows a text message, title text, buttons and icons
describing the type of message box
MessageBox.Show(TextMessage, TitlebarText, MessageBoxButtons, MessageBoxIcon)

Where:
MessageBoxIcon.Icon
Example: MessageBoxIcon.Question
(see table below)

 The Message Box Icon Options:

Constant Appearance

Error

Question

Exclamation

Information

Example:

 ‘Displaying a simple message with an OK button:

MessageBox.Show(“Do you want to save changes you made to Document1?”, “Microsoft Word”,
MessageBoxButtons.YesNo, MessageBoxIcon.Question)

Example:

 ‘Displaying a simple message with an OK button:

MessageBox.Show(“Do you want to save changes you made to Document1?”, “Microsoft Word”,
MessageBoxButtons.YesNo

 12

MessageBox Class Method As a Function
 You can program the Message box as a function which returns a constant value which represents the button clicked.
 You can use this value with an If/Else statement to perform some action depending on the button the user clicks.

Syntax 4 – Function that returns constant value of button selected: Message box shows a text message, title text, buttons and
icons describing the type of message box
variable = MessageBox.Show(TextMessage, TitlebarText, MessageBoxButtons, MessageBoxIcon)

Where:
variable is an integer variable that will hold a specialized constant value returned by the Message Box
The constant values are shown in table below:

 Constant values returned:

Visual Basic .NET Returned Constants
MsgBoxResult.OK
MsgBoxResult.Cancel
MsgBoxResult.Abort
MsgBoxResult.Retry
MsgBoxResult.Ignore
MsgBoxResult.Yes
MsgBoxResult.No

Example:

 ‘Displaying a simple message with an OK button:

Dim intAnswer As String

intAnswer = MessageBox.Show(“Do you want to save changes you made to Document1?”, “Microsoft
Word”, MessageBoxButtons.YesNoCancel, MessageBoxIcon.Question)

 If Answer = MsgBoxResult.Yes Then
 'Do something here, for this example, such as saving the file

 ElseIf Answer = MsgBoxResult.No Then
 'Do something here, for this example, such as not saving and exiting

 ElseIf Answer = MsgBoxResult.Cancel Then
 'Do something here, for this example, such as continuing application

 End If

 13

4.5.3 Controls
 Controls are the graphical objects that together with Forms, make up the User Interface (UI)
 The Toolbox contains a variety of Controls. In addition you can purchase libraries which contain more custom controls.
 In this section we will look at some of the most common controls, their properties, methods and events

Naming Rules for Control Objects
 When you select a name for an Object, Visual Basics requires that the name begins with a letter.
 The name can contain letters, digits and underscores.
 Object names cannot contain space or punctuations marks.

Naming Conventions

 There is a naming convention that has been adopted for naming Objects in Visual Basics.NET
 The rule is that the Object name should be prefixed by a three letter characters.
 The table below lists the prefixes for the common Control Object naming convention:

Object Prefix Example
Form

frm frmDataEntry

Button

btn btnExit

TextBox

txt txtFirstName

Label

lbl lblTotal

Radio Button

rad radMarriageStatus

Check Box

Chk chkAllergic

Horizontal Scroll Bar

Hsb hsbRate

Vertical Scroll Bar

Vsb vsbTemperature

Picture Box

Pic picLandscape

Combo Box

Cbo cboBookList

List Box

Lst LstIngredients

 14

Control Objects In Visual Basic.NET
 In this section we will cover some of the most popular controls
 We will list the control, what it looks like, some common properties, common methods and events.

 Note that as a prerequisite to this course, you should have taken a CS101 & CS508 where the basic

controls were covered in details.
 In the following sections I will lists the controls and their usage for your reading only. I will not

cover this is class, but I am listing it so that you may review this material if necessary.

Label

Description

 Label Control is used to display static text on a Form.
 This control is used when you want to display titles, labels to other controls ect.

Graphical Representation

 Label Control visual representation:

Label Properties & Coding

 The Label Properties can be viewed and modified using the Property Window
 The following table is a list of some of the most common Label Properties:

Common Label Properties:
BackColor Gets or sets the background color for the control.
BackgroundImage image to display in the background of the control.
BorderStyle Gets or sets the border style for the control.
Enabled Gets or sets a value indicating whether the control can respond to user interaction.
Font Gets or sets the font of the text displayed by the control.
ForeColor Gets or sets the foreground color of the control.
Height Gets or sets the height of the control.
Image Gets or sets the image that is displayed on a Label.
Name Gets or sets the name of the control.
TabIndex Gets or sets the tab order of the control within its container.
TabStop Gets or sets a value indicating whether the user can tab to the Label.
Text Gets or sets the text associated with this control.
TextAlign Gets or sets the alignment of text in the label.
Visible Gets or sets a value indicating whether the control is displayed.
Width Gets or sets the width of the control.

 15

Property Coding Syntax:

 ‘Assigning value to property
LabelControl.Property = variable

‘Getting value of property
variable = LabelControl.Property

‘Assigning value of one property to another
LabelControl1.Property = LabelControl2.Property

Label Method & Coding

 The following table is a list of some of the most common Label Methods:

Common Label Methods:
BringToFront Brings the control to the front of the z-order.
Focus Sets input focus to the control.
Hide Conceals the control from the user.
Show Displays the control to the user.

Method Coding Syntax:

 ‘Calling a Method
LabelControl.Method()

‘Additional Syntax in future lectures

Example:

 Setting & Retrieving Properties:

 Example 1 – ‘Assigning value to property:

lblTitle.Text = “Terminator 3”

 Example 2 - Getting value of property:

value = lblTitle.Hight

 Example 3 - Assigning value of one property to another:

lblTitle.Text = lblMovieName.Text

Example:

 Executing or Calling a Method:

 Example 1:

lblTitle.Show()

 Example 2:

lblTitle.Hide()

 16

Label Event, Event-Procedures & Coding
 Events are actions taken by the user upon the control which trigger an automatic execution of an Event-Procedure Method.
 You can view the list of Event in the Code Editor Window by selecting the Label Object in the Object Drop-Down List Box &

available events in the Declaration Drop-Down List Box:

 The following table is a list of some of the most common Label Events & Event-Procedures:

Common Label Events:
Click Occurs when the control is clicked.
DoubleClick Occurs when the control is double-clicked.
Enter Occurs when the control is entered.
GotFocus Occurs when the control receives focus.
LostFocus Occurs when the control loses focus.
MouseDown Occurs when the mouse pointer is over the control and a mouse button is pressed.
MouseEnter Occurs when the mouse pointer enters the control.
MouseHover Occurs when the mouse pointer hovers over the control.
MouseLeave Occurs when the mouse pointer leaves the control.
MouseMove Occurs when the mouse pointer is moved over the control.
MouseUp Occurs when the mouse pointer is over the control and a mouse button is released.
MouseWheel Occurs when the mouse wheel moves while the control has focus.
TextChanged Occurs when the Text property value changes.

Event-Procedures

Objects

 17

Event Coding Syntax:

 ‘Procedure- Declaration Statement or Procedure Header
Private Sub ControlObject1_Event(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ControlObject1.Event

‘Place code that you want to execute when the event is trigger inside this body between the declaration and End Sub marking

End Sub

 Note that the header declaration looks complex, don’t worry, this is automatically generated by Visual Basics.NET

Example:

 Coding the Click() Event:

 Example: Suppose you want the label to become disabled if the user clicks on it

Private Sub Label1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Label1.Click

Label1.Enabled = False

End Sub

 18

Push Button

Description

 Push Button Control is used to execute commands
 The Button can be used to perform any operation we want when it is pushed or other events are taken upon it.
 A Button may be clicked by using the mouse, ENTER key, or SPACE B

Graphical Representation

 Push Button Control visual representation:

Push Button Properties & Coding

 The Push Button Properties can be viewed and modified using the Property Window
 The following table is a list of some of the most common Push Button Properties:

Common Push Button Properties:
BackColor Gets or sets the background color for the control.
BackgroundImage Gets or sets the background image displayed in the control.
CanFocus Gets a value indicating whether the control can receive focus.
Enabled Gets or sets a value indicating whether the control can respond to user interaction.
Font Gets or sets the font of the text displayed by the control.
ForeColor Gets or sets the foreground color of the control.
Height Gets or sets the height of the control.
Image Gets or sets the image that is displayed on a button control.
Name Gets or sets the name of the control.
Size Gets or sets the height and width of the control.
TabIndex Gets or sets the tab order of the control within its container.
TabStop Gets or sets a value indicating whether the user can give the focus to this control using the TAB

key.
Text Gets or sets the text associated with this control.
Visible Gets or sets a value indicating whether the control is displayed.
Width Gets or sets the width of the control.

 19

Property Coding Syntax:

 ‘Assigning value to property
Push ButtonControl.Property = variable

‘Getting value of property
variable = Push ButtonControl.Property

‘Assigning value of one property to another
Push ButtonControl1.Property = Push ButtonControl2.Property

Push Button Method & Coding

 The following table is a list of some of the most common Push Button Methods:

Common Push Button Methods:
Focus Sets input focus to the control.
Hide Conceals the control from the user.
Show Displays the control to the user.

Method Coding Syntax:

 ‘Calling a Method
ButtonControl.Method()

‘Additional Syntax in future lectures

Example:

 Setting & Retrieving Properties:

 Example 1 – ‘Assigning value to property:

btnExit.Text = “Exit”
btnExit.Visible = True

 Example 2 - Getting value of property:

value = btnOK.Hight

 Example 3 - Assigning value of one property to another:

btnExit.Text = btnFinished.Text

Example:

 Executing or Calling a Method:

 Example 1:

btnExit.Show()

 Example 2:

btnOK.Hide()

 20

Push Button Event, Event-Procedures & Coding
 Events are actions taken by the user upon the control which trigger an automatic execution of an Event-Procedure Method.
 You can view the list of Event in the Code Editor Window by selecting the Push Button Object in the Object Drop-Down List

Box & available events in the Declaration Drop-Down List Box:

 The following table is a list of some of the most common Push Button Events & Event-Procedures:

Common Push Button Events:
Click Occurs when the control is clicked.
GotFocus Occurs when the control receives focus.
KeyDown Occurs when a key is pressed while the control has focus.
KeyPress Occurs when a key is pressed while the control has focus.
KeyUp Occurs when a key is released while the control has focus.
LostFocus Occurs when the control loses focus.
MouseDown Occurs when the mouse pointer is over the control and a mouse button is pressed.
MouseEnter Occurs when the mouse pointer enters the control.
MouseHover Occurs when the mouse pointer hovers over the control.
MouseLeave Occurs when the mouse pointer leaves the control.
MouseMove Occurs when the mouse pointer is moved over the control.
MouseUp Occurs when the mouse pointer is over the control and a mouse button is released.
MouseWheel Occurs when the mouse wheel moves while the control has focus.
TabIndexChanged Occurs when the TabIndex property value changes.
TabStopChanged Occurs when the TabStop property value changes.
TextChanged Occurs when the Text property value changes.

Event-Procedures

Objects

 21

Event Coding Syntax:

 ‘Procedure- Declaration Statement or Procedure Header
Private Sub ControlObject1_Event(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ControlObject1.Event

‘Place code that you want to execute when the event is trigger inside this body between the declaration and End Sub marking

End Sub

 Note that the header declaration looks complex, don’t worry, this is automatically generated by Visual Basics.NET

Example:

 Coding the Click() Event:

 Example: Suppose you want the Button to End the program when clicked

Private Sub btnExit_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnExit.Click

‘Command that ends the program
End

End Sub

 22

Text Boxes

Description

 Text Box Control is used to accept text entries or input from the user.

Graphical Representation

 Text Box Control visual representation:

Text Box Properties & Coding

 Text Boxes Properties can be viewed and modified using the Property Window
 The following table is a list of some of the most common Text Boxes Properties:

Common Text Box Properties:
BackColor Overridden. Gets or sets the background color of the control.
BackgroundImage Gets or sets the background image displayed in the control.
BorderStyle Gets or sets the border type of the text box control.
Enabled Gets or sets a value indicating whether the control can respond to user interaction.
Font Gets or sets the font of the text displayed by the control.
ForeColor Overridden. Gets or sets the foreground color of the control.
Height Gets or sets the height of the control.
MaxLength Gets or sets the maximum number of characters the user can type into the text box control.
Name Gets or sets the name of the control.
Parent Gets or sets the parent container of the control.
SelectedText Gets or sets a value indicating the currently selected text in the control.
TabIndex Gets or sets the tab order of the control within its container.
TabStop Gets or sets a value indicating whether the user can give the focus to this control using the

TAB key.
Text Gets or sets the current text in the text box.
TextAlign Gets or sets how text is aligned in a TextBox control.
TextLength Gets the length of text in the control.
Visible Gets or sets a value indicating whether the control is displayed.
Width Gets or sets the width of the control.
WordWrap Indicates whether a multiline text box control automatically wraps words to the beginning of

the next line when

 23

Property Coding Syntax:

 ‘Assigning value to property
TextBoxControl.Property = variable

‘Getting value of property
variable = TextBoxControl.Property

‘Assigning value of one property to another
TextBoxControl1.Property = TextBoxControl2.Property

Text Boxes Methods & Coding

 The following table is a list of some of the most common Text Box Methods:

Common Text Box Methods:
AppendText Appends text to the current text of text box.
Clear Clears all text from the text box control.
Copy Copies the current selection in the text box to the Clipboard.
Cut Moves the current selection in the text box to the Clipboard.
Focus Sets input focus to the control.
Hide Conceals the control from the user.
Paste Replaces the current selection in the text box with the contents of the Clipboard.
ResetText Resets the Text property to its default value.
Show Displays the control to the user.
Undo Undoes the last edit operation in the text box.

Method Coding Syntax:

 ‘Calling a Method
Text BoxControl.Method()
future lectures

Example:

 Setting & Retrieving Properties:

 Example 1 – ‘Assigning value to property:

txtName.Text = “Joe”

 Example 2 - Getting value of property:

Name_value = txtName.Text

 Example 3 - Assigning value of one property to another:

txtLastName.Text = txtEmployeeName.Text

Example:

 Executing or Calling a Method:

 Example 1:

txtExit.Show()

 24

Text Box Event, Event-Procedures & Coding

 Events are actions taken by the user upon the control which trigger an automatic execution of an Event-Procedure Method.
 You can view the list of Event in the Code Editor Window by selecting the Text Box Object in the Object Drop-Down List Box

& available events in the Declaration Drop-Down List Box:

 The following table is a list of some of the most common Text Box Events & Event-Procedures:

Common Text Box Events:
Click Occurs when the text box is clicked.
DoubleClick Occurs when the control is double-clicked.
Enter Occurs when the control is entered.
FontChanged Occurs when the Font property value changes.
ForeColorChanged Occurs when the ForeColor property value changes.
GotFocus Occurs when the control receives focus.
KeyDown Occurs when a key is pressed while the control has focus.
KeyPress Occurs when a key is pressed while the control has focus.
KeyUp Occurs when a key is released while the control has focus.
LostFocus Occurs when the control loses focus.
MouseDown Occurs when the mouse pointer is over the control and a mouse

button is pressed.
MouseEnter Occurs when the mouse pointer enters the control.
MouseHover Occurs when the mouse pointer hovers over the control.
MouseLeave Occurs when the mouse pointer leaves the control.
MouseMove Occurs when the mouse pointer is moved over the control.
MouseUp Occurs when the mouse pointer is over the control and a mouse

button is released.
MouseWheel Occurs when the mouse wheel moves while the control has focus.
TabIndexChanged Occurs when the TabIndex property value changes.
TabStopChanged (inherited from Control) Occurs when the TabStop property value changes.
TextAlignChanged Occurs when the value of the TextAlign property has changed.
TextChanged (inherited from Control) Occurs when the Text property value changes.

Event-Procedures

Objects

 25

Event Coding Syntax:

 ‘Procedure- Declaration Statement or Procedure Header
Private Sub ControlObject1_Event(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ControlObject1.Event

‘Place code that you want to execute when the event is trigger inside this body between the declaration and End Sub marking

End Sub

 Note that the header declaration looks complex, don’t worry, this is automatically generated by Visual Basics.NET

Example:

 Coding the Text_Changed() Event:

 Example: Suppose you want to extract the text entered into the text box as the user enters text into the text box

Private Sub txtName_TextChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
txtName_TextChanged

Variable = txtName.text

End Sub

 26

Group Boxes

Description

 Group Box Control is a container to other control.
 Usually groups of Check Boxes and Radio Buttons are place in Group Boxes.
 Using Group Boxes to group controls on a Form, makes the Forms easier to understand and manage

Graphical Representation

 Group Box Control visual representation:

Group Box Properties & Coding

 Group Boxes Properties can be viewed and modified using the Property Window
 The following table is a list of some of the most common Group Boxes Properties:

Common Group Box Properties:
BackColor Gets or sets the background color for the control.
BackgroundImage Gets or sets the background image displayed in the control.
Enabled Gets or sets a value indicating whether the control can respond to user interaction.
Font Gets or sets the font of the text displayed by the control.
ForeColor Gets or sets the foreground color of the control.
Height Gets or sets the height of the control.
Name Gets or sets the name of the control.
RightToLeft Gets or sets a value indicating whether control's elements are aligned to support locales using right-to-left

fonts.
Site Overridden. Gets or sets the site of the control.
TabIndex Gets or sets the tab order of the control within its container.
Text Gets or sets the current text in the control.
Visible Gets or sets a value indicating whether the control is displayed.
Width Gets or sets the width of the control

 27

Property Coding Syntax:

 ‘Assigning value to property
GroupBoxControl.Property = variable

‘Getting value of property
variable = GroupBoxControl.Property

Group Boxes Methods & Coding

 The following table is a list of some of the most common Group Box Methods:

Common Group Box Methods:
Focus Sets input focus to the control.
Hide Conceals the control from the user.
Show Displays the control to the user.

Method Coding Syntax:

 ‘Calling a Method
GroupBoxControl.Method()
future lectures

Example:

 Setting & Retrieving Properties:

 Example 1 – ‘Assigning value to property:

grpGender.Text = “Gender”

Example:

 Executing or Calling a Method:

 Example 1:

grpDayOfWeek.Show()

 28

Group Box Event, Event-Procedures & Coding

 Events are actions taken by the user upon the control which trigger an automatic execution of an Event-Procedure Method.
 You can view the list of Event in the Code Editor Window by selecting the Group Box Object in the Object Drop-Down List

Box & available events in the Declaration Drop-Down List Box:

 The following table is a list of some of the most common Group Box Events & Event-Procedures:

Common Group Box Events:
Enter Occurs when the control is entered.
GotFocus Occurs when the control receives focus.
Leave Occurs when the input focus leaves the control.
LostFocus Occurs when the control loses focus.
MouseHover Occurs when the mouse pointer hovers over the control.
MouseWheel Occurs when the mouse wheel moves while the control has focus.
TabIndexChanged Occurs when the TabIndex property value changes.
TabStopChanged Occurs when the TabStop property value changes.
TextChanged Occurs when the Text property value changes.

Event-Procedures

Objects

 29

Event Coding Syntax:

 ‘Procedure- Declaration Statement or Procedure Header
Private Sub ControlObject1_Event(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ControlObject1.Event

‘Place code that you want to execute when the event is trigger inside this body between the declaration and End Sub marking

End Sub

 Note that the header declaration looks complex, don’t worry, this is automatically generated by Visual Basics.NET

Example:

 Coding the Enter() Event:

 Example: Suppose you a label control to indicate when a user is a citizen

Private Sub grpGender_Enter(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
grpGender_Enter

lblInformation.Text = “User is using items in group”

End Sub

 30

Check Boxes

Description

 Check Box Control is used to select or de-select an option with a check mark
 In any group of Check Boxes any number of Check Boxes can be selected. You can check one or more.
 When a check box is checked, a property known as Checked Property is TRUE, and FALSE when unchecked
 Check Boxes Controls usually works together with the Group Boxes Control.

Graphical Representation

 Check Box Control visual representation:

Check Box Properties & Coding

 The Check Box Properties can be viewed and modified using the Property Window
 The following table is a list of some of the most common Check Box Properties:

Common Check Box Properties:
BackColor Gets or sets the background color for the control.
BackgroundImage Gets or sets the background image displayed in the control.
CanSelect Gets a value indicating whether the control can be selected.
CheckAlign Gets or sets the horizontal and vertical alignment of a check box on a check box control.
Checked Gets or set a value indicating whether the check box is in the checked state.
CheckState Gets or sets the state of the check box.
Enabled Gets or sets a value indicating whether the control can respond to user interaction.
Focused Gets a value indicating whether the control has input focus.
Font Gets or sets the font of the text displayed by the control.
ForeColor Gets or sets the foreground color of the control.
Height Gets or sets the height of the control.
Image Gets or sets the image that is displayed on a button control.
Name Gets or sets the name of the control.
TabIndex Gets or sets the tab order of the control within its container.
TabStop Gets or sets a value indicating whether the user can give the focus to this control using the TAB key.
Text Gets or sets the text associated with this control.
Visible Gets or sets a value indicating whether the control is displayed.
Width Gets or sets the width of the control.

 31

Property Coding Syntax:

 ‘Assigning value to property
CheckBoxControl.Property = variable

‘Getting value of property
variable = CheckBoxControl.Property

Check Box Method & Coding

 The following table is a list of some of the most common Check Box Methods:

Common Check Box Methods:
Focus Sets input focus to the control.
Hide Conceals the control from the user.
ResetText Resets the Text property to its default value.
SendToBack Sends the control to the back of the z-order.
Show Displays the control to the user.

Method Coding Syntax:

 ‘Calling a Method
CheckBoxControl.Method()

Example:

 Setting & Retrieving Properties:

 Example 1 – ‘Assigning value to property:

chkMale.Checked = True
chkFemale.Text = “Female”

 Example 2 - Getting value of property:

value = chkMale.Checked

Example:

 Executing or Calling a Method:

 Example 1:

chkAccept.Show()

 Example 2:

chkAccept.Hide()

 32

Check Box Event, Event-Procedures & Coding
 Events are actions taken by the user upon the control which trigger an automatic execution of an Event-Procedure Method.
 You can view the list of Event in the Code Editor Window by selecting the Check Box Object in the Object Drop-Down List

Box & available events in the Declaration Drop-Down List Box:

 The following table is a list of some of the most common Check Box Events & Event-Procedures:

Common Check Box Events:
CheckedChanged Occurs when the value of the Checked property changes.
CheckStateChanged Occurs when the value of the CheckState property changes.
Click Occurs when the control is clicked.
DoubleClick Occurs when the control is double-clicked.
EnabledChanged Occurs when the Enabled property value has changed.
Enter Occurs when the control is entered.
GotFocus Occurs when the control receives focus.
KeyDown Occurs when a key is pressed while the control has focus.
KeyPress Occurs when a key is pressed while the control has focus.
KeyUp Occurs when a key is released while the control has focus.
LostFocus Occurs when the control loses focus.
MouseDown Occurs when the mouse pointer is over the control and a mouse button is pressed.
MouseEnter Occurs when the mouse pointer enters the control.
MouseHover Occurs when the mouse pointer hovers over the control.
MouseLeave Occurs when the mouse pointer leaves the control.
MouseMove Occurs when the mouse pointer is moved over the control.
MouseUp Occurs when the mouse pointer is over the control and a mouse button is released.
MouseWheel Occurs when the mouse wheel moves while the control has focus.
TabIndexChanged Occurs when the TabIndex property value changes.
TabStopChanged Occurs when the TabStop property value changes.
TextChanged Occurs when the Text property value changes.

Event-Procedures

Objects

 33

Event Coding Syntax:

 ‘Procedure- Declaration Statement or Procedure Header
Private Sub ControlObject1_Event(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ControlObject1.Event

‘Place code that you want to execute when the event is trigger inside this body between the declaration and End Sub marking

End Sub

 Note that the header declaration looks complex, don’t worry, this is automatically generated by Visual Basics.NET

Example:

 Coding the CheckedChanged() Event:

 Example: Suppose you a label control to indicate when a user is a citizen

Private Sub chkUSCitizen_CheckedChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
chkUSCitizen_ CheckedChanged

lblTitle.Text = “User is a Citizen”

End Sub

 34

Radio Buttons (Option Buttons)

Description

 Radio Button Control is used to select one option or button from a group of many
 Radio Button gives the user a single choice from several options.
 The key point here is only one option out of many, you can only select ONE!
 When a Radio Button is selected, a property known as Checked Property is TRUE, and FALSE when unselected
 Radio Buttons work as a group. That is if you place several Radio Button in a Form (No matter location), they will work as a

group automatically, therefore selecting one button will turn of the other button that was previously selected.
 In order to allow you to program several groups of Radio Buttons differently, the Radio Button works together with the Group

Boxes Control.
 A group of Radio Buttons inside a Group Box function together as one unit.
 The best method for using Radio Buttons is to first create the Group Box, then create each Radio Button inside the Group Box

Graphical Representation

 Radio Button Control visual representation:

Radio Button Properties & Coding

 The Radio Button Properties can be viewed and modified using the Property Window
 The following table is a list of some of the most common Radio Button Properties:

Common Radio Button Properties:
Appearance Gets or set the value that determines the appearance of the radio button control.
BackColor Gets or sets the background color for the control.
BackgroundImage Gets or sets the background image displayed in the control.
Checked Gets or sets a value indicating whether the control is checked.
ContainsFocus Gets a value indicating whether the control, or one of its child controls, currently has the input focus.
Disposing Gets a value indicating whether the control is in the process of being disposed of.
Dock Gets or sets which edge of the parent container a control is docked to.
Enabled Gets or sets a value indicating whether the control can respond to user interaction.
FlatStyle Gets or sets the flat style appearance of the button control.
Font Gets or sets the font of the text displayed by the control.
ForeColor Gets or sets the foreground color of the control.
Height Gets or sets the height of the control.
Image Gets or sets the image that is displayed on a button control.
Name Gets or sets the name of the control.
TabIndex Gets or sets the tab order of the control within its container.
Text Gets or sets the text associated with this control.
Visible Gets or sets a value indicating whether the control is displayed.
Width Gets or sets the width of the control.

 35

Property Coding Syntax:

 ‘Assigning value to property
RadioButtonControl.Property = variable

‘Getting value of property
variable = RadioButtonControl.Property

Radio Button Method & Coding

 The following table is a list of some of the most common Radio Button Methods:

Common Radio Button Methods:
Focus Sets input focus to the control.
Hide Conceals the control from the user.
Show Displays the control to the user.

Method Coding Syntax:

 ‘Calling a Method
RadioButtonControl.Method()

Example:

 Setting & Retrieving Properties:

 Example 1 – Assigning value to property:

radON.Checked = True
radOFF.Checked = FALSE

 Example 2 - Assigning value to property:

radOFF.Text = “Off”

 Example 3 - Getting value of property:

value = radON.Checked

 Example 4 – Verifying which button is selected and placing result in text box

If radON.Checked Then
 txtStatus.Txt = “The Television is ON”

ElseIf radOFF.Checked Then
txtStatus.Txt = “The Television is OFF”

End If

Example:

 Executing or Calling a Method:

 Example 1:

radMale.Show()
 Example 2:

radMale.Hide()

 36

Radio Buttons Event, Event-Procedures & Coding

 Events are actions taken by the user upon the control which trigger an automatic execution of an Event-Procedure Method.
 You can view the list of Event in the Code Editor Window by selecting the Radio Button Object in the Object Drop-Down List

Box & available events in the Declaration Drop-Down List Box:

 The following table is a list of some of the most common Radio Button Events & Event-Procedures:

Common Radio Button Events:
CheckedChanged Occurs when the value of the Checked property changes.
Click Occurs when the control is clicked.
DoubleClick Occurs when the control is double-clicked.
GotFocus Occurs when the control receives focus.
KeyDown Occurs when a key is pressed while the control has focus.
KeyPress Occurs when a key is pressed while the control has focus.
KeyUp Occurs when a key is released while the control has focus.
LostFocus Occurs when the control loses focus.
MouseDown Occurs when the mouse pointer is over the control and a mouse button is pressed.
MouseEnter Occurs when the mouse pointer enters the control.
MouseHover Occurs when the mouse pointer hovers over the control.
MouseLeave Occurs when the mouse pointer leaves the control.
MouseMove Occurs when the mouse pointer is moved over the control.
MouseUp Occurs when the mouse pointer is over the control and a mouse button is released.
MouseWheel Occurs when the mouse wheel moves while the control has focus.
TabIndexChanged Occurs when the TabIndex property value changes.
TabStopChanged Occurs when the TabStop property value changes.

Event-Procedures

Objects

 37

Event Coding Syntax:

 ‘Procedure- Declaration Statement or Procedure Header
Private Sub ControlObject1_Event(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ControlObject1.Event

‘Place code that you want to execute when the event is trigger inside this body between the declaration and End Sub marking

End Sub

 Note that the header declaration looks complex, don’t worry, this is automatically generated by Visual Basics.NET

Example:

 Coding the CheckedChanged() Event:

 Example: Suppose you use a label control to indicate when the status of an option has changed from ON to OFF or OFF

to ON

Private Sub radON_CheckedChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
radON_CheckedChanged

lblIndicator.Text = “The Television status has changed”

End Sub

 38

Picture Boxes

Description

 Picture Box Control is used to hold images.
 This is done by setting the Image Property of the Picture Box to a graphic file with extension of .bmp, gif, jpg, png, ico, emf,

or wmf.
 Note that it’s a good idea to place the graphic file in the same folder of the project prior to setting it to the Picture Box.

Graphical Representation

 Picture Box Control visual representation without graphics & with graphic file assigned :

Picture Box Properties & Coding

 Picture Boxes Properties can be viewed and modified using the Property Window
 The following table is a list of some of the most common Picture Boxes Properties:

Common Picture Box Properties:
BackColor Gets or sets the background color for the control.
BackgroundImage Gets or sets the background image displayed in the control.
BorderStyle Indicates the border style for the control.
Enabled Gets or sets a value indicating whether the control can respond to user interaction.
Height Gets or sets the height of the control.
Image Gets or sets the image that the PictureBox displays.
Name Gets or sets the name of the control.
SizeMode Indicates how the image is displayed, either size to fit the picture file or stretch to fit the picture

box
Visible Gets or sets a value indicating whether the control is displayed.
Width Gets or sets the width of the control.

 39

Property Coding Syntax:

 ‘Assigning value to property
PictureBoxControl.Property = variable

‘Getting value of property
variable = GroupBoxControl.Property

Picture Boxes Methods & Coding

 The following table is a list of some of the most common Picture Box Methods:

Common Picture Box Methods:

Public Methods
Focus Sets input focus to the control.
Hide Conceals the control from the user.
Show Displays the control to the user.

Method Coding Syntax:

 ‘Calling a Method
PictureBoxControl.Method()
future lectures

Example:

 Setting & Retrieving Properties:

 Example 1 – ‘Assigning value to image property at design time:

picStudentLogo.Image = use browse button and browse to desired file

 Example 2 – ‘Assigning value to image property at Run time via code:

picStudentLogo.Image = Image.FromFile(filePath)

Example:

 Executing or Calling a Method:

 Example 1:

picSchoolLogo.Show()

 40

Picture Box Event, Event-Procedures & Coding

 Events are actions taken by the user upon the control which trigger an automatic execution of an Event-Procedure Method.
 You can view the list of Event in the Code Editor Window by selecting the Picture Box Object in the Object Drop-Down List

Box & available events in the Declaration Drop-Down List Box:

 The following table is a list of some of the most common Picture Box Events & Event-Procedures:

Common Picture Box Events:

Public Events
Click Occurs when the control is clicked.
DoubleClick Occurs when the control is double-clicked.
GotFocus Occurs when the control receives focus.
LostFocus Occurs when the control loses focus.
MouseDown Occurs when the mouse pointer is over the control and a mouse button is pressed.
MouseEnter Occurs when the mouse pointer enters the control.
MouseHover Occurs when the mouse pointer hovers over the control.
MouseLeave Occurs when the mouse pointer leaves the control.
MouseMove Occurs when the mouse pointer is moved over the control.
MouseUp Occurs when the mouse pointer is over the control and a mouse button is released.
MouseWheel Occurs when the mouse wheel moves while the control has focus.

Event-Procedures

Objects

 41

Event Coding Syntax:

 ‘Procedure- Declaration Statement or Procedure Header
Private Sub ControlObject1_Event(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ControlObject1.Event

‘Place code that you want to execute when the event is trigger inside this body between the declaration and End Sub marking

End Sub

 Note that the header declaration looks complex, don’t worry, this is automatically generated by Visual Basics.NET

Example:

 Coding the Click() Event:

 Example: Suppose you a label control to indicate when the picture has been clicked

Private Sub picSchoolLogo_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
picSchoolLogo_Click

lblInformation.Text = “User has selected the picture”

End Sub

 42

List Box

Description

 List Box Control store a list of items from which the user can make a selection.
 The items stored on the list are strings of characters.
 The items stored on the list can be set a design time or by code during run time.
 If the List Box is too small to display all the items on the list, VB automatically adds scroll bars.

Graphical Representation

 List Box Control visual representation:

List Box Properties & Coding

 List Boxes Properties can be viewed and modified using the Property Window
 The following table is a list of some of the most common List Boxes Properties:

Common List Box Properties:

Public Properties

BackColor Set the back color
BackgroundImage Sets the background image
Enabled Gets or sets a value indicating whether the control can respond to user interaction.
Font Gets or sets the font of the text displayed by the control.
Items Collection Object - Gets the items of the ListBox.
Left Gets or sets the x-coordinate of a control's left edge in pixels.
Name Gets or sets the name of the control.
SelectedIndex Overridden. Gets or sets the zero-based index of the currently selected item in a ListBox.
Sorted Gets or sets a value indicating whether the items in the ListBox are sorted alphabetically.
TabIndex Gets or sets the tab order of the control within its container.
TabStop Gets or sets a value indicating whether the user can give the focus to this control using

the TAB key.
Visible Gets or sets a value indicating whether the control is displayed.

 43

Property Coding Syntax:

 ‘Assigning value to property
ListBoxControl.Property = variable

‘Getting value of property
variable = ListBoxControl.Property

‘Assigning value of one property to another
ListBoxControl1.Property = ListBoxControl2.Property

Important Properties of a ListBox
 The following Properties are important when programming a Listbox:

Name Property:

 Name: As usual this property is important since it’s how the object is referenced in the code
 If no items is selected by the user, SelectedIndex = -1

Items Property:

 Items: This property is actually an Object residing as a member of the ListBox Object. Through this property you will add,
remove, and clear items from the ListBox (More on this below)

SelectedIndex Property:

 SelectedIndex Property: Stores the index of the item selected or highlighted by the user.
 If no items is selected by the user, SelectedIndex = -1

Sorted Property:

 Sorted Property: Sorts the items on the list alphabetically

Working with the Items on the List The Items Collection Object
 The elements stored on the list are know as Items

The Items Collection

 The lists of items in the ListBox are stored in a Collection Object.
 A Collection Object is a special Object built into Visual Basic that stores & manages groups of items

 This concept is a little advanced for this course, but think of the Collection Object as another object that lives
inside the ListBox Object (An Object within an Object).

 This may seem confusing but it’s quite easy, think about it, you wallet is an object, yet is stores other objects inside
such as a Credit Card Object, Money Object, etc.

 Since the Collection Object is an Object, it has Properties, Methods & Events.
 Right now we are not going to go into this with too much detail, but a brief introduction is required
 Think of the Collection Object as an closet with several shelves or cells to store items in it, and the things that you can do is store

items into a shelve, remove items, retrieve item etc.

 44

 In a Collection Object, the elements or Items stored in each cell, are identified by the Index number of the cell, starting with
zero. The first cell has an index of 0, the second 1, the third 2, etc.

 Important: Items are identified by their Index, not the content or what’s inside! So manipulate and refer to the items by their
index number.

 The following is a graphical representation of the interaction between the ListBox Object and it’s Object Property member Items
Object :

ListBox Object
ListBox Properties:
Name, Text Selected Index, Sorted, etc
Items (Collection Object Property)

ListBox Methods:
Sub Main(), CleanDir().
ListBox Events:
TextChanged, Enter, Leave, SelectedIndexChanged etc.

Items

Items Properties:
Count
Items Methods:
Add,Insert, RemoveAt, Remove, &Clear
Items Events:

New Jersey

Items Collection Object

Connecticut

Pennsylvania

New York State Florida

0 1 2 3 4

Item

Index

 45

Properties & Methods of the Items Object

 The Items Object has the following Properties:
 Properties:

 Item.Count Property: The count property indicates the number of items on the list

 Methods:
 Item.Add() Method: Add items to the end of the list
 Item.Insert() Method: Add Items to a specified index location on the list
 Item.RemoveAt() Method: Removes an Item at a specified index location
 Item.Remove() Method: Removes an Item that matches a character string
 Item.Clear() Method: Removes all Items from the list

Populating or Filling a List

 There are two ways to do this.
 Design Time: If your list is never going to change, you can assign values during design time via the Property Window.
 Run Time: If your list will change during program execution then you need to use the Items Object Methods to do so:

- Use the dot operator (.) in order to use the Items Object Methods from within the ListBox Object as follows:

ListBoxObject.ItemsObject.Add() or ListBoxObject.ItemsObject.Insert()
- Syntax:

‘Object calling Object Member Method
Object.Object.Method()

‘ListBox Object calling it’s Items Object Add Method
ListBox.Items.Add()

‘ListBox Object calling it’s Items Object Insert Method
ListBox.Items.Insert()

 46

Populating the List at Design Time

 Populating the list at design time is done as follows:

Step 1: After you drop the ListBox Control onto the form.
Step 2: Select the ListBox Control and in the Property Window, click on the Items Collection Browse button to invoke the “String
Collection Editor:

Step 3: In the “String Collection Editor” simply using the keyboard enter each string. Press “Enter” after each entry. When finished
simply click OK and the items will now reside inside the ListBox.

Click here to open the
String Collection Editor

 47

Populating the List at Run Time

 If your list is going to change while the program is running, then you need to write code to make this happen.
 Populating the list at Run time requires the following code:

Items.Add() Method

 The Items.Add(….) method is used to add an Item at the end of the list.
 The value added to the list is a character string that is placed inside the parentheses (ItemValue...)
 Since the value is added to the end of the list, you can use the Sorted Property to sort alphabetically the items is the list after

the addition.
 The syntax:

‘Adding an Item value to the list
ListBox.Items.Add(ItemValue)

Example:

 Add Items to List:

 Example 1 – Adding the States to the list:
lstStates.Items.Add(“New York”)
lstStates.Items.Add(“New Jersey”)
lstStates.Items.Add(“Connecticut”)
lstStates.Items.Add(“Pennsylvania”)

 Example 2 – Adding schools to a listing of schools using With Block Statement:
With lstSchools.Items

.Add(“Harvard University”)

.Add(“Standford”)

.Add(“New York City Technical College”)
End With

 Example 3 – Adding items to list and then sorting:

With lstSchools.Items
.Add(“Harvard University”)
.Add(“Standford”)
.Add(“New York City Technical College”)

End With
lstSchools.Sorted = True

 48

Items.Insert() Method

 The Items.Insert(….) method is used to add an Item to a desired location on the list based on the Index location.
 The value added to the list is a character string that is placed inside the parentheses and the Index location where you want

to store the list is also within the parentheses separated by a comma (IndexPosition, ItemValue)
 The syntax:

‘Adding an Item value to the list
ListBox.Items.Insert(IndexValue, ItemValue)

Example:

 Inserting Items to the List at a specified location:

 Example 1 – Inserting a States item to the index location:
lstStates.Items.Insert(2,“New York”)
lstStates.Items.Insert(1“New Jersey”)
lstStates.Items.Insert(0“Connecticut”)
lstStates.Items.Insert(3“Pennsylvania”)

 Example 2 – Inserting schools to a listing of schools using With Block Statement:
With lstSchools.Items

.Insert(5, “Harvard University”)

.Insert(2, “Standford”)

.Insert(0, “New York City Technical College”)
End With

 49

Retrieving Items from the Items Object Property

 You need to use the Items(Index) statement to retrieve an item from the location indicated by the index.
 Note that you need to specify the index of the item you wish to retrieve from the list
 The syntax:

‘Getting items from the list
variable = ListBox.Items(Index)

Retrieving Selected Items from the Items Object Property

 If you need to retrieve an item that is selected by the user, which is usually the case, you need to also include the
SelectedIndex Property of the Items Object in parentheses instead of the index.

 The syntax:

‘Getting items from the list
variable = ListBox.Items(ListBox.SelectedIndex)

Example:

 Retrieving Items from the List:

 Example 1 – retrieving a items from the list:
myState = lstStates.Items(2) ‘the variable myState now holds the string from the list
value = lstSchool.Items(0) ‘ the value variable now holds the string from the list

Example:

 Retrieving the Items selected by the User from the List:

 Example 1 – retrieving a items selected by user and assigning to variables:
myState = lstStates.Items(lstState.SelectedIndex)
value = lstSchool.Items(lstSchool.SelectedIndex)

 50

Removing Items from the List by Location

 You can remove an item from the list that is located at a specific index location.
 The syntax:

‘Removing an Item at the specified index
ListBox.Items.RemoveAt(Index)

Removing Items from the List that was Selected by the User

 Normally we want to remove an item that is selected by the user.
 You can remove an item from the list that is selected by the user by using the SelectedIndex Property of the Items Object in

parentheses instead of the index.
 The syntax:

‘Removing an item selected by the user
ListBox.Items.RemoveAt(ListBox.SelectedIndex)

Example:

 Removing an Items at a specified location:

 Example 1 – Removing an items from the list:
lstStates.Items.RemoveAt(2) ‘the item in location 2 is removed from the list
lstSchool.Items.RemoveAt(0) ‘the item in location 0 is removed from the list

Example:

 Retrieving the Items selected by the User from the List:

 Example 1 – retrieving a items selected by user and assigning to variables:
lstStates.Items.RemoveAt(lstState.SelectedIndex)
lstSchool.Items.RemoveAt(lstSchool.SelectedIndex)

 51

Removing Items from the List by string pattern matching

 You can remove an item from the list that matches a character string
 The syntax:

‘Adding an Item value to the list
ListBox.Items.Remove(TextString)

Clearing a List

 You can clear or remove all items from a list
 The syntax:

‘Clearing an item from the list using the Clear Method
ListBox.Items.Clear()

Example:

 Removing an Items at a specified location:

 Example 1 – Removing an items from the list by matching a string:
lstStates.Items.Remove(“New York”) ‘Remove the matching string
lstSchool.Items.RemoveAt(“Hardvard”) ‘Removes the matching string

Example:

 Removing an Items at a specified location:

 Example 1 – Removing an items from the list by matching a string:
lstStates.Items.Clear() ‘Remove all items from the list

 52

List Boxes Methods & Coding

 The following table is a list of some of the most common List Box Methods:

Common List Box Methods:
Hide Conceals the control from the user.
Show Displays the control to the user.

Method Coding Syntax:

 ‘Calling a Method
List BoxControl.Method()

Example:

 Executing or Calling a Method:

 Example 1:

lstStates.Show()

 53

List Box Event, Event-Procedures & Coding

 Events are actions taken by the user upon the control which trigger an automatic execution of an Event-Procedure Method.
 You can view the list of Event in the Code Editor Window by selecting the List Box Object in the Object Drop-Down List Box

& available events in the Declaration Drop-Down List Box:

 The following table is a list of some of the most common List Box Events & Event-Procedures:

Common List Box Events:
Enter Occurs when the control is entered.
KeyDown Occurs when a key is pressed while the control has focus.
KeyPress Occurs when a key is pressed while the control has focus.
KeyUp Occurs when a key is released while the control has focus.
Leave Occurs when the input focus leaves the control.
LostFocus Occurs when the control loses focus.
MouseDown Occurs when the mouse pointer is over the control and a mouse button is pressed.
MouseEnter Occurs when the mouse pointer enters the control.
MouseHover Occurs when the mouse pointer hovers over the control.
MouseMove Occurs when the mouse pointer is moved over the control.
MouseUp Occurs when the mouse pointer is over the control and a mouse button is released.

Event-Procedures

Objects

 54

Event Coding Syntax:

 ‘Procedure- Declaration Statement or Procedure Header
Private Sub ControlObject1_Event(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ControlObject1.Event

‘Place code that you want to execute when the event is trigger inside this body between the declaration and End Sub marking

End Sub

 Note that the header declaration looks complex, don’t worry, this is automatically generated by Visual Basics.NET

Example:

 Coding the Text_Changed() Event:

 Example: Suppose you want assign to a label text indicating that the listbox has been entered and it’s being used

Private Sub lstStates_Enter(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
lstStates_Enter

lblInformation.Text = “ListBox is currently being accessed

End Sub

