3.13 Electronics (A-level only)

This option is designed for those who wish to learn more about modern electronic technologies as a development of their core work in electricity. A variety of discrete devices is introduced followed by discussions of both analogue and digital techniques ranging from the operational amplifier to digital signal processing. The option ends with a look at the issues surrounding data communication.

3.13.1 Discrete semiconductor devices (A-level only)

3.13.1.1 MOSFET (metal-oxide semiconducting field-effect transistor) (A-level only)

Content

Simplified structure, behaviour and characteristics.

Drain, source and gate.

 $V_{\rm DS}$, $V_{\rm GS}$, $I_{\rm DSS}$, and $V_{\rm th}$

Use as a switch, use as a device with a very high input resistance.

Use in N-channel, enhancement mode only is required.

3.13.1.2 Zener diode (A-level only)

Content

Characteristic curve showing zener breakdown voltage and typical minimum operating current.

Anode and cathode.

Use with a resistor as a constant voltage source.

Use to provide a reference voltage.

Use as a stabiliser is not required.

3.13.1.3 Photodiode (A-level only)

Content

Characteristic curves and spectral response curves.

Use in photo-conductive mode as a detector in optical systems.

Use with scintillator to detect atomic particles.

3.13.1.4 Hall effect sensor (A-level only)

Content

Use as magnetic field sensor to monitor attitude.

Use in tachometer.

Principles of operation are not required.

3.13.2 Analogue and digital signals (A-level only)

3.13.2.1 Difference between analogue and digital signals (A-level only)

Content

Bits, bytes.

Analogue-to-digital conversion:

- sampling audio signals for transmission in digital form
- conversion of analogue signals into digital data using two voltage levels
- quantisation
- sampling rate
- effect of sampling rate and number of bits per sample on quality of conversion
- advantages and disadvantages of digital sampling
- process of recovery of original data from noisy signal
- effect of noise in communication systems.

Pulse code modulation.

Students should appreciate the use of a variety of sensors to collect analogue data.

The ability to carry out binary arithmetic is not required. Knowledge of binary numbers 1 to 10 is adequate.

3.13.3 Analogue signal processing (A-level only)

3.13.3.1 LC resonance filters (A-level only)

Content

Resonant frequency, $f_0 = \frac{1}{2\pi\sqrt{LC}}$

Only parallel resonance arrangements are required.

Analogy between LC circuit and mass-spring system.

Inductance as mass analogy.

Capacitance as spring analogy.

Derivation of the equation is not required.

Energy (voltage) response curve.

The response curve for current is not required.

$$Q$$
 factor, $Q = \frac{f_0}{f_B}$

 $f_{\rm B}$ is the bandwidth of the filter at the 50% energy points.

3.13.3.2 The ideal operational amplifier (A-level only)

Content

Operation and characteristics of an ideal operational amplifier:

- power supply and signal connections
- infinite open-loop gain
- infinite input resistance.

Open-loop transfer function for a real operational amplifier, $V_{out} = A_{OL}(V_{+} - V_{-})$

Use as a comparator.

The operational amplifier should be treated as an important system building block.

3.13.4 Operational amplifier in:

3.13.4.1 Inverting amplifier configuration (A-level only)

Content

Derivation of $\frac{V_{\text{out}}}{V_{\text{in}}} = -\frac{R_{\text{f}}}{R_{\text{in}}}$, calculations.

Meaning of virtual earth, virtual-earth analysis.

3.13.4.2 Non-inverting amplifier configuration (A-level only)

Content

$$\frac{V_{\text{out}}}{V_{\text{in}}} = 1 + \frac{R_{\text{f}}}{R_{\text{l}}}$$

Derivation is not required.

3.13.4.3 Summing amplifier configuration (A-level only)

Content

$$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} + \dots \right)$$

Difference amplifier configuration.

Derivation is not required.

$$V_{\text{out}} = \left(V_{+} - V_{-}\right) \frac{R_{\text{f}}}{R_{1}}$$

Derivation is not required.

3.13.4.4 Real operational amplifiers (A-level only)

Content

Limitations of real operational amplifiers.

Frequency response curve.

gain × *bandwidth* = *constant* for a given device.

3.13.5 Digital signal processing (A-level only)

3.13.5.1 Combinational logic (A-level only)

Content

Use of Boolean algebra related to truth tables and logic gates.

 $\overline{A} = \operatorname{not} A$

 $A \cdot B = A$ and B

A + B = A or B

Identification and use of AND, NAND, OR, NOR, NOT and EOR gates in combination in logic circuits.

Construction and deduction of a logic circuit from a truth table.

The gates should be treated as building blocks. The internal structure or circuit of the gates is not required.

3.13.5.2 Sequential logic (A-level only)

Content

Counting circuits:

- Binary counter
- BCD counter
- Johnson counter.

Inputs to the circuits, clock, reset, up/down.

Outputs from the circuits.

Modulo-n counter from basic counter with the logic driving a reset pin.

The gates should be treated as building blocks. The internal structure or circuit of the gates is not required.

3.13.5.3 Astables (A-level only)

Content

The astable as an oscillator to provide a clock pulse.

Clock (pulse) rate (frequency), pulse width, period, duty cycle, mark-to-space ratio.

Variation of running frequency using an external RC network.

Knowledge of a particular circuit or a specific device (eg 555 chip) will not be required.

3.13.6 Data communication systems (A-level only)

3.13.6.1 Principles of communication systems (A-level only)

Content

Communication systems, block diagram of 'real time' communication system.

Only the purpose of each stage is required.

3.13.6.2 Transmission media (A-level only)

Content

Transmission-path media: metal wire, optic fibre, electromagnetic (radio, microwave).

Ground wave, refraction and reflection of sky waves, diffraction of long-wavelength radiation around the Earth's surface.

Satellite systems and typical transmission frequencies.

Students should recognise that up-links and down-links require different frequencies so that the receivers are not de-sensed.

Advantages and disadvantages of various transmission media. Students should consider data transmission rate, cost, and security issues.

3.13.6.3 Time-division multiplexing (A-level only)

Content

Basic principles of time-division multiplexing.

3.13.6.4 Amplitude (AM) and frequency modulation (FM) techniques (A-level only)

Content

Principles of modulation; bandwidth.

Carrier wave and information signal.

Details of modulation circuits for modulating a carrier signal with the information signal will not be required.

Graphical representation of both AM and FM modulated signals.

A detailed mathematical treatment is not required.

Students will be expected to identify the carrier frequency and the information frequency from a graph of the variation of signal voltage with time.

Bandwidth requirements of simple AM and FM:

 $bandwidth = 2f_{M}$ for AM

bandwidth = $2(\Delta f + f_{M})$ for FM

Data capacity of a channel.

Comparison of bandwidth availability for various media.