Practice Electronics Topic Exam – time 50 minutes

Q1. A Zener diode is used to produce a stabilized 5.1 V from an unregulated 12 V supply to power a project that requires 80 mA.

Part of the circuit is shown in the diagram.

(a)	\mathbf{Y} .	w on the diagram the Zener diode connected correctly between points A and	(2)
(b)	The	Zener diode requires at least 5 mA to maintain its Zener voltage of 5.1 V.	
	(i)	Calculate the minimum current flowing through ${f R}$ when switch ${f S}$ is closed.	
			(1)
	(ii)	Calculate the voltage across resistor ${f R}$ under these conditions.	
			(1)
	(iii)	Calculate the value of resistor ${f R}$.	
			(2)

(i) Show that the power dissipated in the resistor is approximately 0.6 W.

The circuit in the diagram above is now constructed using a value of 75 Ω for

(c)

resistor \mathbf{R} .

(2)

(i		The project is disconnected by turning switch ${f S}$ off, but the 12 V supply remains connected.	
		Calculate the current that now flows through the Zener diode.	
			(2)
		(Total 10 mark	
Q2. (a) A ra	adio	transmitter system consists of the four subsystems.	
L	abel	the diagram below with the names of each subsystem.	
		Sound Waves Radio Waves	
			(4)
(b) (i)	Which one of the subsystems above produces an unmodulated rf signal and may contain a tuned circuit?	
			(1)
(i		The tuned circuit contains a 5 pF capacitor and a 0.1 µH inductor. Calculate the frequency of the signal that the subsystem produces.	
			(3)
		B transmitter has a frequency of 227.36 MHz. Calculate the length of a vave dipole that would be suitable for use as an aerial for this transmitter.	
		(Total 10 mark	(2) (s)

Q3.A temperature sensor input subsystem is shown below.

(a)	The thermistor shown above has a resistance of 45 k Ω at 0 °C, 20 k Ω at 25 °C, a	and
	1 kΩ at 100 °C.	

Calculate the output voltage at B at a temperature of 25 °C.

(b) The temperature sensor input subsystem is connected to the comparator circuit as shown below.

Calculate and choose values of resistors, in the 1 k Ω to 10 k Ω range, for the circuit that will make the comparator switch at 25 °C. Label these on the diagram.

(3)

(c) What voltage would you expect from the output of this circuit when:

(2)

Q4. The diagram below shows an op-amp used in an amplifier circuit.

- (a) Name the type of amplifier circuit shown. (1) (b) Calculate the output voltage $V_{\rm out}$ when the input voltage $V_{\rm in}$ = 0.50 V.
- (c) The input is now connected to a sinusoidal source of rms output 2.0 V and frequency 50 Hz.
 - (i) Calculate the peak input voltage.
 - (ii) On the axes below draw a trace showing **two** cycles of the input signal and label it **A**.

On the same axes, draw the two corresponding cycles of the output signal and label it ${\bf B}$.

Add suitable scales to the axes.

(b) (Total 9 marks) **Q5.**The diagram shows a logic circuit with three inputs $\boldsymbol{A},\,\boldsymbol{B}$ and $\boldsymbol{C}.$

(a)	Write the Boolean expressions for the signals at the intermediate points $oldsymbol{D},oldsymbol{E},$ and
	G in terms of the inputs A , B and C only.

D	
Е	
G	
	(3)
	` ,

(b) Complete the truth table below for the logic signals at the intermediate points $D,\,E$ and G.

Inputs			Intermediate points		
C	В	A	D	E	G
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

(5) (Total 8 marks)