A and B.Laws of indices (powers) To multiply powers of the same number or variable add the powers	Essential Skills Help
$a^5 \times a^2 = a^7$ $3y^2 \times 4y^3 = 12y^5$	A. Evaluating Indices
To divide powers of the same number or variable subtract the powers	would be if it was a positive power $2^{-2} = \frac{1}{2}$
$a^5 \div a^2 = a^3$ Anything to the power of 1 just equals	$5^{-3} = \frac{1}{125}$
itself 3 ¹ = 3	Power $\frac{1}{2}$ means square root $x^{\frac{1}{2}} = \int x$
x ⁻ = x Anything to the power of zero is 1 (apart from 0 ⁰ , which is undefined)	$4^2 = \sqrt{4} = 2$ Power $\frac{1}{3}$ means cube root
$3^{\circ} = 1$ (-2) ^o = 1 $x^{\circ} = 1, x \neq 0$	8½ = 2 When you raise a power to a power, multiply the powers
B. Simplifying expressions with indices	(x ²) ³ = x ⁶ Take care (2x ²) ³ = 2 ³ (x ²) ³ = 8x ⁶ (not 2 x ⁶)
Deal with numbers and letters separately Remember: $a = a^1$ $2 a^2 b \times 3 a b^3 = 6 a^3 b^4$	 C. Substitution Work out what is inside a bracket first If x = 3 and y = 5,
$\frac{8x^4y^3}{4x^3y^5} = \frac{2x}{y^2}$ since $8 \div 4 = 2$, $x^4 \div x^3 = x$ and $y^3 \div y^5 = 1/y^2$ i.e. y^2 on the bottom	$(2x + 3y)^2 = (6 + 15)^2 = 21^2 = 441$ And $\frac{1}{2}y^2 = \frac{1}{2}$ of $5^2 = \frac{1}{2}$ of $25 = 12.5$ Whereas $(\frac{1}{2}y)^2 = 2.5^2 = 6.25$

H. Solving linear equations 1. Solve 4(x + 3) - 2(x - 5) = 46Take care Multiply out the brackets 4x + 12 - 2x + 40 = 46Collect terms 2x + 22 = 46Rebalance to make an "x side" and a "number side" 2x = 46 - 222x = 24 Tidy Divide by 2 x = 12 2. Solve 5x - 4 = 3x + 12Rebalance to make an "x side" and a "number side" 5x - 3x = 12 + 42x = 16Tidy Divide by 2 x = 8 3. Solve $\frac{x+3}{2} = \frac{x-1}{3}$ To get rid of both denominators (bottoms) multiply by 6 3(x + 3) = 2(x - 1)(Some of you will call this cross multiplication) Expand the brackets 3x + 9 = 2x - 2"Move terms" 3x - 2x = - 2 - 9 Tidy x = - 11 J. Solving guadratic equations: Factorisation 1. Solve $x^2 + x - 12 = 0$ (x - 3)(x + 4) = 0x = 3 or - 4 2. Solve $3x^2 - 6x = 0$ 3x(x - 2) = 0x = 0 or 2

I. Simultaneous equations 3x + 2y = 7 4x + y = 6 Method 1. By Elimination Multiply bottom equation by 2 to get equal amounts of y top and bottom 3x + 2y = 7 8x + 2y = 12 Take top equation from bottom equation to eliminate y:-5x = 5 = 50 = 1Put x = 1 into one of the equations to find y. y = 2 Answer: x = 1, y = 2Method 1, By Substitution It is easy to get y in terms of x from the second equation y = 6 - 4xNow substitute this into the first equation 3x + 2(6 - 4x) = 73x + 12 - 8x = 7-5x + 12 = 75 = 5x x = 1 and proceed as before This method is only really worth using if you can get one of the variables in terms of the other easily. K. Solving guadratic equations: The formula If $ax^2 + bx + c = 0$ then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

M Surds L. Rearranging formulae Do this exactly the same way as solving To simplify surds like √50, look for square equations. The only difference is that the number factors letters don't collect together so you are left $\int 50 = \int 25 \times \int 2 = 5 \int 2$ with an **expression** as your answer, rather than a number $\int 98 = \int 49 \times \int 2 = 7 \int 2$ $\sqrt{50} + \sqrt{98} = 5\sqrt{2} + 7\sqrt{2} = 12\sqrt{2}$ If a surd is on the bottom then multiply top 1. Make x the subject of the formula and bottom by it y = mx + c $\frac{7}{\sqrt{5}} = \frac{7\sqrt{5}}{\sqrt{5}} = \frac{7\sqrt{5}}{5}$ Take c from both sides y - c = mxYou can't add surds like this: $J_{2} + J_{3}$ Notice: all Now divide **both sides** by m of y - c was x = <u>y - c</u> Only add if they're the same: divided by m $\int 5 + \int 5 = 2 \int 5$ Example 2. Make r the subject of the formula $3\sqrt{50} + 2\sqrt{18} = 3\sqrt{25}\sqrt{2} + 2\sqrt{9}\sqrt{2}$ $V = \frac{1}{3}\pi r^2 h$ $= 3 \times 5 \sqrt{2} + 2 \times 3 \sqrt{2}$ First get rid of the fraction by multiplying $= 15 \int 2 + 6 \int 2$ both sides by 3 = 21√2 $3V = \pi r^2 h$ π and h are both multiplying the r² so we need to divide both sides by πh . N & O. Trigonometry $r^{2} = \frac{3V}{1}$ For a right angled triangle: Now square root both sides to get $r = \sqrt{\frac{3V}{\pi h}}$ $sinx = \frac{opp}{hyp}$ Useful hints: $cosx = \frac{adj}{hyp}$ $y = \frac{1}{2}x + 5$ becomes 2y = x + 10hyp opp when you multiply by 2. Every term becomes twice as bia. $tanx = \frac{opp}{adi}$ adi Keep all letters in the same case as in the question i.e. keep capitals as capitals. In 2 above the V is a capital (not v). This avoids confusion if a SOHCAHTOA formula contains both e.g. A and a.