Weak Bases and Ionization Constants

The treatment of the ionization of weak bases is similar to the ionization of weak acids. When a base (B) is dissolved in water, it undergoes equilibrium reaction that is represented by

$$B(aq) + H_2O(l) \longrightarrow BH^+(aq) + OH^-(aq)$$

The equilibrium constant expression for this reaction is given by

$$K = \frac{[BH^+][OH^-]}{[B][H_2O]}$$

We can treat $[H_2O]$ as a constant and combine it with K and rewrite the above equation to yield the base ionization constant K_b , which is *equilibrium constant expression for the ionization reaction of base*.

$$K_b = Kx[H_2O] = \frac{[BH^+][OH^-]}{[B]}$$

The subscript b in K_b indicates the base to distinguish it from the acid and any other substance.

Strength of Weak Base

At a given temperature, the strength of a base is measured by the magnitude of K_b ; larger the K_b , the stronger the base. The following table lists few weak bases and their K_b values at 25° C in order of decreasing base strength.

Base name	Base formula	\mathbf{K}_{b}
Ethylamine	$C_2H_5NH_2$	5.6 x 10 ⁻⁴
Methylamine	CH_3NH_2	4.4×10^{-4}
Caffeine	$C_8H_{10}N_4O_2$	4.1×10^{-4}
Ammonia	NH_3	1.8×10^{-5}
Pyridine	C_5H_5N	1.7 x 10 ⁻⁹
Aniline	$C_6H_5NH_2$	3.8×10^{-10}
Urea	$(NH_2)_2CO$	1.5×10^{-14}

Example

Arrange the following acids in order of decreasing base strength.

(a) urea (
$$K_b = 1.53 \times 10^{-14}$$
)

- (b) ethylamine ($K_b = 5.6 \times 10^{-4}$)
- (c) ammonia $(K_b = 1.8 \times 10^{-5})$
- (d) aniline (K_b =3.8 x 10⁻¹⁰) (e) caffeine (K_b = 4.1 x 10⁻⁴)

Answer

Strength of a base is determined by the magnitude of K_b; higher the K_b, stronger the base. We arrange the above given bases from high K_a to low K_b for decreasing order. Thus,

ethylamine > caffeine > ammonia > aniline > urea

Example

Ammonia (NH₃) is a weak base, the equilibrium reaction of which with water is given by

$$NH_3(aq) + H_2O(l) \Longrightarrow NH_4^+(aq) + OH^-$$

Which of the following statements are true for 1.0 M ammonia solution at equilibrium?

- (a) $[NH_4+] = 1.0 M$
- (b) $[NH_4^+] < 1.0 M$
- (c) $[NH_4^+] = [OH^-]$
- (d) $[NH_3] = [NH_4^+]$
- (e) $[OH^{-}] = 1.0 \text{ M}$

Answer

- (a) not true
- (b) true
- (c) true
- (d) not true
- (e) not true