SUVAT - HORIZONTAL

xerdise 2A

- A particle is moving in a straight line with constant acceleration $3 \,\mathrm{m}\,\mathrm{s}^{-2}$. At time t=0, the speed of the particle is $2 \,\mathrm{m}\,\mathrm{s}^{-1}$. Find the speed of the particle at time $t=6 \,\mathrm{s}$.
- A particle is moving in a straight line with constant acceleration. The particle passes a point with speed $1.2 \,\mathrm{m\,s^{-1}}$. Four seconds later the particle has speed $7.6 \,\mathrm{m\,s^{-1}}$. Find the acceleration of the particle.
- A car is approaching traffic lights. The car is travelling with speed 10 m s⁻¹. The driver applies the brakes to the car and the car comes to rest with constant deceleration in 16 s. Modelling the car as a particle, find the deceleration of the car.
- 4 A particle moves in a straight line from a point A to point B with constant acceleration. The particle passes A with speed A m s⁻¹. The particle passes B with speed A m s⁻¹, five seconds after it passed A. Find the distance between A and B.
- A car accelerates uniformly while travelling on a straight road. The car passes two signposts $360 \,\mathrm{m}$ apart. The car takes $15 \,\mathrm{s}$ to travel from one signpost to the other. When passing the second signpost, it has speed $28 \,\mathrm{m} \,\mathrm{s}^{-1}$. Find the speed of the car at the first signpost.
- A particle is moving along a straight line with constant deceleration. The points X and Y are on the line and $XY = 120 \,\mathrm{m}$. At time t = 0, the particle passes X and is moving towards Y with speed $18 \,\mathrm{m \, s^{-1}}$. At time $t = 10 \,\mathrm{s}$, the particle is at Y. Find the velocity of the particle at time $t = 10 \,\mathrm{s}$.
- 7 A cyclist is moving along a straight road from A to B with constant acceleration $0.5 \,\mathrm{m\,s^{-2}}$. Her speed at A is $3 \,\mathrm{m\,s^{-1}}$ and it takes her 12 seconds to cycle from A to B. Find \mathbf{a} her speed at B, \mathbf{b} the distance from A to B.
- 8 A particle is moving along a straight line with constant acceleration from a point A to a point B, where $AB = 24 \,\mathrm{m}$. The particle takes 6 s to move from A to B and the speed of the particle at B is $5 \,\mathrm{m\,s^{-1}}$. Find A the speed of the particle at A, B the acceleration of the particle.
- A particle moves in a straight line from a point A to a point B with constant deceleration $1.2 \,\mathrm{m\,s^{-2}}$. The particle takes 6 s to move from A to B. The speed of the particle at B is $2 \,\mathrm{m\,s^{-1}}$ and the direction of motion of the particle has not changed. Find \mathbf{a} the speed of the particle at A, \mathbf{b} the distance from A to B.
- 10 A train, travelling on a straight track, is slowing down with constant deceleration $0.6 \,\mathrm{m\,s^{-2}}$. The train passes one signal with speed $72 \,\mathrm{km\,h^{-1}}$ and a second signal 25 s later. Find **a** the speed, in $\,\mathrm{km\,h^{-1}}$, of the train as it passes the second signal, **b** the distance between the signals.
- A particle moves in a straight line from a point A to a point B with a constant deceleration of $4 \,\mathrm{m\,s^{-2}}$. At A the particle has speed $32 \,\mathrm{m\,s^{-1}}$ and the particle comes to rest at B. Find \mathbf{a} the time taken for the particle to travel from A to B, \mathbf{b} the distance between A and B.

Ex 2A (cont.)

- A skier travelling in a straight line up a hill experiences a constant deceleration. At the bottom of the hill, the skier has a speed of 16 m s⁻¹ and, after moving up the hill for 40 s, he comes to rest. Find **a** the deceleration of the skier, **b** the distance from the bottom of the hill to the point where the skier comes to rest.
- A particle is moving in a straight line with constant acceleration. The points A, B and C lie on this line. The particle moves from A through B to C. The speed of the particle at A is $2 \,\mathrm{m \, s^{-1}}$ and the speed of the particle at B is $7 \,\mathrm{m \, s^{-1}}$. The particle takes $20 \,\mathrm{s}$ to move from A to B.
 - **a** Find the acceleration of the particle.

The speed of the particle is C is $11 \,\mathrm{m \, s^{-1}}$. Find

- **b** the time taken for the particle to move from *B* to *C*,
- **c** the distance between *A* and *C*.
- A particle moves in a straight line from A to B with constant acceleration $1.5 \,\mathrm{m\,s^{-2}}$. It then moves, along the same straight line, from B to C with a different acceleration. The speed of the particle at A is $1 \,\mathrm{m\,s^{-1}}$ and the speed of the particle at C is $43 \,\mathrm{m\,s^{-1}}$. The particle takes $12 \,\mathrm{s}$ to move from A to B and $10 \,\mathrm{s}$ to move from B to C. Find
 - **a** the speed of the particle at *B*,
 - **b** the acceleration of the particle as it moves from *B* to *C*,
 - **c** the distance from *A* to *C*.
- **15** A cyclist travels with constant acceleration $x \, \text{m s}^{-2}$, in a straight line, from rest to $5 \, \text{m s}^{-1}$ in 20 s. She then decelerates from $5 \, \text{m s}^{-1}$ to rest with constant deceleration $\frac{1}{2}x \, \text{m s}^{-2}$. Find **a** the value of x, **b** the total distance she travelled.
- A particle is moving with constant acceleration in a straight line. It passes through three points, A, B and C with speeds $20 \,\mathrm{m \, s^{-1}}$, $30 \,\mathrm{m \, s^{-1}}$ and $45 \,\mathrm{m \, s^{-1}}$ respectively. The time taken to move from A to B is t_1 seconds and the time taken to move from B to C is t_2 seconds.
 - **a** Show that $\frac{t_1}{t_2} = \frac{2}{3}$.

. Given also that the total time taken for the particle to move from A to C is $50 \, \text{s}$,

b find the distance between *A* and *B*.

xercise 2B

- A particle is moving in a straight line with constant acceleration 2.5 m s⁻². It passes a point A with speed 3 m s⁻¹ and later passes through a point B, where AB = 8 m. Find the speed of the particle as it passes through B.
- A car is accelerating at a constant rate along a straight horizontal road. Travelling at 8 m s⁻¹, it passes a pillar box and 6 s later it passes a sign. The distance between the pillar box and the sign is 60 m. Find the acceleration of the car.

EX 2 B (CON+)

- A cyclist travelling at $12 \,\mathrm{m\,s^{-1}}$ applies her brakes and comes to rest after travelling $36 \,\mathrm{m}$ in a straight line. Assuming that the brakes cause the cyclist to decelerate uniformly, find the deceleration.
- 4 A particle moves along a straight line from P to Q with constant acceleration 1.5 m s⁻². The particle takes 4 s to pass from P to Q and PQ = 22 m. Find the speed of the particle at Q.
- A particle is moving along a straight line OA with constant acceleration $2 \,\mathrm{m\,s^{-2}}$. At O the particle is moving towards A with speed $5.5 \,\mathrm{m\,s^{-1}}$. The distance OA is $20 \,\mathrm{m}$. Find the time the particle takes to move from O to A.
- A train is moving along a straight horizontal track with constant acceleration. The train passes a signal at $54 \,\mathrm{km}\,\mathrm{h}^{-1}$ and a second signal at $72 \,\mathrm{km}\,\mathrm{h}^{-1}$. The distance between the two signals is $500 \,\mathrm{m}$. Find, in $\mathrm{m}\,\mathrm{s}^{-2}$, the acceleration of the train.
- A particle moves along a straight line, with constant acceleration, from a point A to a point B where AB = 48 m. At A the particle has speed 4 m s⁻¹ and at B it has speed 16 m s⁻¹. Find **a** the acceleration of the particle, **b** the time the particle takes to move from A to B.
- 8 A particle moves along a straight line with constant acceleration $3 \,\mathrm{m}\,\mathrm{s}^{-2}$. The particle moves $38 \,\mathrm{m}$ in $4 \,\mathrm{s}$. Find **a** the initial speed of the particle, **b** the final speed of the particle.
- 9 The driver of a car is travelling at $18 \,\mathrm{m\,s^{-1}}$ along a straight road when she sees an obstruction ahead. She applies the brakes and the brakes cause the car to slow down to rest with a constant deceleration of $3 \,\mathrm{m\,s^{-2}}$. Find **a** the distance travelled as the car decelerates, **b** the time it takes for the car to decelerate from $18 \,\mathrm{m\,s^{-1}}$ to rest.
- A stone is sliding across a frozen lake in a straight line. The initial speed of the stone is 12 m s⁻¹. The friction between the stone and the ice causes the stone to slow down at a constant rate of 0.8 m s⁻². Find **a** the distance moved by the stone before coming to rest, **b** the speed of the stone at the instant when it has travelled half of this distance.
- A particle is moving along a straight line OA with constant acceleration 2.5 m s⁻². At time t = 0, the particle passes through O with speed 8 m s⁻¹ and is moving in the direction OA. The distance OA is 40 m. Find a the time taken for the particle to move from O to A, b the speed of the particle at A. Give your answers to one decimal place.
- A particle travels with uniform deceleration $2 \,\mathrm{m}\,\mathrm{s}^{-2}$ in a horizontal line. The points A and B lie on the line and $AB = 32 \,\mathrm{m}$. At time t = 0, the particle passes through A with velocity $12 \,\mathrm{m}\,\mathrm{s}^{-1}$ in the direction \overrightarrow{AB} . Find a the values of t when the particle is at B, b the velocity of the particle for each of these values of t.

- 1.4 A particle P is moving on the x-axis with constant deceleration $4 \,\mathrm{m\,s^{-2}}$. At time t = 0, P passes through the origin O with velocity $14 \,\mathrm{m\,s^{-1}}$ in the positive direction. The point A lies on the axis and $OA = 22.5 \,\mathrm{m}$. Find \mathbf{a} the difference between the times when P passes through A, \mathbf{b} the total distance travelled by P during the interval between these times.
- 1.5 A car is travelling along a straight horizontal road with constant acceleration. The car passes over three consecutive points A, B and C where AB = 100 m and BC = 300 m. The speed of the car at B is 14 m s⁻¹ and the speed of the car at C is 20 m s⁻¹. Find **a** the acceleration of the car, **b** the time take for the car to travel from A to C.
- Two particles P and Q are moving along the same straight horizontal line with constant accelerations $2 \,\mathrm{m \, s^{-2}}$ and $3.6 \,\mathrm{m \, s^{-2}}$ respectively. At time t = 0, P passes through a point A with speed $4 \,\mathrm{m \, s^{-1}}$. One second later Q passes through A with speed $3 \,\mathrm{m \, s^{-1}}$, moving in the same direction as P.
 - a Write down expressions for the displacements of *P* and *Q* from *A*, in terms of *t*, where *t* seconds is the time after *P* has passed through *A*.
 - **b** Find the value of *t* where the particles meet.
 - **c** Find the distance of *A* from the point where the particles meet.

xercise 2C

VERTICAL MOTION

- 1 A ball is projected vertically upwards from a point O with speed $14\,\mathrm{m\,s^{-1}}$. Find the greatest height above O reached by the ball.
- 2 A well is 50 m deep. A stone is released from rest at the top of the well. Find how long the stone takes to reach the bottom of the well.
- 3 A book falls from the top shelf of a bookcase. It takes 0.6 s to reach the floor. Find how far it is from the top shelf to the floor.
- 4 A particle is projected vertically upwards with speed $20 \,\mathrm{m\,s^{-1}}$ from a point on the ground. Find the time of flight of the particle.
- A ball is thrown vertically downward from the top of a tower with speed $18\,\mathrm{m\,s^{-1}}$. It reaches the ground in 1.6 s. Find the height of the tower.
- A pebble is catapulted vertically upwards with speed $24 \,\mathrm{m\,s^{-1}}$. Find **a** the greatest height above the point of projection reached by the pebble, **b** the time taken to reach this height.
- 7 A ball is projected upwards from a point which is $4 \,\mathrm{m}$ above the ground with speed $18 \,\mathrm{m}\,\mathrm{s}^{-1}$. Find **a** the speed of the ball when it is $15 \,\mathrm{m}$ above its point of projection, **b** the speed with which the ball hits the ground.
- 8 A particle P is projected vertically downwards from a point 80 m above the ground with speed $4 \,\mathrm{m\,s^{-1}}$. Find **a** the speed with which P hits the ground, **b** the time P takes to reach the ground.
- A particle P is projected vertically upwards from a point X. Five seconds later P is moving downwards with speed $10 \,\mathrm{m\,s^{-1}}$. Find \mathbf{a} the speed of projection of P, \mathbf{b} the greatest height above X attained by P during its motion.
- 10 A ball is thrown vertically upwards with speed $21 \,\mathrm{m\,s^{-1}}$. It hits the ground 4.5 s later. Find the height above the ground from which the ball was thrown.

Ex 2C (cont)

- 11 A stone is thrown vertically upward from a point which is 3 m above the ground, with speed $16 \,\mathrm{m\,s^{-1}}$. Find **a** the time of flight of the stone, **b** the total distance travelled by the stone.
- 12 A particle is projected vertically upwards with speed $24.5 \,\mathrm{m\,s^{-1}}$. Find the total time for which it is $21 \,\mathrm{m}$ or more above its point of projection.
- 13 A particle is projected vertically upwards from a point O with speed u m s⁻¹. Two seconds later it is still moving upwards and its speed is $\frac{1}{3}u$ m s⁻¹. Find **a** the value of u, **b** the time from the instant that the particle leaves O to the instant that it returns to O.
- A ball A is thrown vertically downwards with speed $5 \,\mathrm{m\,s^{-1}}$ from the top of a tower block $46 \,\mathrm{m}$ above the ground. At the same time as A is thrown downwards, another ball B is thrown vertically upwards from the ground with speed $18 \,\mathrm{m\,s^{-1}}$. The balls collide. Find the distance of the point where A and B collide from the point where A was thrown.
- A ball is released from rest at a point which is 10 m above a wooden floor. Each time the ball strikes the floor, it rebounds with three-quarters of the speed with which it strikes the floor. Find the greatest height above the floor reached by the ball **a** the first time it rebounds from the floor, **b** the second time it rebounds from the floor.
- A particle P is projected vertically upwards from a point O with speed $12 \,\mathrm{m\,s^{-1}}$. One second after P has been projected from O, another particle Q is projected vertically upwards from O with speed $20 \,\mathrm{m\,s^{-1}}$. Find \mathbf{a} the time between the instant that P is projected from O and the instant when P and Q collide, \mathbf{b} the distance of the point where P and Q collide from O.

F=ma

Exercise BA

Remember that g should be taken as $9.8 \,\mathrm{m \, s^{-2}}$.

- 1 Find the weight in newtons of a particle of mass 4 kg.
- **2** Find the mass of a particle whose weight is 490 N.
- The weight of an astronaut on the Earth is $686\,\mathrm{N}$. The acceleration due to gravity on the Moon is approximately $1.6\,\mathrm{m\,s^{-2}}$. Find the weight of the astronaut when he is on the Moon.
- Find the force required to accelerate a $1.2 \,\mathrm{kg}$ mass at a rate of $3.5 \,\mathrm{m\,s^{-2}}$.
- 5 Find the acceleration when a particle of mass 400 kg is acted on by a resultant force of 120 N.
- An object moving on a rough surface experiences a constant frictional force of $30 \,\mathrm{N}$ which decelerates it at a rate of $1.2 \,\mathrm{m}\,\mathrm{s}^{-2}$. Find the mass of the object.

EIGA (CONT)

7 In each of the following scenarios, the forces acting on the body cause it to accelerate as shown. Find the magnitude of the unknown forces *P* and *Q*.

8 In each of the following situations, the forces acting on the body cause it to accelerate as shown. In each case find the mass of the body, m.

5 m s⁻²

9 In each of the following situations, the forces acting on the body cause it to accelerate as shown with magnitude a m s⁻². In each case find the value of a.

 $\begin{array}{ccc} \mathbf{a} & & 8N \\ & & & \\ a & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$

10 The diagram shows a block of mass 4 kg attached to a vertical rope.

Find the tension in the rope when the block moves downwards **a** with an acceleration of $2 \,\mathrm{m \, s^{-2}}$, **b** at a constant speed of $4 \,\mathrm{m \, s^{-1}}$, **c** with a deceleration of $0.5 \,\mathrm{m \, s^{-2}}$.

More F= ma

Exercise 3B

- A ball of mass 200 g is attached to the upper end of a vertical light rod. Find the thrust in the rod when it raises the ball vertically with an acceleration of $1.5 \,\mathrm{m\,s^{-2}}$.
- A small pebble of mass $50 \,\mathrm{g}$ is dropped into a pond and falls vertically through it with an acceleration of $2.8 \,\mathrm{m \, s^{-2}}$. Assuming that the water produces a constant resistance, find its magnitude.
- A lift of mass 500 kg is lowered or raised by means of a metal cable attached to its top. The lift contains passengers whose total mass is 300 kg. The lift starts from rest and accelerates at a constant rate, reaching a speed of 3 m s⁻¹ after moving a distance of 5 m. Find
 - a the acceleration of the lift,
 - **b** the tension in the cable if the lift is moving vertically downwards,
 - **c** the tension in the cable if the lift is moving vertically upwards.
- A block of mass 1.5 kg falls vertically from rest and hits the ground 16.6 m below after falling for 2 s. Assuming that the air resistance experienced by the block as it falls is constant, find its magnitude.
- A trolley of mass $50 \, \text{kg}$ is pulled from rest in a straight line along a horizontal path by means of a horizontal rope attached to its front end. The trolley accelerates at a constant rate and after $2 \, \text{s}$ its speed is $1 \, \text{m s}^{-1}$. As it moves, the trolley experiences a resistance to motion of magnitude $20 \, \text{N}$. Find
 - **a** the acceleration of the trolley,
- **b** the tension in the rope.
- A trailer of mass 200 kg is attached to a car by a light tow-bar. The trailer is moving along a straight horizontal road and decelerates at a constant rate from a speed of $15 \,\mathrm{m\,s^{-1}}$ to a speed of $5 \,\mathrm{m\,s^{-1}}$ in a distance of 25 m. Assuming there is no resistance to the motion, find
 - **a** the deceleration of the trailer,
- **b** the thrust in the tow-bar.
- A woman of mass 60 kg is in a lift which is accelerating upwards at a rate of 2 m s^{-2} .
 - **a** Find the magnitude of the normal reaction of the floor of the lift on the woman.

The lift then moves at a constant speed and then finally decelerates to rest at $1.5\,\mathrm{m\,s^{-2}}$.

- **b** Find the magnitude of the normal reaction of the floor of the lift on the woman during the period of deceleration.
- **c** Hence explain why the woman will feel heavier during the period of acceleration and lighter during the period of deceleration.
- The engine of a van of mass 400 kg cuts out when it is moving along a straight horizontal road with speed 16 m s⁻¹. The van comes to rest without the brakes being applied.

 In a model of the situation it is assumed that the van is subject to a resistive force which has constant magnitude of 200 N.
 - **a** Find how long it takes the van to stop.
 - **b** Find how far the van travels before it stops.
 - **c** Comment on the suitability of the modelling assumption.

- Albert and Bella are both standing in a lift. The mass of the lift is 250 kg. As the lift moves upward with constant acceleration, the floor of the lift exerts forces of magnitude 678 N and 452N respectively on Albert and Bella. The tension in the cable which is pulling the lift upwards is 3955 N.
 - a Find the acceleration of the lift.
 - **b** Find the mass of Albert.
 - c Find the mass of Bella.
- 10 A small stone of mass 400 g is projected vertically upwards from the bottom of a pond full of water with speed $10\,\mathrm{m\,s^{-1}}$. As the stone moves through the water it experiences a constant resistance of magnitude 3 N. Assuming that the stone does not reach the surface of the pond, find
 - a the greatest height above the bottom of the pond that the stone reaches,
 - **b** the speed of the stone as it hits the bottom of the pond on its return,
 - c the total time taken for the stone to return to its initial position on the bottom of the pond.

Exercise 2A $20 \, \text{m s}^{-1}$ $1.6\,\mathrm{m\,s^{-2}}$ 3 $0.625 \,\mathrm{m}\,\mathrm{s}^{-2}$ 26 m 5 $20 \, \text{m s}^{-1}$ 6 $6 \,\mathrm{m \, s^{-1}}$ in direction \overrightarrow{XY} 7 a $9 \, \text{m s}^{-1}$ **b** 72 m 8 a $3 \, \text{m s}^{-1}$ **b** $\frac{1}{3}$ m s⁻² 9 $a 9.2 \, \text{m s}^{-1}$ **b** 33.6 m **10** a 18 km h⁻¹ **b** 312.5 m 11 a 8s **b** 128 m 12 a $0.4\,\mathrm{m\,s^{-2}}$. **b** 320 m **13** a 0.25 m s⁻² **b** 16s c 234 m **14** a 19 m s⁻¹ **b** $2.4 \, \text{m s}^{-2}$ **c** 430 m 15 **a** x = 0.25**b** 150 m **b** 500 m

1 7 m s⁻¹ $\frac{2}{3}$ S 2 2 3 2 m s 2 $8.5 \,\mathrm{m}\,\mathrm{s}^{-1}$ 5 $2.5 \, s$ $0.175 \, \mathrm{m \, s^{-2}}$ a $2.5 \,\mathrm{m}\,\mathrm{s}^{-2}$ **b** 4.8 s **a** $3.5 \,\mathrm{m \, s^{-1}}$ $b 15.5 \, m \, s^{-1}$ 9 a 54 m **b** 6s 10 a 90 m **b** $8.49 \,\mathrm{m \, s^{-1}} \,(3 \,\mathrm{s.f.})$ 11 a 3.3 s (1 d.p.) **b** $16.2 \,\mathrm{m \, s^{-1}} \,(1 \,\mathrm{d.p.})$ **b** t = 4: 4 m s^{-1} in direction \overrightarrow{AB} , t = 8: 4 m s^{-1} in direction BA 13 a 0.8, 4 **b** $15.0 \,\mathrm{m}\,\mathrm{s}^{-1} \,(3 \,\mathrm{s.f.})$ a 2s 14 **b** 4 m a 0.34 m s⁻¹

a $P: (4t + t^2) \text{ m}$ $Q: [3(t-1) + 1.8(t-1)^2] \text{ m}$

b 25.5 s (3 s.f.)

c 60 m

Exercise 2B

```
Exercise 2C
   1 10 m
   2 3.2 s (2 s.f.)
  3 1.8 m (2 s.f.)
       4.1 s (2 s.f.)
   5 41 m (2 s.f.)
  6 a 29 m (2 s.f.)
                                     b 2.4 s (2 s.f.)
                                     b 20 \,\mathrm{m}\,\mathrm{s} - 1 \,(2 \,\mathrm{s.f.})
  7 a 5.5 \,\mathrm{m}\,\mathrm{s} - 1 (2 s.f.)
  8
     a 40 \,\mathrm{m}\,\mathrm{s} - 1 \,(2 \,\mathrm{s.f.})
                                     b 3.7 s (2 s.f.)
                                     b 78 \,\mathrm{m} \cdot (2 \,\mathrm{s.f.})
  9 a 39 m s - 1
 10 4.7 m (2 s.f.)
                                     b 29 m (2 s.f.)
 11 a 3.4 s (2 s.f.)
 12 2.8 s (2 s.f.)
13 a 29 (2 s.f.)
 14 30 m (2 s.f.)
                                     b 3.1 m (2 s.f.)
 15
     a 5.6 m (2 s.f.)
                                     b 7.2 m (2 s.f.)
 18 a 1.4 s (2 s.f.)
 Exercise 3A
  1 39.2N
                                         2 50 kg
  3 112N
                                         4 4.2 N
  5 0.3 \,\mathrm{m}\,\mathrm{s}^{-2}
                                         6 25 kg
 7 a 25.6 N
                        b 41.2 N c P is 34 N, Q is 49 N
     a 2.1 kg (2 s.f.)
                                   b 1.7 kg (2 s.f.)
     c 0.22 kg (2 s.f.)
 9 a 5.8 \,\mathrm{m \, s^{-2}}
                           b 2.7 \,\mathrm{m \, s^{-2}}
                                                  c = 2.7 \, \text{m s}^{-2}
10 a 31.2 N
```

b 39.2 N

b 7120 N

b 45 N

b 800 N

b 498 N

that she feels from the floor of the lift.

b 256 m **c** Air resistance unlikely to be constant.

b 60 kg

 ${f c}$ Her perception of her weight is the reaction force

c 8560 N

c 40 kg

b $3.6 \,\mathrm{m}\,\mathrm{s}^{-1} \,(2 \,\mathrm{s.f.})$

Exercise 3B

 $0.35 \, \text{N}$ 3 a $0.9 \,\mathrm{m}\,\mathrm{s}^{-2}$

2.25 N

a 32 s

a $1.5 \,\mathrm{m}\,\mathrm{s}^{-2}$

c 2.17 s (3 s.f.)

10 a 2.9 m (2 s.f.)

5

2.3 N (2 s.f.)

 $a = 0.5 \,\mathrm{m \, s^{-2}}$

 $\mathbf{a} \quad 4 \,\mathrm{m}\,\mathrm{s}^{-2}$