C1 > ALGEBRA

Worksheet L

1 a Find the value of x such that

$$2^{x-1} = 16. (3)$$

b Find the value of y such that

$$2(3^{y} - 10) = 34. (2)$$

- 2 **a** Express $x^2 6x + 11$ in the form $(x + a)^2 + b$. (2)
 - **b** Sketch the curve $y = x^2 6x + 11$, and show the coordinates of the turning point of the curve. (3)
- 3 a Express $(12\frac{1}{4})^{-\frac{1}{2}}$ as an exact fraction in its simplest form. (2)
 - **b** Solve the equation

$$3x^{-3} = 7\frac{1}{9}. (3)$$

4 Solve the equation

$$x\sqrt{12} + 9 = x\sqrt{3}$$
.

giving your answer in the form $k\sqrt{3}$, where k is an integer. (4)

5 a Solve the equation

$$x^2 + 10x + 13 = 0$$

giving your answers in the form $a + b\sqrt{3}$, where a and b are integers. (4)

b Hence find the set of values of x for which

$$x^2 + 10x + 13 > 0. (2)$$

6 Solve the equations

a
$$7(6x-7) = 9x^2$$
 (3)

$$\mathbf{b} \quad \frac{2}{y+1} + 1 = 2y \tag{4}$$

7 Solve the simultaneous equations

$$x - y + 3 = 0$$

3x² - 2xy + y² - 17 = 0 (6)

8 a Find the value of x such that

$$x^{\frac{3}{2}} = 64. (2)$$

b Given that

$$\frac{\sqrt{3}+1}{2\sqrt{3}-3} \equiv a + b\sqrt{3} \,,$$

find the values of the rational constants a and b. (4)

The point P(2k, k) lies within a circle of radius 3, centre (2, 4).

a Show that
$$5k^2 - 16k + 11 < 0$$
. (4)

b Hence find the set of possible values of k. (3)

(6)

10 Solve each of the following inequalities.

a
$$4x - 1 \le 2x + 6$$
 (2)

b
$$x(2x+1) < 1$$
 (4)

11 $f(x) = 2x^2 - 8x + 5.$

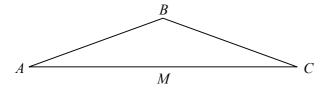
a Express
$$f(x)$$
 in the form $a(x+b)^2 + c$, where a, b and c are integers. (3)

b Write down the coordinates of the turning point of the curve
$$y = f(x)$$
. (1)

c Solve the equation f(x) = 0, giving your answers in the form $p + q\sqrt{6}$, where p and q are rational. (3)

12 Simplify

a
$$\sqrt{12} - \frac{5}{\sqrt{3}}$$


b
$$\frac{(4\sqrt{x})^3}{16x}$$
 (2)

13 Given that the equation

$$x^2 - 2kx + k + 6 = 0$$

has no real roots, find the set of possible values of the constant *k*.

14

The diagram shows triangle ABC in which $AB = BC = 4 + \sqrt{3}$ and $AC = 4 + 4\sqrt{3}$.

Given that M is the mid-point of AC,

a find the exact length
$$BM$$
, (4)

b show that the area of triangle
$$ABC$$
 is $6 + 2\sqrt{3}$.

15 Solve the equation

$$4^{2y+7} = 8^{y+3}. (4)$$

16 Show that

$$(x^2 - x + 3)(2x^2 - 3x - 9) \equiv Ax^4 + Bx^3 + C,$$

where A, B and C are constants to be found. (4)

17 $f(x) = x^2 + 4x + k.$

a By completing the square, find in terms of the constant
$$k$$
 the roots of the equation $f(x) = 0$. (4)

b State the set of values of k for which the equation
$$f(x) = 0$$
 has real roots. (1)

c Use your answers to part **a** to solve the equation

$$x^2 + 4x - 4 = 0$$
.

giving your answers in the form $a + b\sqrt{2}$, where a and b are integers. (2)