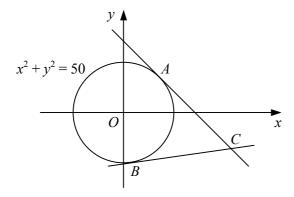
C2

COORDINATE GEOMETRY

Worksheet C

- 1 A circle has the equation $x^2 + y^2 8x + 7 = 0$.
 - a Find the coordinates of the centre of the circle. (2)
 - **b** Find the radius of the circle. (2)
- 2 A circle has the equation $x^2 + y^2 6x + 2y 15 = 0$.
 - a Find the coordinates of the centre of the circle. (2)
 - **b** Find the radius of the circle. (1)
 - c Show that the tangent to the circle at the point (7, 2) has equation

$$4x + 3y - 34 = 0. (4)$$


- 3 A circle has the equation $x^2 + y^2 + 6x 8y + 21 = 0$.
 - a Find the coordinates of the centre and the radius of the circle. (3)

The point *P* lies on the circle.

b Find the greatest distance of *P* from the origin.

(2)

4

The diagram shows the circle with equation $x^2 + y^2 = 50$ and the tangents to the circle at the points A(5, 5) and B(1, -7).

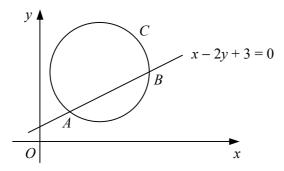
- a Find an equation of the tangent to the circle at A. (3)
- **b** Show that the tangent to the circle at B has the equation

$$x - 7y - 50 = 0. (3)$$

- c Find the coordinates of the point C where the tangents to the circle at A and B intersect. (2
- 5 Circle C_1 has the equation $x^2 + y^2 2ay = 0$, where a is a positive constant.
 - a Find the coordinates of the centre and the radius of C_1 . (4)

Circle C_2 has the equation $x^2 + y^2 - 2bx = 0$, where b is a constant and b > a.

- **b** Sketch C_1 and C_2 on the same diagram. (4)
- 6 The circle C has the equation $x^2 + y^2 + 2x 14y + 30 = 0$.
 - a Find the coordinates of the centre of C. (2)
 - **b** Find the radius of C, giving your answer in the form $k\sqrt{5}$.
 - c Show that the line y = 2x 1 is a tangent to C and find the coordinates of the point of contact. (4)


7 The circle C has equation $x^2 + y^2 - 6x - 12y + 28 = 0$.

a Find the coordinates of the centre of C. (2)

The line y = x - 2 intersects C at the points A and B.

- **b** Find the length AB in the form $k\sqrt{2}$.
- 8 The circle C has centre (8, -1) and passes through the point (4, 1).
 - a Find an equation for C. (3)
 - **b** Show that the line with equation x + 2y + 4 = 0 is a tangent to C.
- 9 The points P(-10, 2), Q(8, 14) and R(-2, -10) all lie on circle C.
 - a Show that PR is perpendicular to PQ. (2)
 - **b** Hence, show that C has the equation $x^2 + y^2 6x 4y 156 = 0$. (5)
- 10 A circle has the equation $x^2 + y^2 2x 7y 16 = 0$.
 - a Find the coordinates of the centre of the circle. (2)
 - **b** Show that the radius of the circle is $k\sqrt{13}$, where k is an exact fraction to be found. (2)
 - c Find an equation of the tangent to the circle at the point (4, 8), giving your answer in the form ax + by + c = 0, where a, b and c are integers. (4)

11

The line with equation x - 2y + 3 = 0 intersects the circle C at the points A and B as shown in the diagram above. Given that the centre of C has coordinates (6, 7),

a find the coordinates of the mid-point of the chord AB. (6)

Given also that the x-coordinate of the point A is 3,

- **b** find the coordinates of the point B, (3)
- \mathbf{c} find an equation for C. (2)
- 12 The circle C has equation $x^2 + y^2 8x 16y + 72 = 0$.
 - a Find the coordinates of the centre and the radius of C. (3)
 - **b** Find the distance of the centre of C from the origin in the form $k\sqrt{5}$.

The point A lies on C and the tangent to C at A passes through the origin O.

- c Show that $OA = 6\sqrt{2}$. (3)
- 13 The circle C has equation $x^2 + y^2 4x 6 = 0$ and the line l has equation y = 3x 6.
 - a Show that l passes through the centre of C. (3)
 - **b** Find an equation for each tangent to C that is parallel to l. (6)