

AS Level / Year 1 Edexcel Maths / Paper 1

December 2017 Mocks

2017 © crashMATHS Limited

Question	Scheme	AO	Marks		
1					
	$(3-k)^2 - 4(k)(-4) = 0$ Uses the discriminant	AO1.1a	M1		
	$\Rightarrow k^{2} + 10k + 9 = 0 \Rightarrow k =$ Forms a 3TQ and attempts to solve their 3TQ	AO1.1a	dM1		
	k = -1, k = -9 Scores 3/3.	AO1.1b	A1		
			3		
	Question 1 Notes				
	mark is for substituting the values of a, b and c from the quadratic into $b^2 - 4ac \{=0\}$. Looking for the pre $<,>,\leq,\geq$. Condone sign errors in substituted values of a, b and c .	correct exp	pression		
2 nd M1 – this dependent o	2 nd M1 – this mark is for forming a 3TQ and attempting to solve it using factorising, completing the square or the quadratic formula. This is dependent on the 1 st M1				
A1 – correct	values of <i>k</i> , both values must be present to score the marks.				

Question	Scheme	AO	Marks
3			
(i)	▲ ^y Correct shape	AO1.2	B1
	Correct <i>x</i> intersections	AO1.1b	B1
	Correct <i>y</i> intersections	AO1.1b	B1
			[3]
(ii)	Correct shape	AO1.2	B1
	Correct <i>x</i> intersections	AO1.1b	B1
	Correct y intersections	AO1.1b	B1 [3]
			6

26/11/17 final

	Question 3 Notes
(i) and (ii):	
1 st B1 – corr	ect shape, with the turning points of the graph in the correct quadrants and the orientation of the curve correct
penalise car	31 – intersection points must be clearly labelled (and correct). Accept values on the axes for this or coordinates. Do not noticates that have the coordinates the wrong way, e.g. (0, –4) instead of (–4, 0), if it is clearly positioned on the correct axis and by the correct point.

Question	Scheme	AO	Marks
4			
(a)	$12 = 6\lambda \Rightarrow \lambda = 2$ Finds correct ratio of two vectors oe	AO3.1a	M1
	$-a = \lambda(9-5a) \Longrightarrow -a = 2(9-5a) \Longrightarrow a = \dots$ Uses their ratio to find <i>a</i>	AO1.1a	M1
	a = 2 Correct value of <i>a</i> only	AO1.1b	A1
			[3]
(b)	$\mathbf{r} = -6\mathbf{i} + \mathbf{j}$ Correct r ft their value of <i>a</i> in (a)	AO1.1b	B1FT
	$ \mathbf{r} = \sqrt{(-6)^2 + 1^2} = \sqrt{37}$ (6.08276) Uses length of a vector formula	AO1.1a	M1
	$[\mathbf{r}] = \mathbf{v}(\mathbf{r}) + \mathbf{r} = \mathbf{v} + \mathbf{r} + \mathbf{v} + \mathbf{r} +$	AO1.1b	A1
			[3]
			6

Question		Scheme	AO	Marks
5				
(a)	$\int_{0}^{4} \left(px - 18\sqrt{x} \right) dx = -48$	Sets up correct equation with correct limits and –16. This can be implied and seen at any point (see notes)	AO3.1a	В1
	$px^2 = \frac{3}{2} x^4 ^4$	Attempts to integrate indefinitely	AO1.1a	M1
	$\left.\frac{px^2}{2} - 12x^{\frac{3}{2}}\right _0^4 \left\{=-48\right\}$	Correct indefinite integration (ignore constants of integration)	AO1.1b	A1
	$\frac{p(4)^2}{2} - 12(4)^{\frac{3}{2}} = -48 \Longrightarrow p = \dots$	Substitutes limits in the correct way around and attempts to solve their equation (RHS can be any value)	AO1.1a	dM1
	p = 6	Correct p	AO2.1	A1
				[5]
(b)	$f'(x) = 6 - \frac{9}{\sqrt{x}}$	Differentiates $f'(x)$ w.r.t x with some value for p	AO1.1a	M1
	$6 - \frac{9}{\sqrt{x}} = 0 \left\{ \Rightarrow x = \frac{9}{4} \right\}$	Sets their derivative = 0 and attempts to solve for x	AO1.1a	dM1
	$f(1) = 6\left(\frac{9}{4}\right) - 18\sqrt{\frac{9}{4}} \left\{ = -\frac{27}{2} \right\}$	Substitutes their x into f	AO1.1a	dM1
	So coordinates of min. point are $\left(\frac{9}{4}, -\frac{27}{2}\right)$	Correct coordinates	AO1.1b	A1 [4]

(c)	$f''(x) = \frac{9}{2\sqrt{x^3}}$ Differentiates their f'(x) again, can be implied	AO1.1b	M1
	$f''\left(\frac{9}{4}\right) = \frac{3}{\sqrt{(9/4)^3}} \left\{=\frac{8}{9}\right\} > 0$ Substitutes 1 into the second derivative and shows it is positive. Note that this requires the second derivative to be correct	AO2.1	A1
	Since $f''(1) > 0$, $\left(\frac{9}{4}, -\frac{9}{2}\right)$ is a minimum point	AO2.4	A1 [3]
			12
	Question 5 Notes		
actual comp 2 nd M1 – for	ication, we need to see evidence that the candidate has evaluated a definite integral corresponding to $\int_{0}^{4} (px) dx$ but at this equal to -48 . NB: $\int_{4}^{0} (px - 18\sqrt{x}) dx = 48$ is equivalent and scores an attempt to integrate at least one of the terms in $px - 18\sqrt{x}$ indefinitely wrt <i>x</i> (add one to the power, dived not see 48/-48 anywhere.	s M1.	
1 st A1 – cor	rect indefinite integration of $px - 18\sqrt{x}$ wrt x.		
are OK, as l	ostitutes their limits in AND attempts to solve the equation for <i>p</i> . Note that any value can appear on the RH ong we see an equation. Some candidates might evaluate the definite integral and <i>then</i> equate this value rks can be awarded when you see the equation.		
(c) 1 st A1 – derivative. T positive as i	this is an accuracy mark and is not FT. They require the correct <i>x</i> coordinate of the min. point from (b) and They don't need to evaluate their second derivative at 9/4; substituting it in, followed by a > sign is enough t is trivial.	I the correct to 'show' it i	second s
2 nd A1 – cor	nclusion: 'states that the second derivative at 9/4 is positive' and ' so (9/4, -27/2)' is a minimum. Accept 'it'	for (9/4, –27	'/2).

Question	Scheme		AO	Marks
6				
(a)	$\frac{BD}{\sin 50} = \frac{10}{\sin 77}$	Forms correct equation oe	AO1.1a	M1
	$\therefore AD = BD = 7.86(1945) \{cm\}$	Correct length of <i>AD</i> . Awrt 7.86	AO1.1b	A1 [2]
(b)	Area of entire sector $=\frac{\pi r^2}{4} = \frac{\pi (7.8619)^2}{4} = 48.545 \{cm^2\}$	Correct area of sector ft their AD	AO2.2	B1F
	Area of triangle $ABD = \frac{1}{2}(7.8619)^2 = 30.9050 \{cm^2\}$	Attempts to find area of ABD	AO1.1a	M1
	Area of $R = 48.545 30.905 = 17.6 \{4051\} \{cm^2\}$	Correct area. Awrt 17.6	AO1.1b	A1 [3]
(c)	$DC = \frac{10\sin 53}{\sin 77} = 8.19642 \{cm\}$	Attempts to find length of <i>DC</i>	AO1.1a	M1
	$AC = \frac{2\pi r}{4} = \frac{2\pi (7.8619)}{4} = 12.34951$	Attempts to find length of arc AC	AO2.2	M1
	Perimeter = 10+8.19642+7.86194+12.34951	Adds all the relevant lengths together	AO1.1a	dM1
	= 38.4 {cm}	Correct perimeter to 1 dp, cao	AO1.1b	A1 [4]
				9

Question 6 Notes

(a) M1 – attempts to find the length of *AD* or *BC*. The sine rule must be used correctly, i.e. the angles/lengths used must be consistent. A1 – correct length of *AD*.

(c) 1st M1 – **attempts** to find *DC*. There are a variety of approaches here. Can use the sine or cosine rule. The general principle is: the formula used must be correct and the correct values must be substituted in to score the M1.

A1 – correct perimeter to 1 dp. Cao

Question	Scheme	AO	Marks
7			
(a)	$\left(2 - \frac{1}{\sqrt{x}}\right)^{8} = 2^{8} + {\binom{8}{1}} (2)^{7} \left(-\frac{1}{\sqrt{x}}\right)^{1} + {\binom{8}{2}} (2)^{6} \left(-\frac{1}{\sqrt{x}}\right)^{2} + $ See notes for mark breakdown	AO1.1b	B1
	$\left[\left(2-\frac{1}{\sqrt{x}}\right)^{2}=2+\left(1\right)\left(2\right)\left(-\frac{1}{\sqrt{x}}\right)^{2}+\left(2\right)\left(2\right)\left(-\frac{1}{\sqrt{x}}\right)^{2}+\left(2\right)\left(2\right)\left(2\right)\left(-\frac{1}{\sqrt{x}}\right)^{2}+\left(2\right)\left(2\right)\left(2\right)\left(2\right)\left(2\right)\left(2\right)\left(2\right)\left(2\right)$	AO1.1a	M1
	$(8)_{(2)^5}(-1)^3$	AO1.1b	A1
	$+\binom{8}{3}(2)^5\left(-\frac{1}{\sqrt{x}}\right)^3+\dots$	AO1.1b	A1
	$\left(2 - \frac{1}{\sqrt{x}}\right)^8 = 256 - \frac{1024}{\sqrt{x}} + \frac{1792}{x} - \frac{1792}{\sqrt{x^3}} + \dots$ Correct binomial expansion of (accept $\frac{1}{\sqrt{x}} = \frac{1}{\frac{1}{x^2}} = x^{-\frac{1}{2}}$ etc.)		A1 oe
			[6]
	x^{2}		[5]
(b/i)	$(1+r)^{r} = 1^{r} r^{0} + {r \choose r} r^{1} + {r \choose r} r^{2} + r^{0} r^{r}$ Uses the binomial expansion. Need to see 1 and rr appearing clearly	AO2.1	M1
	$ (1+x)^r = 1^r x^0 + \binom{1}{1} x^1 + \binom{1}{2} x^2 + \dots + 1^0 x^r $ to see 1 and <i>rx</i> appearing clearly. Some candidates may also use		
	$ (1+x)^{r} = 1 + rx + {r \choose 2} x^{2} + \dots + x^{r} $ to see 1 and <i>rx</i> appealing cleany. Some candidates may also use $(1+x)^{r} = 1 + rx + \frac{r(r-1)}{2!} x^{2} + \dots$		
	(r) Convincing proof with an	AO2.4	A1
	$\binom{r}{2}x^2 + \dots + x^r \ge 0$, since $x > 0$, so $(1+x)^r \ge 1 + rx$ explanation. Accept >.		[2]
(b/ii)	LHS = $(1+0)^r = 1^r = 1$ Correct verification	AO2.1	B1
	RHS = $1 + r(0) = 1$		
	LHS = RHS, so true for $x = 0$		[1]

(b/iii)	e.g. let $x = -3$, then if $r = 5$, we have LHS = $(1-3)^5 = -32$ RHS = $1+5(-3) = -14$	Attempts to use a suitable counter- example: picks a value of <i>x</i> < –1, substitutes it into the LHS and RHS with a fixed <i>r</i> and attempts to LHS < RHS	AO2.1	M1
	LHS < RHS, therefore it is not true for $x < -1$.	Convincing proof with conclusion	AO2.1	A1 [2]
				10
	Q	uestion 7 Notes		
1 st A1 – at 2 nd A1 – th 3 rd A1 – co	rm of the form $\binom{8}{r}(2)^{8-r}\left(-\frac{1}{\sqrt{x}}\right)^r$ or equivalent for any r , least any two terms of the expansion correct, unsimplified e four terms required terms given, unsimplified or better. I rrect expansion, with each term simplified. Accept equival terms in ascending powers of x (or any other 4 terms give DA0.	l or better gnore extra terms ent simplified forms. Ignore extra terms		
(b/i) M1 –	uses the binomial expansion with the terms 1 and <i>rx</i> clear nal term is not sufficient as this can suggest the series is i		he final terr	n. '+'
A1 – justifi	es the inequality by stating that the other terms are positiv	e.		
Note: Acce	ept > instead of \geq .			
• •	- a suitable counter-example: for this mark, candidates nee the inequality for any integer <i>r</i> (i.e. substituting into both s	•		

A1 – complete and convincing proof with a conclusion.

Question	Scheme		AO	Marks
8				
(i)	$5 = a(4^b)$, $12 = a(8^b)$	Forms the two correct equations in <i>a</i> and <i>b</i>	AO3.1a	M1
	$\Rightarrow \frac{5}{12} = \frac{4^b}{8^b} \Rightarrow 2^b = \frac{12}{5}$	Eliminates one of the variables from their equations and attempts to reduce it to a log problem	AO1.1a	M1
	$b = \frac{\log\left(\frac{12}{5}\right)}{\log 2} = 1.263$	Takes logs (dependent on 2 nd M1 only)	AO1.1a	dM1
	$\Rightarrow a = \frac{5}{4^{1.263}} = 0.8680$	Correct values of <i>a</i> and <i>b</i> , awrt 0.868 and 1.26	AO1.1b	A1 [4]
(ii/a)	$y = pn^q$ for some p and q , where q is the gradient of the line and $\ln p$ is the y-intercept	Seen or implied through workings	AO2.2	M1
	$m = \frac{2.7922.77}{5 - 45} \ \{ = -0.639 \}$	Attempts to find the gradient of the line	AO3.1b	M1
	$c = 2.79 - ('-0.639')(5) \{= 5.985\}$	Attempts to find the <i>y</i> intercept of the line. Dependent on 2 nd M1 only	AO3.1b	dM1
	$\Rightarrow q = -0.639, p = e^{5.985} = 397.422$			
	$\therefore y \approx 397 n^{-0.639}$	Expresses <i>y</i> in terms of <i>n</i> . Awrt $y \approx 397n^{-0.639}$. Don't need \approx (accept =)	AO3.3	A1 [4]

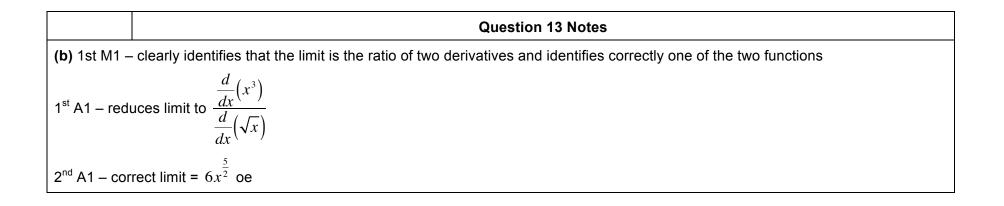
(ii/b)	$y = 397.422(87)^{-0.639} = 22.9 (22.90335)$	Substitutes 87 into their (i/a) Awrt 22.9	AO3.4 AO3.4	M1 A1 [2]		
(ii/c)	Unreliable, because 87 is outside of the data range / the Unreliable may not be suitable for atomic numbers larger than <u>55</u> / oe	eliable + reason (see notes)	AO3.5b	B1 [1]		
	Question 8 Notes					
	eliminates one of the variables from their equations. Their equations must i					
3 rd M1 – tak	es logs to solve their equation in one variable. This is dependent on the 2^{nd} N	11 (Note: it is not dependent of the second seco	on the 1 st M1)		
(ii/a) 1^{st} M1 – this can be implied at any stage of the workings. Candidates need to show they recognise that <i>y</i> and <i>n</i> are connected by a power relation and that they know how to work out <i>y</i> and <i>n</i> . This can be implied from the correct answers or candidates choosing their gradient as the power and $e^{\text{their intercept}}$ as ' <i>p</i> '.						
model may	ii/c) B1 – states that it is unreliable and gives a reason. Reason needs to state that the 87 is outside of the data range (owtte), or that the model may not be suitable for atomic numbers <u>larger than 55</u> , or equivalent. They must make it clear that 87 is not within the data range, even if not explicitly stated. Accept 'this is extrapolation' oe.					

Question	Scheme		AO	Marks
9				
(a)	$f(4) = -2(4)^{3} + 9(4)^{2} - (4) - 12$ = -128 + 144 - 4 - 12 = 0 ∴ the curve y = f(x) crosses the x axis when x = 4	Substitutes 4 into f and shows that it is equal to 0 (all of the terms or groups of terms must be evaluated) and concludes: 'therefore, it crosses {the <i>x</i> axis} when <i>x</i> = 4' oe	AO2.1	B1 [1]
(b) Method 1	$ \begin{array}{r} -2x^{2} + x + 3 \\ x - 4 \overline{\smash{\big)} -2x^{3} + 9x^{2} - x - 12} \\ \underline{-2x^{3} + 8x^{2}} \\ + 1x^{2} - 1x (*) \\ \underline{+1x^{2} - 4x} \\ 3x - 12 \\ \underline{3x - 12} \\ 0 \end{array} $	Attempts to find the other quadratic factor by long division All working leading up to and including the line (*) correct, including the $-2x^2$ in the quotient	AO1.1a AO1.1b	M1 A1
	$f(x) = (x-4)(-2x^2 + x + 3)$ = -(x-4)(2x-3)(x+1)	Attempts to factorise their quadratic factor Correct factorisation oe (e.g. accept –ve sign distributed into one of the factors)	AO1.1a AO1.1b	dM1 A1 [4]

(b) Method 2	$f(x) = (x-4)(-2x^2 + bx + 3)$	Attempts to find out quadratic factor using inspection Quadratic factor of the form $-2x^2 + bx + 3$	AO1.1a AO1.1b	M1 A1
	$\therefore f(x) = (x-4)(-2x^2 + x + 3) = -(x-4)(2x-3)(x+1)$	Attempts to factorise their quadratic factor Correct factorisation oe (e.g. accept –ve sign distributed into one of the factors)	AO1.1a AO1.1b	dM1 A1 [4]
(c)	-1 -1 -12	Correct shape (see notes) Correct <i>x</i> intersections Correct <i>y</i> intersection	AO1.2 AO1.1b AO1.1b	B1 B1 B1
(d)	$x-4 = -1, \frac{3}{2}, 4$ $\Rightarrow x = 3, \frac{11}{2}, 8$	Sets <i>x</i> -4 equal to at least one of the roots of their graph in (c) Correct values of <i>x</i>	AO2.2 AO1.1b	M1 A1 [2]
				10

Question 9 Notes(a) B1 – substitutes 4 into f, shows that it is 0 and then gives a conclusion. At least some of the terms have to be evaluated here, either
individually or in groups. For example,
 $f(4) = -2(4)^3 + 9(4)^2 - (4) - 12 = 0$ is NOT enough and scores B0, but $f(4) = -2(4)^3 + 9(4)^2 - (4) - 12 = 16 - 16 = 0$ is OK
The conclusion requires something simple: 'therefore, it crosses the x axis at 4' oe
(b) Method 1:
 2^{nd} M1 – writes their factor $ax^2 + bx + c = (px+r)(qx+s)$, where $pq = \pm a$, $rs = \pm c$ (M0 if their quadratic factor is irreducible)
(b) Method 2:
 1^{st} M1 – attempts to find the quadratic factor by inspection. This mark is awarded for one the coefficients of the quadratic factor correct.
 1^{st} A1 – their quadratic factor of the form $-2x^2 + bx + 3$ for some number or letter b.
 2^{nd} M1 – writes their factor $ax^2 + bx + c = (px+r)(qx+s)$, where $pq = \pm a$, $rs = \pm c$ (M0 if their quadratic factor is irreducible)
(c)(c)
 1^{st} B1 – correct shape of a cubic, with two turning points and the correct orientation. Condone if the left-most is not in the +ve x quadrant,
but anywhere between -1 < x < 3/2.
 2^{nd} and 3^{rd} B1 – accept values plotted directly on the x axis or coordinates. Do not condone coordinate confusion in this question.

Question	Scheme	AO	Marks
10			
	$\frac{dy}{dx} = \frac{16x^2 - 9}{(3 - 4x)} = -4x - 3$ Attempts to simplify dy/dx by factorising out and cancelling x Correct simplified dy/dx	AO3.1a AO1.1b	M1 A1
	$\Rightarrow y = \int (-4x - 3) dx = -2x^2 - 3x + k$ Integrate their dy/dx indefinitely and correctly. Use of definite integration is SC (see notes)	AO3.1a	dM1
	$-12 = -2(2)^{2} - 3(2) + k \Rightarrow k = 2$ Subs (2, -12) into their g to find k Correct value of k $\therefore g(x) = -2x^{2} - 3x + 2$	AO1.1a AO1.1b	dM1 A1
	$g(x) = -2\left\{\left(x - \frac{3}{4}\right)^2 - \frac{9}{16}\right\} + 2$ $\Rightarrow g(x) = -2\left(x - \frac{3}{4}\right)^2 + \frac{25}{8}$ So $a = -2$, $b = \frac{3}{4}$ and $c = \frac{25}{8}$ Attempts to complete the square. See notes for details Correct values of a , b and c stated	AO1.1a AO2.1	dM1 A1
			7


	Question 10 Notes
1 st M1 – cand	els <i>x</i> from top and bottom
1 st A1 – com	pletely correct simplified dy/dx
	grates their simplified dy/dx indefinitely and correctly. + constant is necessary. Accept any letter, including <i>c</i> – <i>k</i> is used in o avoid confusion with <i>c</i> later. This is dependent on the 1 st M1.
3 rd M1 – subs	stitutes the point (2, -12) into their g correctly and attempts to find their constant. This is dependent on previous M marks.
2 nd A1 - corre	ect constant of integration.
4 th M1 – atter	npts to complete the square on their g. We need to see them extract their leading coefficient, and then use
$x^2 \pm 2b = (x \pm 2b)$	$(\pm b)^2 - b^2$ for the remaining factor. If they extract the leading coefficient from the whole expression, ignore what they do with
the constant.	
3 rd A1 – corre	ect values of a, b and c stated. Note that g(x) alone is not sufficient here (it is not what the question asked for).
Special case	• 1: $\frac{dy}{dx} = -4x - 3 \Rightarrow \int_{-12}^{y} dy' = \int_{2}^{x} (-4x' - 3) dx'$ scores 2 nd M1 (no need for primes). Integrating and substituting the limits on both
sides scores	3 rd M1. The correct expression for g gives the 2 nd A1. Then the rest is as per the original scheme.
Alternative:	
Candidates n sent to review	nay find g' and plug this into the expression for dy/dx and compare coefficients. This is unlikely to be seen and should be v if seen.

Question	Scheme	AO	Marks
11			
(a)	$qx = -2y + 4 \Rightarrow y = \dots$ $\left\{ y = -\frac{q}{2} + 2 \right\}$ Attempts to make y the subject	AO1.1a	M1
	Gradient of $l = \frac{2}{q}$ Correct gradient of l	AO1.1a	A1 [2]
(b)	$\frac{dy}{dx} = -2x^{-3} + \frac{3}{2p}x^{-\frac{1}{2}}$ Attempts to find dy/dx	AO3.1	M1
	dy Substitutes 1 into their dy/dx	AO1.1a	dM1
	$\left. \frac{dy}{dx} \right _{x=1} = -2(1)^{-3} + \frac{3}{2p}(1)^{-\frac{1}{2}} = -2 + \frac{3}{2p}$ Substitutes 1 into their dy/dx Correct value of dy/dx at 1	AO1.1b	A1
	$\therefore -2 + \frac{3}{2p} = \frac{2}{q} \Rightarrow p = \dots$ Sets their dy/dx at 1 equal to their (a) and attempts to re-arrange for p	AO3.1	dM1
	$p = \frac{3q}{4q+4}$ Correct expression of <i>p</i> in terms of <i>q</i>	AO1.1b	A1
			[5]
			7
	Question 11 Notes		
(b) 1 st M1 –	attempts to differentiate both terms		
3 rd M1 – this	is for setting the value of their gradient of the tangent to C at 1 $(\frac{dy}{dx}\Big _{x=1})$ = their (a). If they use the gradier	nt of the no	rmal, it is
M0.			

Question	Scheme		AO	Marks
12				
(a)	$\theta = \cos^{-1}(-0.3) = 107.457$	Finds principal value of $ heta$	AO1.1a	M1
	$\theta = 180 + 72.5423, -180 + 72.5423$	Attempts to find one other value of θ in range (see notes)	AO1.1a	dM1
	$\theta = \{awrt\} -107^{\circ}, 107^{\circ}, 253^{\circ}$	Correct values of $ heta$	AO1.1b	A1 [3]
(b/i)	$(a-b)(a^{2}+ab+b^{2}) = a^{3}+a^{2}b+ab^{2}-a^{2}b-ab^{2}-b^{3}$ $= a^{3}-b^{3}$	Expands brackets and gives a convincing proof	AO2.1	B1 [1]
(b/ii)	$\frac{1+\sin x \cos x}{\cos^3 x - \sin^3 x} \equiv \frac{1+\sin x \cos x}{(\cos x - \sin x)(\cos^2 x + \sin x \cos x + \sin^2 x)}$ $\equiv \frac{1}{\cos x - \sin x}$	Factorises $\cos^3 x - \sin^3 x$ using (b/i)	AO3.1a	M1
	$\therefore \frac{1+\sin x \cos x}{\cos^3 x - \sin^3 x} + \frac{1}{\sin x + \cos x} \equiv \frac{1}{\cos x - \sin x} + \frac{1}{\sin x + \cos x}$ $\equiv \frac{\cos x - \sin x + \sin x + \cos x}{\cos^2 x - \sin^2 x}$	Uses a common denominator to combine first and second terms Convincing proof	AO1.1a AO2.1	dM1 A1
	$\equiv \frac{2\cos x}{\cos^2 x - \sin^2 x}$			[3]

(b/iii)	LHS = $\frac{2\cos x}{\cos^2 x - \sin^2 x} + \frac{\sin^2 x - 2\cos x - 1}{\cos^2 x - \sin^2 x}$			
	$\equiv \frac{\sin^2 x - 1}{\cos^2 x - \sin^2 x}$	Combines the two fractions and uses $\sin^2 x - 1 \equiv -\cos^2 x$	AO2.1	M1
	$\equiv -\frac{\cos^2 x}{\cos^2 x - \sin^2 x}$	Divides by $\cos^2 x$ and uses		
	$\equiv -\frac{1}{1-\tan^2 x}$	$\tan x = \frac{\sin x}{\cos x}$	AO2.1	dM1
	$\equiv \frac{1}{\tan^2 x - 1}$	Convincing proof with no errors seen	AO2.1	A1
				[3]
				10
		Question 12 Notes		
		ange. This is dependent on the 1 st M1. If they have the principal 11 for the correct method to find other values.	value wron	g, this
(b/ii) 1 st M1 mark is just a proof ques	for the correct factorisation oe. We do nee	$x^3 x - \sin^3 x$. They don't need to do anything with the factorisation d to see the whole factorisation before candidates jump to $1 + \sin^2 x$	n for this ma in <i>x</i> cos <i>x</i> , a	ark, this s this is

Question	Scheme	AO	Marks
13			
(a) Method 1	$\lim_{h \to 0} \left(\frac{(x+h)^3 - x^3}{h} \right) = \lim_{h \to 0} \left(\frac{x^3 + 3x^2h + 3xh^2 + h^3 - x^3}{h} \right)$ $= \lim_{h \to 0} \left(3x^2 + 3xh + h^2 \right)$ $= 3x^2$ 1 st M1: considers $\frac{(x+h)^3 - x^3}{h}$ 2 nd M1: attempts to simplify numerator A1: convincing proof, clearly considering the limit	AO2.1 AO1.1a AO2.1	M1 dM1 A1 [3]
(a) Method 2	$\lim_{x \to c} \left(\frac{x^3 - c^3}{x - c} \right) = \lim_{x \to c} \left(\frac{(x - c)(x^2 + xc + c^2)}{(x - c)} \right)$ $= \lim_{x \to c} \left(x^2 + xc + c^2 \right)$ $= 3c^2$ $\Rightarrow (x^3)' = 3x^2$ 1 st M1: considers $\frac{f(x) - f(c)}{x - c}$ 2 nd M1: simplifies to $x^2 + xc + c^2$ A1: convincing proof, clearly considering the limit, giving final answer in terms of x	AO2.1 AO1.1a AO2.1	M1 dM1 A1 [3]
(b)	$\lim_{h \to 0} \frac{(x+h)^3 - x^3}{\sqrt{x+h} - \sqrt{x}} = \lim_{h \to 0} \frac{\frac{(x+h)^3 - x^3}{h}}{\frac{h}{\sqrt{x+h} - \sqrt{x}}{h}}$ Recognises that the limit is the ratio of two derivatives, identifying either x^3 or \sqrt{x} as being the functions being differentiated $= \frac{\frac{d}{dx}(x^3)}{\frac{d}{dx}(\sqrt{x})} = \frac{3x^2}{0.5x^{-1/2}} = 6x^{\frac{5}{2}}$ Identifies that the limit is $\frac{\frac{d}{dx}(x^3)}{\frac{d}{dx}(\sqrt{x})}$	AO2.2 AO2.2	M1 A1 A1
	Correct limit oe	AO2.1	[3]
			6

Marks breakdown by AO

AO	Number of marks	%
AO1	62	62
AO2	24	24
AO3	14	14