

AS Level / Year 1 Paper 1 (Edexcel Version)

Version 1

2017 © crashMATHS Limited

Question	Scheme	Marks		
1				
(a)	k = 3 Correct value of k	B1		
(la)	A	(L) D1		
(0)	$\mathbf{P}_{\mathbf{y}} = \mathbf{C}_{\mathbf{y}} $			
	$\begin{array}{c} \text{Koot at } x = 0 \text{ and } x = 2 \\ \text{Root at } x = 0 \text{ and } x = 0 \\ \text{Root at } x = 0 \text{ and } x = 0 \\ \text{Root at } x = 0 \text{ and } x = 0 \\ \text{Root at } x = 0 \text{ and } x = 0 \\ \text{Root at } x = 0 \text{ and } x = 0 \\ \text{Root at } x = 0 \\$	BI		
	Repeated root at $x = 2$	BI		
	$x = x^3 - 4x^2 + 4x **$			
		(3)		
(c)	two solutions ; Two roots + reason	B1ft		
	graphs intersect twice	B1		
		(2)		
		6		
	Question 1 Notes			
(b) Mark o (c) 1 st B1ft 2 nd B1: cor	 (b) Mark only information about the cubic curve. (c) 1st B1ft: two roots (or ft their (b)) 2nd B1: correct explanation oe. Accept equivalent phrasing, i.e. 'graphs meet twice'. 			

Question	Scheme	
2		
	$\int_{1}^{4} \left(\sqrt{x} - 2x^{-3} + 4\right) dx = \int_{1}^{4} \left(x^{\frac{1}{2}} - 2x^{-3} + 4\right) dx$ Attempts to integrate	M1
	$= \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{2x^{-2}}{-2} + 4x (+c)\right]_{1}^{4}$ One term integrated correctly All terms integrated correctly	A1 A1
	$= \left[\frac{2}{3}x^{\frac{3}{2}} + x^{-2} + 4x \ (+c)\right]_{1}^{4}$	
	$\Rightarrow \int_{1}^{4} \left(\sqrt{x} - 2x^{-3} + 4\right) dx = \left(\frac{2}{3}(4)^{\frac{3}{2}} + 4^{-2} + 4(4)\right) - \left(\frac{2}{3}(1)^{\frac{3}{2}} + 1^{-2} + 4(1)\right)$	
	$=\frac{755}{48}$	A1
		5
	Question 2 Notes	
1 st and 2 nd A1: ignore any constant terms		
2 nd M1: dependent on 1 st M1. Limits must be substituted the right way around		
3 rd A1: must be an exact value		

Question	Scheme		
3			
(a)	$\mathbf{F}_{R} = \begin{pmatrix} 4\\6 \end{pmatrix} + \begin{pmatrix} -2\\1 \end{pmatrix} + \begin{pmatrix} -5\\-7 \end{pmatrix} = \begin{pmatrix} -3\\0 \end{pmatrix}$ Works out the resultant force	M1A1	
	$\Rightarrow \mathbf{F}_{R} = 3$ Correct magnitude	A1 (3)	
(b)	$F_{R^*} = (-3+x)\mathbf{i} + y\mathbf{j} \text{with } \mathbf{F}_4 = x\mathbf{i} + y\mathbf{j}$ $\tan^{-1}\left(\frac{y}{-3+x}\right) = 45 \Rightarrow y = -3+x$ Correct condition for y in terms of x (oe)	M1A1	
	So e.g. $F_4 = i - 2j$ Any correct force	A1 (3)	
		6	
	Question 3 Notes		
(a) M1 : attempts to combine the forces i.e. two forces added correctly			
(b) Correct answer only scores 3/3. **There are infinitely many correct answers**			
An answer is correct provided: j component of $F_4 = (\mathbf{i} \text{ component of } F_4) - 3$			

Question	Scheme	Marks	
4			
(a)	$\frac{a+\sqrt{b}}{\sqrt{b}} \times \frac{c-\sqrt{d}}{\sqrt{d}} = \frac{(a+\sqrt{b})(c-\sqrt{d})}{\sqrt{d}}$ Rationalises	M1	
	$c + \sqrt{d} c - \sqrt{d} (c + \sqrt{d})(c - \sqrt{d})$ Expands the humerator	MIAI	
	$= \frac{ac - a\sqrt{d} + c\sqrt{b} - \sqrt{bd}}{denominator}$	AI	
	c -a $ac -a\sqrt{d} + c\sqrt{b} - \sqrt{bd} *$		
	$-\frac{1}{c^2-d}$ $-\frac{1}{c^2-d}$ Cso	A1	
		(5)	
(b)	$\frac{m+\sqrt{2}}{m+\sqrt{2}} = \frac{-m\sqrt{8}+1\sqrt{2}}{m+\sqrt{8}}$		
	$1+\sqrt{8}$ Sets irrational part = 0	M1A1	
	Rational if $-m\sqrt{8} + \sqrt{2} = 0 \Rightarrow m = \frac{\sqrt{2}}{2} = \frac{1}{2}$ Correct value of <i>m</i> cao		
	$\sqrt{8}$ 2	(2)	
		7	
	Question 4 Notes		
(a) M1 : m	sultiplies top and bottom by $c - \sqrt{d}$.		
M1 : expan	nds the numerator producing four terms with at least two terms correct		
Answer	is given. Solution must be presented convincingly and with no errors		
Special case: Multiplies by $c + \sqrt{d}$. Can score maximum M0 M1 A0 A0 A0			
(b) M1: sets irrational part = 0. NB: setting $-m\sqrt{8} + 1\sqrt{2} + \sqrt{8 \times 2} = 0$ scores M0.			

Question	Scheme	Marks	
5			
(a) Way 1	$\lim_{h \to 0} \left(\frac{6(x+h)^2 + 1 - (6x^2 + 1)}{h} \right) = \lim_{h \to 0} \left(\frac{12xh + h^2}{h} \right)$ Uses limit definition Expands brackets $= \lim_{h \to 0} (12x+h)$ Correct derivative = 12x	M1 M1A1 A1 (4)	
(a) Way 2	$\lim_{x \to c} \left(\frac{6x^2 + 1 - (6c^2 + 1)}{x - c} \right) = \lim_{x \to c} \left(\frac{6(x - c)(x + c)}{(x - c)} \right)$ Uses limit definition Uses difference of two squares $= \lim_{x \to c} (6x + 6c)$ $= 6c + 6c$ $= 12c$ $\Rightarrow (6x^2 + 1)' = 12x$	M1 M1 A1	
	Correct derivative	A1 (4)	
(b)	$f'(x) = 3x^2 - 4x + 11$ Normal = $-\frac{1}{2} \Rightarrow$ tangent = 2	M1A1	
	$3x^2 - 4x + 11 = 2 \Rightarrow 3x^2 - 4x + 9 = 0$ Forms an equation	dM1A1	
	$(-4)^{2} - 4(3)(9) = 16 - 108$ $= -92$ < 0 $\therefore \text{ no real roots / no normal line with gradient}$ Attempts to show the equation has no real roots	ddM1 A1	
	-0.5	(6)	
		10	
(a) Way 1: Accept δx instead of h . $1^{\text{st}} A1 - \text{sight of } 12x + h \text{ oe}$			
Way 2: Uses $\lim_{x \to c} \left(\frac{f(x) - f(c)}{x - c} \right)$ 1st A1: sight of $6x + 6c$. 2 nd A1 – Final answer should be in terms of x			

(b) 1^{st} M1: attempts to differentiate. 2^{nd} M1: sets f'(x) = 2 – dependent on 1^{st} M1 2^{nd} A1: forms the correct 3TQ 3^{rd} M1: attempts to show the equation has no real roots – dependent on previous M marks; for example, use of the discriminant. Can also use completing the square. 3^{rd} A1: convincing proof **and** conclusion.

Question	Scheme	Marks	
6			
(a)	$90(2 - e^{-0.05(0)}) = 90(2 - 1) = 90$ Cao	M1A1	
(b)	$\frac{dN}{dt} = -90(-0.05)e^{-0.05t}$ $= 4.5e^{-0.05t}$ Differentiates	B1B1 (2)	
(c)	$4.5 e^{-0.05t} > 0$ for all <i>t</i> , so it is increasing Explanation	B1 (1)	
(d/i)	<i>idea that:</i> Correct idea model predicts 180 plants will be infected and there are only 150 plants in the field	B1 (1)	
(d/ii)	$150 = 90(2 - e^{-0.05t}) \Rightarrow e^{-0.05t} = \dots$ $e^{-0.05t} = \frac{1}{3} \Rightarrow \ln(e^{-0.05t}) = \ln\frac{1}{3}$ Rearranges for $e^{-0.05t}$ Takes logs	M1 dM1	
	$\Rightarrow t = \frac{\ln(1/3)}{-0.05} = 21.97 = 22 \text{ days}$ Correct value of t	A1 (3)	
		9	
 (a) M1 – substitutes 0 into the model (b) 1st B1 – constant term goes to 0 2nd B1 – correct differentiation of exponential term (need not be simplified) (c) B1 – convincing explanation. Must convey idea that derivative is positive <u>for all t</u>. (d) (i) B1 – use your judgment and award a mark for the idea that the model predicts <u>180</u> plants will be infected which is more than there are in the field. 			

Question	Scheme	
7		
(a)	$m = \frac{53}{4 - 12} = \frac{8}{-8} = -1$ Attempts to find gradient	M1A1
	$l: y-5 = -1(x-4) \Rightarrow x+y-9 = 0$ Attempts to find equation of l	M1A1
	${a = b = 1, c = -9}$	(4)
(b)	$3x^{2} + 4x + 7 = 9 - x$ $\Rightarrow 3x^{2} + 5x - 2 = 0$ Attempts to find coordinates of intersection	M1
	$\Rightarrow (3x-1)(x+2) = 0$ Attempts to solve their 3TQ	dM1
	$\Rightarrow x = \frac{1}{3} \text{ or } x = -2$	Al
	$x = \frac{1}{3} \Rightarrow y = 9 - \frac{1}{3} = \frac{26}{3}$ Attempts to find the <i>y</i> coordinates of intersection	ddM1
	$x = -2 \Longrightarrow y = 92 = 11$	
	$A(-2,11) = B\left(\frac{1}{3},\frac{26}{3}\right)$ Correct coordinates of A and B	A1 (5)
(c)	<i>P</i> (0,9)	`-´-´-
	$ AP = \sqrt{(-2-0)^2 + (11-9)^2}$ Attempts to find $ AP $ or $ BP $ - 2 $\sqrt{2}$	M1
	$ BP = \sqrt{\left(\frac{1}{3} - 0\right)^2 - \left(\frac{26}{3} - 9\right)^2}$	
	$=\frac{\sqrt{2}}{3}$ Correctly finds $ AP $ and $ BP $	A1
	$\Rightarrow AP : BP = 2\sqrt{2}:\frac{\sqrt{2}}{3}$	
	= 6:1, so $m = 6$ Correct ratio	A1
		(3)
		9

Question 7 Notes

(a) 1st M1 – attempts to find gradient, i.e. use of $m = \frac{y_2 - y_1}{x_2 - x_1}$. Coordinates must be consistent. In other

words $m = \frac{y_2 - y_1}{x_1 - x_2}$ scores M0.

 2^{nd} M1 – attempts to find equation of line with **their** *m* using $y - y_1 = m(x - x_1)$. If they use

y = mx + c, method mark should be awarded for an attempt to find the constant.

 $2^{nd} A1$ – equation in the specified form oe. Values of *a*, *b* and *c* need not be quoted.

(b) Final A1 – must see coordinates <u>attributed correctly to *A* and *B*</u>. Coordinates alone score A0 and *A* and *B* mixed up is A0.

(c) *No marks for coordinates of *P**

 1^{st} M1 – attempts to find distance between A and P or P and B using a correct method

 $1^{\text{st}} A1$ – correct distance between A and P and P and B

 $2^{nd} A1$ – correct ratio in the correct form. Value of *m* need not be stated.

Question	Scheme	Marks
8		
(a)	$\binom{15}{6 \text{ or } 9} (1)^{15-6} (-px)^6 = 3648645x^6$ Correct equation	M1A1
	$5005 p^{6} = 3648645 \Rightarrow p = \dots$ $p = \sqrt[6]{729} = 3$ Correct value of p	A1 (3)
(b)	$\binom{15}{8 \text{ or } 7} (1)^{15-8} (-3)^8 = 4220035$	M1
	= 4220000 (4sf)	A1 (2)
		5
	Question 8 Notes	
 (a) M1 – attempts to form a correct equation. LHS of equation alone or copying down 3648645 incorrectly with correct LHS can score M1 (b) A1 – answer must be to 4 sf or A0. 		

Question	Scheme		Marks
9			
(a)	a = 26 - b	Seen or implied	B1
	$\cos\theta = \frac{b^2 + 14^2 - a^2}{2(b)(14)}$ $= \frac{b^2 + 196 - (26 - b)^2}{28b}$ $= \frac{52b - 480}{28b}$	Uses cosine rule and subs in values (can be in terms of a here) Replaces a with $26 - b$	M1 dM1
	$=\frac{13}{7}-\frac{120}{7b}$ *	Convincing proof	A1 (4)
(b)	$A^{2} = \frac{1}{4}b^{2}(14)^{2}\sin^{2}\theta$	Uses $A = \frac{1}{2}ab\sin C$ for this	M1
	$= 49b^{2} (1 - \cos^{2} \theta)$ $= 49b^{2} \left(1 - \left(\frac{13}{7} - \frac{120}{7b}\right)^{2} \right)$	Uses $\sin^2 \theta = 1 - \cos^2 \theta$	dM1
	$= 49b^{2} \left(-\frac{120}{49} + \frac{3120}{49b} - \frac{14400}{49b^{2}} \right)$ $= -120b^{2} + 3120b - 14400 *$	Expands the brackets and manipulates the terms Convincing proof	ddM1 A1 (4)
(c/i) Way 1	$A^{2} = -120(b^{2} - 26b + 120)$ = -120[(b-13)^{2} - 13^{2} + 120] = -120(b-13)^{2} + 5880 $\Rightarrow \max(A^{2}) = 5880$, so max $A \approx 76.7$ cm ²	Attempts to complete the square	M1A1 A1A1
	······································		(4)
(c/i) Way 2	$\frac{d}{db}\left(A^2\right) = -240b + 3120$	Differentiates A^2 with respect to b	M1
Way 2	max occurs when $b = \frac{3120}{240} = 13$	Value of b for which A^2 is max	A1
	$\therefore \max(A^2) = -120(13)^2 + 3120(13) - 14400 = 588$ So max $A \approx 76.7 \text{ cm}^2$	30	A1A1 (4)
(c/ii)	Isosceles	Cao	B1
			13

Question 9 Notes(a) and (b) - *Answers given*. Final A1 – cso, no errors seen(c/i) Way 1 – 1st M1 – Attempts to complete the square1st A1 – correctly completes the square oe2nd A1 – correct max value of A^2 3rd A1 – correct max value of A(c/i) Way 2 – 1st M1 – differentiation must be correct2nd A1 – correct max value of A^2 3rd A1 – correct max value of A^2

Question	Scheme		Marks	
10				
(a)	Counter-example and shows it doesn't work	Counterexample	B1	
	e.g. $n = 3$, then $n^2 + 1 = 10$ which is not prime	Shows it doesn't work	B1	
			(2)	
(b)	$(-1)^{x+y} = (-1)^x (-1)^y$	Uses multiplication rule for indices	M1	
	$= \left(-1\right)^{x} \left(\frac{1}{-1}\right)^{x}$	Uses $-1 = \frac{1}{-1}$	dM1	
	$=(-1)^{x}(-1)^{-y}$	Convincing proof	A1	
	$=(-1)^{x-y}$		(3)	
(c)	$\{(-1)^{k} = 1 \text{ if (and only if) } k \text{ is even and } (-1)^{k} = -1$ if (and only if) k is odd.} {Therefore,} $\frac{(-1)^{x+y} = (-1)^{x-y} \text{ if (and only if) both powers are}}{\text{either odd or even. So } x+y \text{ is even (if and only) if}}$ x-y is even.	Correct explanation containing at least all underlined elements	B1 (1)	
			6	
() et	Question 10 N	lotes		
(a) $1^{st} B1$ – any counter-example that works $2^{nd} B1$ – shows the statement fails for their counter-example				
(b) Proof must involve index manipulation. Accept other correct manipulations that give the correct answer.				
(c) B1 – correct explanation with at least all the underlined elements.				
Accept alternate wording provided the idea is conveyed clearly and without ambiguity. Poor mathematical expression should result in B0.				

Question	Scheme		Marks
11			
(a)	$\frac{1}{\sin x} - \sin x \equiv \frac{1 - \sin^2 x}{\sin x}$ $\equiv \frac{\cos^2 x}{\sin x}$ $\begin{cases} \equiv \frac{\cos x}{\sin x} (\cos x) \\ \equiv \frac{1}{\tan x} (\cos x) \end{cases}$ $\equiv \frac{\cos x}{\tan x}$	Common denominator + use of $\cos^2 x = 1 - \sin^2 x$ Complete and convincing proof containing at least one of the	M1 A1
	lı	nes from the lines in the braces	(2)
(b)	$4 + \tan^{2} X = \frac{2}{\cos X} \left(-\frac{\cos X}{\tan X} \right) + \tan^{2} X$ $\Rightarrow 4 = -\frac{2}{\tan X}$ $\Rightarrow \tan X = -\frac{1}{2}$ $X = \tan^{-1} \left(-\frac{1}{2} \right) = -26.565$ $\Rightarrow X = 153.435, 333.435, -26.565, -206.565$ $\{\Rightarrow X = 153.4^{\circ}, 333.4, -26.6^{\circ}, -206.6^{\circ}\}$	Uses identities Correct value of tanX Correct principal value of X and attempts to find the other values in range Correct values of X	M1M1 A1 dM1 ddM1 A1
			(6)
			8
	Question 11 N	otes	
 (a) For the A mark, the proof must be convincing. Since this a show that question, only give the A1 mark to candidates whose working contains at least one line from the lines in braces in the scheme. Accept equivalent writings of these lines. SC: use of other variable. Accept use of another variable provided this is recovered in the final line. 			

(b) $1^{\text{st}} \text{M1} - \text{writes } \sin^2 X (\cos^2 X)^{-1} = \tan^2 X$ $2^{\text{nd}} \text{M1} - \text{uses part}$ (a) to write $\sin X - \frac{1}{\sin X} = -\frac{\cos X}{\tan X}$ $3^{\text{rd}} \text{M1} - \text{dependent on$ **both**previous M marks. Mark for finding principal values of X.

 4^{th} M1 – attempts to find other values of X in range, i.e. by adding/subtracting 180 degrees from values/clear use of tan graph/cast diagram

Final A1 – correct values of X in range. Accept any degree of accuracy as none is specified, but penalise answers given to 1sf unless more accurate values are previously seen. Ignore additional values outside of the given range, but award A0 for any additional values of X given inside the range.

Question	Scheme		Marks
12			
(a)	$\frac{4x^{2}-4x+10}{x-1)^{4}x^{3}+0x^{2}+6x-10} = 4(1)^{3}+6(1)-10$ Show $x-1)^{4}x^{3}+0x^{2}+6x-10 = 0$ $\frac{4x^{3}-4x^{2}}{-4x^{2}+6x} \therefore (x-1) \text{ is a root}$ $\frac{-4x^{2}-4x}{10x-10}$ $\frac{10x-10}{0}$ Since the remainder is 0, x-1 is a root	ws <i>x</i> – 1 is a root + conclusion	M1A1
	Other factor is $4x^2 - 4x + 10$		A1
	$(-4)^2 - 4(4)(10) = -144 < 0$, so Att $4x^2 - 4x + 10 = 0$ has no real roots $\therefore (x-1)$ is the only real root of $4x^3 + 6x - 10$	empts to show the other factor has no additional real roots + conclusion	M1A1 (5)
(b)	$d^{2} = (x-5)^{2} + (y1)^{2}$ = $(x-5)^{2} + (x^{2}+1)^{2}$ = $x^{2} - 10x + 25 + x^{4} + 2x^{2} + 1$ = $x^{4} + 3x^{2} - 10x + 26$		M1 dM1 A1 (3)
(c)	$\frac{d}{dx}(d^2) = 4x^3 + 6x - 10$ This is minimised when $x = 1$ So coordinates of closest point are (1,1).	Differentiates d^2 with respect to x Correct value of x Correct coordinates	M1 A1 A1
	$\frac{d^2}{dx^2}(d^2) = 12x^2 + 6$ When $x = 1$, $12x^2 + 6\{=18\} > 0$, so the point is a minimum bo	Differentiates d ² a second time Convincing justification + conclusion	M1 A1 (5)
			13

Question 12 Notes

(a) $1^{st} M1$ – attempts to use long division or factor theorem to show x - 1 is a factor

 $1^{st} A1$ – convincing proof + conclusion

 2^{nd} M1 – attempts to show their other factor has no real roots using the discriminant or completing the square or another method. This can be follow through their factor provided their factor has no real roots.

(b) $1^{st} M1$ – correct expression for d^2 in terms of x and y.

 2^{nd} M1 – replaces y with x^2

A1 – convincing proof. *Answer given*

(c) Final A1 – convincing justification. Must have a conclusion stating that it is a minimum (using symbols or words) since the second derivative is positive when x = 1. Need not necessarily evaluate the second derivative when x = 1, but must clearly show it is positive.