Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
1a	$KE = \frac{1}{2}mv^2$ (can be inferred from working)	M1	1.2	TBC	
	$0.5 \times 2 \times 5^2 = 25$ J (must include units)	A1	1.1b		
		(2)			
1b	GPE = mgh (can be inferred from working)	M1	1.2	TBC	
	$2 \times g \times 0.1 = 0.2g$ J or 1.96 J (must include units, allow awrt 2.0 J)	A1	1.1b		
		(2)			
1c	Using ratio to deduce, $m_2 = 1.5m_1$ o.e. Equating KE and PE correctly, $0.5m_1v^2 = m_2gh$	M1	3.1a	TBC	
	Substituting to eliminate m_2 (or m_1) $0.5m_1v^2 = 1.5m_1gh$	M1	1.1a		
	Rearrange for final answer, $h = \frac{v^2}{3g}$	A1	1.1b		
		(3)			
(7 marks)					
Notes					

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
2a	$WD = F \times d$	M1	1.2	TBC	
	$80 \times 10 = 800 \text{ J}$	A1	1.1b		
		(2)			
2b	Same block, same distance and WD is equal so force in direction of motion is equal. (can be inferred from working)	M1	2.2b	ТВС	
	$F \cos(20) = 80$ so $F = 85$ N	A1	1.1b		
		(2)			
2c	Use $WD = F \times d$ in the given formula, Power = $WD \div t$	M1	2.1	TBC	
	So Power = $(F \times d) \div t$ So Power = $F \times (d \div t) = F \times v$ because $v = d / t$	A1	2.1		
		(2)			
2di	Power was greater in part (a) as same work done in shorter time	B1	2.4	TBC	
2dii	Distance travelled vertically is zero because resultant vertical force is zero as $85 \sin 20 + \text{normal reaction} = 80 \text{ g}$	B1	2.4	TBC	
	No distance vertically, means no work done vertically, so no power output				
		(2)			
(8 marks)					
Notes					

Q	Scheme		Marks	AOs	Pearson Progression Step and Progress descriptor
3a	Work-energy pPrinciple,				TBC
	WD against resistance = loss in	n KE	M1	1.2	
	So $F_{\text{drag}} \times 100 = \frac{1}{2} \times 50 \times 25^2$	[-0]	M1	3.1a	
	So $F_{drag} = 156.25$ N		A1	1.1b	
			(3)		
3b	$156.25 \times 100 = \frac{1}{2} \times m \times (25^2 - 4^2)$ o.e. So $m = 51.3136$		M1	3.1a	TBC
			A1	1.1b	
	So $m = 51.3$ kg to 3 SF (units and correct rounding)		A1	1.1b	
			(3)		
3c	22 m/s	Diagram with key facts correctly clearly labelled	M1	3.1b	ТВС
	25 m/s 40g N	WD against F_r = Loss in ME 40gcos(30) × μ × 9	M1	1.2	
	2	$= 20(25^2 - 22^2) - 40g(9\sin(30))$	M1	3.1a	
		$\mu = 0.345$	A1	1/1b	
			(4)		
(10 marks)					
Notes					

Further Mechanics 1 Unit Test 2: Work, Energy and Power

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
4 a	Assumed perfectly smooth means no energy lost to friction so conservation of mechanical energy applies,	B1	2.2a	TBC	
	$(KE + PE)_{top of chute} = (KE + PE)_{bottom of chute}$	M1	1.2		
	Use max speed of 2 ms ⁻¹ to find max angle (can be implied)	M1	3.4		
	$0.5(1.5)(0.5)^2 + 1.5(9.8)(2\sin\theta) \le 0.5(1.5)(2)^2 \ [+0]$	M1	3.1a		
	So $\theta = 5.49^{\circ}$ is the maximum to 3 sf	A1	1.1b		
		(5)			
4 b	WD against friction = loss in ME	M1	3.1b	TBC	
	$(0.05)(1.5gcos(7))(2) = 0.5(1.5)(0.5)^2 + 1.5(9.8)(2sin(7)) - 0.5(1.5)v^2$	M1	3/1a		
	$\upsilon = 1.76$	A1	1/1b		
	$v < 2 \text{ ms}^{-1}$ so yes (arrangement still satisfies the condition)	B1	3/2a		
		(4)			
(9 marks)					
Notes					
1					

Q	Scheme		Marks	AOs	Pearson Progression Step and Progress descriptor
5a	0.2m/s ²	Diagram showing forces and decelaration (or –ve accn)	M1	3.1b	TBC
	10° V 35gN	Attempt use of $F = ma$ to find D	M1	1.1a	
		D - 35gsin(10) - 12 = 35(-0.2)	M1	3.1a	
		<i>D</i> = 64.561 awrt 64.6	A1	1.1b	
		So Power = (their D) \times 3	M1	1.2	
		Power = 194 W (to 3 sf)	A1	1.1b	
			(6)		
5b	Work against non-gravitational resistance = Loss in ME		M1	1.2	TBC
	$12(d) = 0.5(35)(1.5^2) - 35(9.8)(dsin(10))$		M1	3.1a	
	71.561(d) = 39.375		M1	1.1b	
	d = 0.55 m		A1	1.1b	
			(4)		
(10 mar)					(10 marks)
Notes					

Draft Version 1

Mark scheme

Further Mechanics 1 Unit Test 2: Work, Energy and Power

Q	Scheme		Marks	AOs	Pearson Progression Step and Progress descriptor
6a	**	As $D \alpha \upsilon$ so $D = k\upsilon$	M1	3.1a	TBC
	Drag Dαυ 0.015N	At terminal velocity ($v = 0.8$ constant) so resultant force = 0	M1	2.2b	
	υ m/s ↓ 0.0125 <i>g</i> N	0.0125g = 0.8k + 0.015 k = 1.25(0.0125g - 0.015)	M1	3.1a	
		Thus $D = (1/320)(5g - 6)$ v N	A1	1.1b	
			(4)		
6b	Energy lost is GPE only as v is constant, so KE constant		M1	3.3	TBC
	0.0125gh = 30 J				
	h = 244.90 m to 2 dp		B 1	3.4	
	Depth of lake = $244.9 + 1.1 = 24$	46 m to 3 sf			
			(2)		
(6 marks)					
Notes					