For Pearson Edexcel Level 3 GCE

AS Mathematics

Paper 1: Pure Mathematics

Churchill Paper 1A – Marking Guide

Method marks (M) are awarded for knowing and attempting to apply a valid method

Accuracy marks (A) are awarded for a correct answer, having earned the relevant method marks

(B) marks are unconditional accuracy marks (independent of method marks)

Written by Shaun Armstrong

Only to be copied for use in a single school or college having purchased a licence

© Churchill Maths Limited Licensed to Godalming College

• • ~ . .

	Churchill AS Paper 1A Marking Guide – Edexcel							
1	Grad of $L_1 = \frac{1}{3}$							
	L_2 perp so grad = $\frac{-1}{\left(\frac{1}{3}\right)} = -3$	M1						
	Grad of $L_2 = \frac{(p-1) - 10}{p - (p-3)} = \frac{p-11}{3}$	M1						
	So, $\frac{p-11}{3} = -3$							
	p - 11 = -9 p = 2	M1 A1	Total 4					
2	No real roots so $b^2 - 4ac < 0$ $(-7)^2 - 4 \times a \times 3 < 0$ 49 - 12a < 0 12a > 49	M1						
	<i>a</i> > 4 <u>1</u> 12	M1						
	Smallest integer value = 5	A1	Total 3					
3	(a) 90°	B1						
	(b) $2\mathbf{i} + 5\mathbf{j}$ $\tan \theta = \frac{5}{2}$ $\theta = \tan^{-1} \frac{5}{2}$	M1 = 68.2° (3sf) A1						
	(c) $ \mathbf{A} = \sqrt{14^2 + 2^2} = \sqrt{200}$ $ \mathbf{B} = \sqrt{2^2 + (-6)^2} = \sqrt{40}$ $ \mathbf{A} = \sqrt{5 \times 40} = \sqrt{5} \times \sqrt{40} = \sqrt{5} \times$ So $ \mathbf{A} $ is $\sqrt{5}$ times $ \mathbf{B} $	M1 B M1 A1	Total 6					
4	(a) e.g. <i>C</i> is a positive quadratic so "smil minimum value which is above <i>x</i>							
	(b) $\frac{dy}{dx} = 4x - 3$							
	At minimum, $\frac{dy}{dx} = 0$ so $4x - 3 = 0$ $x = \frac{3}{4}$	M1						
	When $x = \frac{3}{4}$, $y = \frac{5}{2}$ so $\frac{5}{2} = 2(\frac{3}{4})^2 - \frac{5}{2} = \frac{9}{8} - \frac{9}{4}$	+ <i>k</i>						
	$k = \frac{5}{2} + \frac{9}{8} =$	$=\frac{29}{8}$ M1						
	Hence crosses <i>y</i> -axis at $(0, \frac{29}{8})$	A1	Total 5					

© Churchill Maths Limited Licensed to Godalming College

5	(a)	(–7, 2) lies on circle so				
	()	$(-7)^2 + 2^2 + 2(-7) - 8(2) + 49 + 4 - 14 - 16 + c = 0$	<i>c</i> = 0		M1	
	c = -23			A1		
	(b)	b) $(x + 1)^2 - 1 + (y - 4)^2 - 16 - 23 = 0$ $(x + 1)^2 + (y - 4)^2 = 40$ $r^2 = 40$			M1	
					M1	
		radius = $\sqrt{40} = \sqrt{4 \times 10}$	$= 2\sqrt{10}$		A1	
	(c)	C	AB is diamete Pvthagoras':	er so angle $ACB = 90^{\circ}$ $AB^2 = AC^2 + BC^2$	B1	
		В	,,,	$(2 \times 2\sqrt{10})^2 = 12^2 + BC^2$ BC ² = 160 - 144 = 16	M1	
		A		BC = 4	A1	Total 8
6	(a)	$x - 4 = 4^2$			M1	
C	.,	<i>x</i> = 16 + 4 = 20			A1	
	(b)	$2 \log_{\rho} \left(\frac{3}{\rho}\right) + \log_{\rho} \left(\frac{\rho^{7}}{9}\right)$	$= \log_{\rho} \left(\frac{3}{2}\right)^2$	+ $\log_{\rho}\left(\frac{\rho^{7}}{2}\right)$	M1	
	. ,	(\boldsymbol{p}) (\boldsymbol{p}) (\boldsymbol{g})	(p)	(\mathbf{p}^{7})		
			$= \log_{p} \left(\frac{1}{p^{2}} \right)$	+ $\log_{\rho} \left(\frac{r}{9} \right)$		
			$= \log_p \left(\frac{9}{p^2} \times \right)$	$\left(\frac{p'}{9}\right)$	M1	
			$= \log_{\rho} (p^5)$	T		
			= 5		A1	Total 5
7	f(<i>x</i>)	$= 7 - 2x(x^2 - 2x + 1)$				
	f '(x)	$= 7 - 2x^3 + 4x^2 - 2x$ $= -6x^2 + 8x - 2$			M1 M1	
	Incre	easing when $f'(x) > 0$				
	-	+ 8x – 2 > 0 - 4x + 1 < 0			A1	
	•	(x-1)(x-1) < 0	/		M1	
	C.V.	$=\frac{1}{3}, 1$				
		+ve -	-ve +ve			
	$\frac{1}{3} <$	<i>x</i> < 1			A1	Total 5
8	(<i>x</i> –	$1)(x-4)(x+c) = (x+c)(x) = x^3 - 5x^2$				
	$+ cx^{2} - 5cx + 4c$ = $x^{3} + (c - 5)x^{2} + (4 - 5c)x + 4c$ [can just do x coeff]		M1 A1			
	Equ	ating coeffs of x : $4-5$			M1	
		<i>c</i> = 5	5		A1	Total 4

© Churchill Maths Limited Licensed to Godalming College

9	(a)	e.g. $n = 1$ $3n^2 + n - 1 = 3 + 1 - 1 = 3$ (prime) $n = 2$ $3n^2 + n - 1 = 12 + 2 - 1 = 13$ (prime) $n = 3$ $3n^2 + n - 1 = 27 + 3 - 1 = 29$ (prime) $n = 4$ $3n^2 + n - 1 = 48 + 4 - 1 = 51$ When $n = 4$ the value is 51 [= 3 × 17] which is not prime [other examples include $n = 7$, 10, 13 giving 153, 309, 519]	M1 A1	
	(b)	e.g. $3n^2 + n = n(3n + 1)$ when <i>n</i> is even $n(3n + 1)$ will be even × integer which is even when <i>n</i> is odd $3n$ will be odd × odd which is odd (3n + 1) will be odd + 1 which is even n(3n + 1) will be odd × even which is even	M1 M1	
		<i>n</i> must be even or odd so $3n^2 + n$ will always be even	A1	Total 5
10	(a)	1 st : Missed a solution (360°) to sin $x = 0$ in given interval 2 nd : Replaces $\frac{\cos x}{\sin x}$ with tan x but they are not equal	B1 B1	
	(b)	sin x = 3 cos x $\frac{sin x}{cos x} = 3$ tan x = 3 $x = 71.6^{\circ} or 251.6^{\circ} (1dp)$ ALL: $x = 0^{\circ}, 71.6^{\circ} (1dp), 180^{\circ}, 251.6^{\circ} (1dp), 360^{\circ}$	M1 M1 A1	Total 5
11	(a)	= 15 + 8 = 23	B1	
	(b)	f(x - 2) is a translation of 2 units in positive <i>x</i> direction So region of $f(x)$ between 0 and 2 is translated to between 2 and 4 Hence, required area = 15	B1 B1	
	(C)	e.g. Width of "bar" = 2 so average height = $21 \div 2 = 10.5$ From the diagram we can see that $f(x) > f(0)$ for all other values of $x (-2 \le x < 0)$ Hence, if $f(0) = 10.5$ or more the area would be greater than 21 so $f(0)$ must be less than 10.5	M1 A1	
	(d)	e.g. The region between $x = 2$ and $x = 4$ is a trapezium Area $= \frac{1}{2} \times 2 \times [f(2) + f(4)] = 8$ So $f(2) + f(4) = 8$ (A) The region between $x = 4$ and $x = 6$ is also a trapezium Area $= \frac{1}{2} \times 2 \times [f(4) + f(6)] = 7$ So $f(4) + f(6) = 7$ (B) (A) - (B) gives $f(2) - f(6) = 8 - 7$ So $f(2) - f(6) = 1$	M1 M1 A1	Total 8

12		$x = x + h, f(x + h) = 2(x + h)^{3}$ = 2(x ³ + 3x ² (h) + 3x(h ²) + h ³) = 2x ³ + 6x ² h + 6xh ² + 2h ³ f(x + h) - f(x)	B1	
	Gradient of chord from x to x + h = $\frac{f(x+h) - f(x)}{(x+h) - x}$ = $\frac{(2x^3 + 6x^2h + 6xh^2 + 2h^3) - 2x^3}{h}$ = $\frac{6x^2h + 6xh^2 + 2h^3}{h}$			
		$h = 6x^{2} + 6xh + 2h^{2}$ $h \rightarrow 0$, the chord becomes the tangent at (x, f(x)) $h \rightarrow 0$, terms in $h \rightarrow 0$, gradient $\rightarrow 6x^{2}$	A1	
	Hen	here, $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = 6x^2$	A1	Total 4
13	(a)	(i) When <i>t</i> = 0, <i>N</i> = 250 Number at start of 2005 = 250	B1	
		(ii) $N < 80$ so $250 - 50 \sqrt{t} < 80$ $50 \sqrt{t} > 170$ $\sqrt{t} > 3.4$		
		t > 11.56	M1	
		Hence, the year from 11 to 12 years after start of 2005 2016	A1	
		(iii) $N = 250 - 50 t^{\frac{1}{2}}$ $\frac{dN}{dt} = -25 t^{-\frac{1}{2}}$ At start of 2014, $t = 9$ $\frac{dN}{dt} = -\frac{25}{\sqrt{9}} = -\frac{25}{3}$	M1	
		Decreasing by 8.33 (3sf) per year	A1	
	(b)	<i>t</i> = 0, <i>N</i> = 250 so $250 = a e^{0}$ <i>a</i> = 250 <i>t</i> = 4, first model gives <i>N</i> = 250 - 50 $\sqrt{4}$ = 150 In second model 150 = 250e ^{-4b}	B1	
		$e^{-4b} = 150 \div 250 = \frac{3}{5}$		
		$-4b = \ln \frac{3}{5}$	M1	
		$b = -\frac{1}{4} \ln \frac{3}{5} = 0.127706 = 0.128$ (3sf)	A1	Total 8

14	(a)	 e.g. (8, 0) because it is an odd function [changing the sign of <i>x</i> (–8 to 8) changes the sign of each term and therefore changes the sign of <i>y</i> (0 stays as 0)] 	B1
	(b)	$= \frac{4}{\left(\frac{4}{3}\right)} x^{\frac{1}{3}+1} - \frac{1}{2}x^2 + c$	M1 A1
		$= 3 x^{\frac{4}{3}} - \frac{1}{2} x^2 + c$	A1
		4 1 0	

(c) Area above
$$OB = \left[3 x^{\frac{4}{3}} - \frac{1}{2} x^2\right]_0^8$$

= $(3 \times 8^{\frac{4}{3}} - \frac{1}{2} \times 8^2) - (0)$ M1
= $48 - 32 = 16$
Shaded area = $2 \times 16 = 32$ M1 A1 Total 7

15 (a)
$$= 4^7 + 7 \times 4^6 \times \left(-\frac{1}{x}\right) + \frac{7 \times 6}{2} \times 4^5 \times \left(-\frac{1}{x}\right)^2 + \dots$$
 M1
 $= 16384 - \frac{28672}{x} + \frac{21504}{x^2} + \dots$ A2

(b)
$$4 - \frac{1}{x} = 3.95$$

 $\frac{1}{x} = 4 - 3.95 = 0.05 = \frac{1}{20}$
 $x = 20$ B1

(c)
$$3.95^7 \approx 16384 - \frac{28672}{20} + \frac{21504}{20^2}$$
 M1
= 15004.16
 $3.95^7 = 15003.053...$
Estimate is accurate to 4 significant figures A1 Total 6

16 (a)
$$P = 2y + x + \frac{1}{2} \times \pi \times x$$

 $= 2y + x(1 + \frac{1}{2}\pi)$
Area = $xy = 100$
Hence $y = \frac{100}{x}$
Sub into P : $P = 2(\frac{100}{x}) + x(1 + \frac{1}{2}\pi)$
 $P = \frac{200}{x} + x(1 + \frac{1}{2}\pi)$ A1

(b)
$$P = 200x^{-1} + x(1 + \frac{1}{2}\pi)$$

 $\frac{dP}{dx} = -200x^{-2} + (1 + \frac{1}{2}\pi)$ M1 A1
For minimum, $-200x^{-2} + (1 + \frac{1}{2}\pi) = 0$
 $x^{-2} = \frac{1}{200}(1 + \frac{1}{2}\pi)$
200

$$x^{2} = \frac{200}{1 + \frac{1}{2}\pi}$$

$$x = \sqrt{\frac{200}{1 + \frac{1}{2}\pi}} = 8.820...$$
M1

Minimum
$$P = \frac{200}{8.82} + 8.82(1 + \frac{1}{2}\pi)$$

= 45.3501... = 45.4 cm (3sf) A1
 $\frac{d^2 P}{dx^2} = 400x^{-3}$

When
$$x = 8.820..., \frac{d^2 P}{dx^2} = 0.582...$$

As $\frac{d^2 P}{dx^2} > 0$, it is a minimum A1 Total 8

17	(a)		(3x - 1) = 0 $-\frac{3}{4}$ or $\frac{1}{3}$	M1 A2
	(b)	(i)	$12 \sin^{2} A - 5 \cos A = 9$ $12(1 - \cos^{2} A) - 5 \cos A = 9$ $12 - 12 \cos^{2} A - 5 \cos A = 9$ $12 \cos^{2} A + 5 \cos A - 3 = 0$	M1
			From (a) , $\cos A = -\frac{3}{4}$ or $\frac{1}{3}$	A1
			$\cos A = -\frac{3}{4}$: $A = 180 - 41.41$ or $180 + 41.41$ A = 138.59 or 221.41	M1
			$\cos A = \frac{1}{3}$: $A = 70.53$ or $360 - 70.53$	
			A = 70.53 or 289.47 A = 70.5°, 139°, 221°, 289° (all 3sf)	A1
		(ii)	Equation is same as (i) with <i>A</i> replaced by $3B$ Hence $3B = 70.53$, 138.59, 221.41 (no more in interval) $B = 23.5^{\circ}$, 46.2°, 73.8° (all 3sf)	M1 A1 Total 9

TOTAL FOR PAPER: 100 MARKS