SPECIMEN MATERIAL

A-level COMPUTER SCIENCE

Paper 1

Additional Questions

IMPORTANT NOTES

These questions focus primarily on topics that were not covered by the AQA AS and A-level Computing specifications, introduced in 2009. It is hoped that teachers will find questions on these new topics to be particularly useful.

Many example questions on topics that are common to the new and old specifications can be found on past papers for COMP1, 2 and 3 on our website. Past papers that are more than three years old can be accessed via e-AQA.

This document contains additional questions; it is not intended to be treated as a complete paper. The questions do not provide balance coverage of the specification or the assessment objectives in the same way that a fully live paper would do.

7517A/B/C/D/E

0 1	Table 1 contains a list of problems.
	Table 1
	LetterProblemAFinding the shortest route that visits all nodes in a graph exactly onceBFinding the shortest path between two nodes in a graphCFinding an item in a large unordered listDFinding a route between two nodes in a graphEFinding out if any program will eventually stop if given a particular input
01.1	State the letter (A-E) that corresponds to the problem that Dijksta's Algorithm is designed to solve.
	Write the letter corresponding to the correct answer in the box provided in your
	[1 mark]
0 1 . 2	State the letter (A-E) that corresponds to an intractable problem.
	Write the letter corresponding to the correct answer in the box provided in your Electronic Answer Document.
	[1 mark]
0 1 . 3	Explain the significance of problem E for computation. [1 mark]

0 2 Figure 1 contains pseudo-code for a recursive merge sort algorithm. Figure 2 contains pseudo-code for an algorithm called Merge that is called by the merge sort algorithm in Figure 1.

Figure 1

Figure 2

```
FUNCTION Merge(L1, L2)
 L3 ← []
 WHILE Len(L1) > 0 AND LEN(L2) > 0
   IF L1[1] < L2[1] THEN
    ELSE
    L3 \leftarrow Append(L1[1], L3)
    ENDIF
 ENDWHILE
 WHILE Len(L1) > 0
   L3 < Append(L1[1], L3)
   L1 ← RemoveFirstItem(L1)
 ENDWHILE
 WHILE Len(L2) > 0
   L3 < Append(L2[1], L3)
   ENDWHILE
 RETURN L3
ENDFUNCTION
```

The RemoveFirstItem function takes a list and returns a list that contains all the items in the original list except the first one. For example, if Names is the list ["Gemma", "Richard", "Georgina", "Margaret"] then the function call RemoveFirstItem (Names) will return the list ["Richard", "Georgina", "Margaret"].

The Len function takes a list and returns the number of items that are in the list. For example, if Names is the list ["Gemma", "Richard", "Georgina", "Margaret"] then the function call Len (Names) will return the value of 4. The Append function takes an item and a list and returns a list that has all the items from the original list followed by the item. For example, if Names is the list ["Gemma", "Richard", "Georgina", "Margaret"] then the function call Append ("Matt", Names) will return the list ["Gemma", "Richard", "Georgina", "Margaret"] then the function call Append ("Matt", Names) will return the list ["Gemma", "Richard", "Georgina", "Margaret"]. The first item in the list has an index of 1.							
	1 Wr	nat is meant by a	a recu	rsive s	subrou	utine?	
	•						[1 mark]
02.	2 Wh	nat is the base ca	ase fo	or the s	subroi	utine MergeSort?	[1 mark]
02.	0 2 . 3 Complete Table 1 to show the result of tracing the Mergesort algorithm shown in Figure 1 with the function call MergeSort (ListToSort, 1, 5). ListToSort is the list [6, 3, 4, 8, 5]. The first six rows and the Call number column have been completed for you. Copy your answer in Table 1 into the Electronic Answer Document. Table 1						
		Call number	S	Ε	Μ	List returned	
		1	1	5	3		
		2	1	3	2		
		3	1	2	1	[6]	
		4	1	2	1	[0]	
		5	2	2	I	[3]	
		3	2	<u> </u>			
		2					
		6					
		2					
		1					
		7					
		8					
		7					
		9					
		7					
		1					
							[6 marks]

02.4	What is the time complexity for the MergeSort algorithm shown in Figure 1?
	[1 mark]
	A stack frame is used with subroutine calls.
025	State two items that will be stored in a stack frame for a subroutine call.
	[2 marks]
	When the subroutine call MergeSort (ListToSort, 1, 5) is made four is the largest number of stack frames, generated by this subroutine call, that will be on the stack at any one time.
02.6	Explain why there will be three occasions when there will be four stack frames on the
	<pre>stack when the subroutine call MergeSort(ListToSort, 1, 5) is made. [2 marks]</pre>
	Turn over for the next question

0 3	Three different types of relationship that can exist between objects in object-orientated programming are association aggregation , composition aggregation and inheritance .
03.1	State one reason why many programmers follow the design principle "favour composition over inheritance". [1 mark]
	An object-oriented program is being written to store details about clients at an estate agency. Clients can be either sellers or prospective buyers.
	A class Client has been created and two subclasses, Seller and Buyer are to be developed. A Location class has been created to store details about an address (eg postcode and street name)
	The Client class has data fields Name, Address and DOB.
	Part of the class definition for Client class is:
	<pre>Client = Class { Private: Name: String Address: Location DOB: Date Public: Function GetName Function GetDOB Function GetAddress Procedure SetDetails }</pre>
	 A Buyer has the following additional data fields: NoOfBedroomsRequired: stores the minimum number of bedrooms that the buyer requires in the house they purchase. OffStreetParking: stores a value indicating if the buyer requires off- street parking or not. AreaDesired: the name of the town/village/estate that the buyer is looking to purchase a house in.
03.2	Write the class definition for Buyer. [4 marks]
03.3	Describe the relationships association aggregation and composition aggregation , making it clear what the difference between the two is. [2 marks]
03.4	Explain how the Client class uses association aggregation and why it was considered more appropriate to use this type of relationship than composition aggregation. [2 marks]

Γ

0 4	Figure 3 contains a list of different	sets.	
	F	Figure 3	
	S S S S S S S	$51 = \{a, b\}$ $52 = \{a, b, c\}$ $53 = \{0, 1, 2\}$ $54 = \{a, ab\}$ $55 = \{a, b, c\}$ $56 = \{c\}$	
04.1	What is a set?	[2	marks]
04.2	State the name of a set listed in Fig	gure 3 that has the same cardinality as so [et S2. 1 mark]
04.3	State the name of a set listed in Fig	gure 3 that is a subset of set S2 but not a	a proper
	Subset of 52.	I	1 mark]
04.4	Describe how set S6 could be crea with two of the other sets listed in F	ited using the difference set operation tog	gether
		[1 mark]
04.5	What is the Cartesian product of se	ets S1 and S6?	1 mark]
	A regular expression is a way of de	escribing a set.	
04.6	Write down two different regular ex	xpressions that describe the set S4. [2	marks]

0 5	A designer jewellery company have a scheme where people can pay a fee to borrow one or more items of jewellery for a week. This scheme is often used by actors and musicians attending awards ceremonies and parties.					
	A computer program running on the jewellery company's server uses a d to store details about who is currently borrowing which item of jewellery. dictionary is a data structure that contains a collection of key-value pairs value is accessed via the associated key. The key used in the dictionary catalogue number of the item of jewellery and the key is the name of the	lictionary A where the is the client.				
	The current state of the dictionary is shown in Figure 4.					
	Figure 4					
	{1045 : 'Clark Gable', 1050 : 'Ingrid Bergman', 1052 : 'Katherine Hepburn 'Lauren Bacall'}	', 2012 :				
05.1	What value will be returned by a lookup operation using the key 1052?	[1 mark]				
	A hash table has been used to implement the dictionary. The hashing all that has been used is Catalogue Number MOD 100.	gorithm				
0 5 . 2	What value is returned by the hashing function when it is applied to the c	atalogue				
	number 1052 ?	[1 mark]				
0 5 . 3	Explain how a value is stored in a hash table.	[4 marks]				

Г

	When a large number of the possible positions in a hash table are filled it inefficient; rehashing is often used to sort out this problem.	becomes
05.4	Describe the steps involved in rehashing.	[3 marks]
	The jewellery company would also like to be able to complete lookup opera based on the client name to find out which items of jewellery are being bor particular client.	ations rowed by a
0 5 . 5	Explain how the jewellery company could set up a dictionary with the name client as the key and the catalogue numbers as the value.	e of the
		[1 mark]