

Mark Scheme (Results) Summer 2009

GCE

GCE Chemistry (6CH01/01)

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- · Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- \cdot There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- · All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- · Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- · When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- · Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

- 1 / means that the responses are alternatives and either answer should receive full credit.
- 2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
- 3 [] words inside square brackets are instructions or guidance for examiners.
- 4 Phrases/words in **bold** indicate that the meaning of the phrase or the actual word is **essential** to the answer.
- 5 OWTTE means or words to that effect

6 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- · show clarity of expression
- · construct and present coherent arguments
- · demonstrate an effective use of grammar, punctuation and spelling.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated "QWC" in the mark scheme BUT this does not preclude others.

6CH01/01

Section A

Question Number	Correct Answer	Reject	Mark
1	A		1
		1	
Question Number	Correct Answer	Reject	Mark
2	С		1
Question Number	Correct Answer	Reject	Mark
3	С		1
Question Number	Correct Answer	Reject	Mark
4	В		1
Question Number	Correct Answer	Reject	Mark
5	D		1
Question Number	Correct Answer	Reject	Mark
6	В		1
Question Number	Correct Answer	Reject	Mark
7	В		1
	•	·	
Question Number	Correct Answer	Reject	Mark
8	D		1
		·	
Question Number	Correct Answer	Reject	Mark
9	A		1
		·	
Question Number	Correct Answer	Reject	Mark
10	A		1
•			,
Question Number	Correct Answer	Reject	Mark
11	В		1
	1	•	
Question Number	Correct Answer	Reject	Mark
12	A		1
-	•		ı.

_			
Question	Correct Answer	Reject	Mark
Number			
13	C		1
		•	·
Question	Correct Answer	Reject	Mark
Number			
14	В		1
	•	<u> </u>	<u> </u>
Question	Correct Answer	Reject	Mark
Number			
15	A		1
			<u> </u>
Question	Correct Answer	Reject	Mark
Number			
16	В		1
		<u> </u>	-
Question	Correct Answer	Reject	Mark
Number			
17	D		1
_			<u> </u>
Question	Correct Answer	Reject	Mark
Number			
18	С		1
_			<u> </u>
Question	Correct Answer	Reject	Mark
Number			
19	С		1
	1	1	L
Question	Correct Answer	Reject	Mark
Number			7
20	D		1
	_ <u> </u>		

$Section \ B$

Question Number	Correct Answer	Reject	Mark
21 (a)(i)	Easier to transport / easier to store / less space / less volume needed for storage / easier to handle / easier to transfer /GNORE references to "safety" Accept Denser/cheaper to transport OWTTE	Just "cost"	1

Question Number	Correct Answer	Reject	Mark
21 (a)(ii)	skeletal formula (1)		4
	Name: butane (1) Stand alone		
	skeletal formula (1)		
	Name: methylpropane OR 2-methylpropane (1) IGNORE incorrect punctuation [e.g. extra/missing hyphens, etc.] Stand alone		
	IGNORE displayed formulae if also given with skeletal formulae		
	if 2 correct displayed formulae are given max 1 out of 2 for the structures		

Question Number	Correct Answer	Reject	Mark
21 (a)(iii)	(Structural) isomers		1

Question Number	Correct Answer	Reject	Mark
21 (b)(i)	$Cl_2 \rightarrow Cl^{\bullet} + Cl^{\bullet} /$ $Cl_2 \rightarrow 2Cl^{\bullet}$ (1) (U.V.) light / sunlight (1) Must show the dots $^{\bullet}$ $IGNORE$ any subsequent propagation steps in (b)(i)	heat alone	2

Question Number	Correct Answer	Reject	Mark
21 (b)(ii)	$C_3H_8 + Cl^{\bullet} \rightarrow C_3H_7^{\bullet} + HCl$ (1)		2
	C_3H_7 + $Cl_2 \rightarrow C_3H_7Cl$ + Cl (1)		
	Must show the dots •		

Question Number	Correct Answer	Reject	Mark
21 (b)(iii)	C_3H_7 * + Cl * \rightarrow C_3H_7Cl		1
	OR		
	Cl· + Cl· → Cl₂		
	OR		
	$C_3H_7^{\bullet} + C_3H_7^{\bullet} \rightarrow C_6H_{14}$		
	Must show dots in termination step		

Question	Correct Answer	Reject	Mark
Number			
21 (c)(i)	Alkene / triene		1
	Accept		
	Diene		
	Carbon-carbon double bond		

Question Number	Correct Answer	Reject	Mark
21 (c)(ii)	From: Red / brown / orange / yellow or combinations of these colours To: colourless both colours needed	"clear" instead of colourless	1

Question Number	Correct Answer	Reject	Mark
21 (c)(iii)	Electrophilic (1) addition (1)		2

Question Number	Correct Answer	Reject	Mark
21 (c)(iv)	Calculation:		2
	0.01 mol myrcene reacts with 0.03 mol $H_{\rm 2}$		
	OR 1 mol myrcene reacts with 3 mol H ₂		
	Structural formula: (1)		
	(CH ₃) ₂ CH(CH ₂) ₃ CH(CH ₃)CH ₂ CH ₃		
	OR H		
	Accept Fully displayed formula/skeletal formula		
	Mark calculation and structural formula independently.		

Question Number	Correct Answer	Reject	Mark
21 (d)	repeat unit (1) continuation bonds shown (but these bonds do not have to cut through the brackets) (1) n not essential IGNORE the position of "n" relative to the repeat unit (e.g. can be written as a superscript)		2

Question Number	Correct Answer			Reject	Mark
22 (a)(i)					3
	Energy change	Letter	Δ <i>H</i> /kJ mol ⁻¹		
	Lattice energy for sodium chloride	E	-775		
	Enthalpy change of atomization of sodium	С	+109		
	Enthalpy change of atomization of chlorine	A	+121		
	First ionization energy of sodium	В	+494		
	First electron affinity of chlorine	F			
	Enthalpy change of formation of sodium chloride	D	-411		
	6 correct letters (25 or 4 correct letters) 3 or 2 correct letters 1 or 0 correct letters	ers (2) ers (1)			

Question Number	Correct Answer	Reject	Mark
22 (a)(ii)	Expression such as: D = C + B + A + F + E - 411 = + 109 + 494 + 121 + F + (- 775) F = - 411 - 109 - 494 - 121 + 775		2
	(1) Answer: F = -360 (kJ mol ⁻¹) (1) Check empty box in 22(a)(i), as answer may be written there. Answer must follow from working Correct answer only (2) Correct answer with some consistent working (2)		

Question Number	Correct Answer	Reject	Mark
22 (b)(i)	(Bonding in NaCl) 100% ionic	'Molecule' (0)	1
	OR		
	almost completely ionic		
	OR		
	no covalent character/(very) little covalent character		

Question	Correct Answer	Reject	Mark
Number			
22 (b)(ii) QWC	Agl has (a degree of) covalent character (1) due to polarization or distortion (of		2
	the anion) (1)		

Question Number	Correct Answer	Reject	Mark
22 (c) QWC	(outermost) electron further from the nucleus/atoms get bigger/more shells (outermost) electron more shielded (by inner shells of e) (force of) attraction between nucleus and (outermost) electron decreases (down the Group) OR (outermost) electron held less strongly (down the Group) OR (outermost) electron becomes easier to remove (down the Group) IGNORE any references to(effective) nuclear charge or more protons.	"ions" get bigger (down Group)	2

Question Number	Correct A	nswer		Reject	Mark
23 (a)	element	structure	bonding		3
	sodium	Giant	metallic		
	silicon	Giant (atomic)/ macromolecular/ giant molecular	covalent		
	sulfur	simple / small molecules OR (simple) molecular OR S ₈ molecules	covalent or van der Waals' forces/ London forces/ intermolecular forces/dispersion forces/induced- dipole forces		
	6 boxes co 5,4 boxes 3,2 boxes	ne word "lattice" (orrect (3) correct (2) correct (1) correct (0)	OR "crystalline"		

Question Number	Correct Answer	Reject	Mark
23 (b)	Si: covalent bonds / many bonds/ strong bonds (between atoms) (1) S: weak forces /van der Waals' forces/London forces/dispersion forces/intermolecular forces/induced-dipole forces (1) (need to be overcome)	any reference to intermolecular forces in Si suggestion that covalent bonds are broken	2

Question Number	Correct Answer	Reject	Mark
23 (c) QWC	Cations/ions decrease in size (from Na ⁺ to Al ³⁺) OR charge increases/charge density on (cat)ions increases/ "effective nuclear charge" increases (from Na ⁺ to Al ³⁺) (1)	atoms decrease in size	2
	more e ⁻ (per atom in 'sea' of delocalized electrons) / more delocalized electrons	any mention of "molecules"/ "covalent bonds"/ "van der Waals' forces"/ "ionic bonds" (0) overall	
	OR (force of) attraction between (cat)ions/nucleus and (delocalised) electrons increases (from Na to Al) (1)		
	IGNORE "nuclear charge increases"/ "increasing no. of protons"		

Question Number	Correct Answer	Reject	Mark
23 (d)(i) QWC	 Add MgO to acid/react MgO with acid/dissolve MgO in acid (1) [NOTE: mention of heating not required. IGNORE water bath/reflux] Filter (1) 		5
	 Heat/boil filtrate /MgSO₄ solution (until volume reduced by half)	Just "warm" the filtrate/MgSO₄ solution	
	then) Leave to dry/pat dry/dry between filter papers/put in an oven/put in a desiccator/dry the crystals (1) IGNORE any washing of crystals immediately prior to drying them	Use of a desiccant (added to crystals)	

Question	Correct Answer	Reject	Mark
Number			
23 (d)(ii)	Rinse with (plenty of) water /use a damp cloth or damp (paper) towel / add a (named) weak alkali (e.g. solid or aqueous sodium hydrogencarbonate)	Any named strong alkali/just "strong alkali"	1

Question Number	Correct Answer	Reject	Mark
23 (e)(i)	Insoluble strontium sulfate/insoluble SrSO ₄ (forms on the strontium carbonate)		1

Question Number	Correct Answer	Reject	Mark
23 (e)(ii)	$Sr^{2^{+}}(aq) + SO_{4}^{2^{-}}(aq) \rightarrow SrSO_{4}(s)$ species (1) state symbols (1) 2nd mark is cq on first mark $Sr^{2^{+}}(aq) + 2Cl^{-}(aq) + 2Na^{+}(aq) + SO_{4}^{2^{-}}(aq) \rightarrow SrSO_{4}(s) + 2Cl^{-}(aq) + 2Na^{+}(aq)$ scores (1) $SrCl_{2}(aq) + Na_{2}SO_{4}(aq) \rightarrow SrSO_{4}(s) + 2NaCl(aq)$		2
	scores (1)		

Question Number	Correct Answer	Reject	Mark
24 (a)(i)	<u>2.90</u> = 0.05(00) (mol) 58		1
	correct answer only (1)		

Question Number	Correct Answer	Reject	Mark
Number			
24 (a)(ii)	200 x 4.18 x 58.2 = 48655 (J) OR 48.655 kJ (1) for correct Δ <i>T</i> (1) <i>IGNORE</i> sf <i>IGNORE</i> signs at this stage		2

Question Number	Correct Answer	Reject	Mark
24 (a)(iii)	- 48655 = -973 100 (J mol ⁻¹) 0.0500 = -973 kJ mol ⁻¹ (3 s.f.) / -973000 J mol ⁻¹ (3 s.f.) answer (1) sign and units (1) [Do not award sign and units mark if units given are just "kJ" or just "J"] three sig figs (1) CQ on (a)(i) & (ii)		3

Question Number	Correct Answer	Reject	Mark
24 (b)(i)	Heat loss/energy loss Accept Incomplete combustion OWTTE IGNORE "experimental error"/ "departure from standard conditions"	Anything related to "average values" (0)	1

Question Number	Correct Answer	Reject	Mark
24 (b)(ii)	Difference: less exothermic / less negative IGNORE "higher" if written with less exothermic/less negative Accept just "lower"/ "less" (1)	Just "higher" (0)	2
	Justification: energy taken in to form gas/energy required to form gas/energy needed to form gas/takes heat in to form gas/heat required to form gas Or reverse argument Mark these two points independently	Just "H ₂ O(g) is not water's standard state"	

Question Number	Correct Answer	Reject	Mark
24 (c)(i)	Enthalpy / energy / heat (energy) change (when) one mole of a substance/one mole of a compound (1)	"energy required" OR "energy released" "one mole of product(s)"	3
	is formed from its elements (in their most stable states) (1) 298K / 25°C / a stated temperature AND 1 atm pressure/100 kPa (1) IGNORE any references to	is formed from its reactants room temperature/rtp	
	concentration		

Question Number	Correct Answer	Reject	Mark
24 (c)(ii)	Cycle or formula expression		3
	• correct expression or cycle (1) • evidence for doubling both ΔH_c [C] and ΔH_c [H ₂] (1) • answer (1) Correct answer with no working scores full marks		