Surname	Othe	er names
Edexcel GCE	Centre Number	Candidate Number
Chemistr	'V	
Advanced Subsidi Unit 2: Application	ary	es of Chemistry
Advanced Subsidi	of Core Principle Morning	es of Chemistry Paper Reference 6CH02/01

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box . If you change your mind, put a line through the box \(\otimes \) and then mark your new answer with a cross \.

1	10.0 cm ³ of 0.250 mol dm ⁻³ potassium hydroxide solution was placed in a conical flask and titrated with 0.200 mol dm ⁻³ hydrochloric acid solution, using phenolphthalein as an indicator.			
	(a) Wh	at c	olour would phenolphthalein turn at the end-point in this titration?	
		•	Calcurdada	(1)
	3.1	A	Colourless	
	1 10	B	Pink	
	-24	\mathbf{C}	Yellow	
	174	D	Orange	
	(b) The		st piece of apparatus to accurately measure out 10.0 cm ³ is a	(1)
	5.4	A	pipette.	
	1	B	burette.	
	$ \hat{b}_{j,k}^{(i)} \rangle $	\mathbf{C}	syringe.	
	1	D	measuring cylinder.	
		at v -poi	olume of 0.200 mol dm ⁻³ hydrochloric acid solution was added by the int?	(1)
		A	8.00 cm^3	
		В	10.00 cm^3	
	7	\mathbf{C}	12.50 cm^3	
		D	25.00 cm ³	
300000000000000000000000000000000000000	***************************************		(Total for Question 1 = 3 mar	·ks)
	Use this space for any rough working. Anything you write in this space will gain no credit.			

2	Which of these metal hydroxides is the most soluble in water?				
		A	Barium hydroxide		
		В	Calcium hydroxide		
		C	Magnesium hydroxide		
		D	Strontium hydroxide		
Westerman		*****	(Total for Question 2 = 1 mark)		
2	XX71 ' 1	C			
3	Which		these metals will give a lilac flame colour?		
			Sodium		
		В	Calcium		
		C	Potassium		
		D	Magnesium		
descriptions		***************************************	(Total for Question 3 = 1 mark)		
4	Which	of.	hage is a tention, all all 10		
4	WIIICII		hese is a tertiary alcohol?		
			3-methylpentan-2-ol		
		В	Pentan-2-ol		
		C	Pentan-3-ol		
		D	2-methylpentan-2-ol		
***************************************			(Total for Question 4 = 1 mark)		
5	Which	of t	hese statements about fluorine is not correct?		
			It is a gaseous element at room temperature and pressure.		
			It can react with chloride ions to form chlorine.		
		C	It forms salts with Group 1 metals.		
			It is less electronegative than chlorine.		
***************************************			(Total for Question 5 = 1 mark)		
	Use thi	is sį	pace for any rough working. Anything you write in this space will gain no credit.		

6 What is the oxidation number of oxygen in dioxygen difluoride, O₂F₂?

 \square A -1

 \square **B** -2

C +1

 \square **D** +2

(Total for Question 6 = 1 mark)

7 Which of these four molecules, PCl₃, CO, CO, and CCl₄, are polar?

☐ A All four

☐ B PCl₃ and CO

☐ C CO and CCl₄

D PCl₃ and CO₂

(Total for Question 7 = 1 mark)

8 Which intermolecular forces exist between molecules of ethoxyethane?

☐ A Instantaneous dipole – induced dipole only

☐ **B** Permanent dipole – permanent dipole only

☐ C Instantaneous dipole – induced dipole and hydrogen bonds

☐ **D** Instantaneous dipole — induced dipole and permanent dipole — permanent dipole

(Total for Question 8 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

9	The following liquids all have the same number of electrons in each molecule. Which one is likely to have the lowest boiling point?		
		A	CH ₃ CH ₂ CH ₂ CH ₂ OH
		В	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃
		C	CH ₃ C(CH ₃) ₂ CH ₃
		D	CH ₃ CH(CH ₃)CH ₂ CH ₃
Anadalasanaga	compression from the compression of the compression		(Total for Question 9 = 1 mark)
10	Which	of t	hese is likely to be the best solvent for cyclohexanol?
			H ₂ O(1)
		В	CH ₃ COCH ₃ (I)
	1,4	C	NaCl(aq)
	7	D	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ (1)
Walletagarean			(Total for Question 10 = 1 mark)
11	The abi	t wl A B	of a liquid to flow is linked to the strength of its intermolecular forces. nich of these liquids flows the slowest when poured. Propane-1,2,3-triol Propane-1,2-diol Pentane
		D	Butane
		***************************************	(Total for Question 11 = 1 mark)
12	What ty	pe	of species forms when a bond breaks homolytically?
		A	Nucleophile
		В	Electron
		C	Electrophile
		D	Free radical
************		***************************************	(Total for Question 12 = 1 mark)

13 In the reaction between Ag ⁺ (aq) ions and Fe ²⁺ (aq) ions, what would be the effect of increasing the concentration of Ag ⁺ (aq) ions?					
	$Ag^{+}(aq) + Fe^{2+}(aq) \Longrightarrow Fe^{3+}(aq) + Ag(s)$				
	A	Rate of reaction increases, yield of Fe ³⁺ (aq) stays the same.			
	B Rate of reaction increases, yield of Fe ³⁺ (aq) decreases.				
	C Rate of reaction decreases, yield of Fe ³⁺ (aq) stays the same.				
	D	D Rate of reaction increases, yield of Fe ³⁺ (aq) increases.			
		(Total for Question 13 = 1 mark)			
14 3771-1-1	277272				
		of these reactions is not a disproportionation reaction?			
		$2H_2O_2(aq) \rightarrow O_2(g) + 2H_2O(1)$			
		$S_2O_3^{2-}(aq) + 2H^+(aq) \rightarrow SO_2(g) + S(s) + H_2O(1)$			
		$Cl_2(aq) + 2Br^-(aq) \rightarrow 2Cl^-(aq) + Br_2(aq)$			
	D	$2Cu^{+}(aq) \rightarrow Cu(s) + Cu^{2+}(aq)$			
Townson consistence of the second sec	***************************************	(Total for Question 14 = 1 mark)			
15 Molec	ules	absorb IR radiation because			
	☐ A they change their polarity when they vibrate.				
	В	they change their velocity when they vibrate.			
	C	they change their magnetic field when they vibrate.			
		(Total for Question 15 = 1 mark)			
16 How many of the following molecules will absorb IR radiation? H ₂ O N ₂ CH ₄ O ₂ CO ₂					
	A	Two			
		Three			
		Four			
		Five			
		(Total for Question 16 = 1 mark)			

propan-1-	7 Infrared (IR) spectra can be used to follow the progress of reactions involving propan-1-ol and propan-2-ol. Some absorption ranges by chemical bonds in the IR spectrum are given below.		
1	O—H stretching in alcohols at 3750 – 3200 cm ⁻¹		
2	C=O stretching in aldehydes at 1740 – 1720 cm ⁻¹		
3	C=O stretching in ketones at 1700 – 1680 cm ⁻¹		
4	C=O stretching in carboxylic acids at 1725 – 1700 cm ⁻¹		
(a) To ider oxidize	ntify the formation of the product when propan-1-ol has been partially ed, you can look for absorptions in the IR spectrum at absorption range		
□ A	1		
□ B			
□ C	3		
	4		
(b) To mor look fo	nitor whether all of the sample of propan-2-ol has been oxidized, you can		
\Box A	a lack of absorptions in the IR spectrum at 1.		
	a lack of absorptions in the IR spectrum at 2.		
	absorptions in the IR spectrum at 3.		
	absorptions in the IR spectrum at 4.		
	accorptions in the III opecitain at 4.		
	(Total for Question 17 = 2 marks)		
	TOTAL FOR SECTION A = 20 MARKS		
Use this space for any rough working. Anything you write in this space will gain no credit.			

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

		Answer ADE the questions. Write your answers in the spaces provided.	
18	This que	stion is about the reactions and properties of some halogenoalkanes.	
		the reagents and conditions needed to convert the following halogenoalkanes he named product.	
	(i)	1-bromobutane into butan-1-ol	
			(2)
			•••••••••••••••••••••••••••••••

	(ii)	1-iodobutane into butylamine	
	(11)		(2)

	(iii) 2	2-chloropropane into propene	(2)
			(see)
		roethane can be prepared by reacting ethanol with potassium chloride in the nce of concentrated sulfuric acid.	
	Expla	ain why a similar reaction using potassium iodide and concentrated sulfuric acid	
	shoul	d not be used to prepare iodoethane.	/ ** \
			(2)
•			Marian Carlotte Commences
******	*******************		

(i)	Give the systematic name of CF ₂ ClBr.	
		Special Control
(ii)	Draw the skeletal formula of CF ₃ CHF ₂ .	(*)
(iii)	Suggest TWO reasons to explain how these compounds can help put out fires.	(2)
*(iv)	Explain why fire retardants containing some halogenoalkanes, such as CF ₂ ClBr,	
	are being phased out. Suggest a reason why the scientific community still supports the use of fire retardants containing CF ₃ CHF ₂ .	(4)
	are being phased out. Suggest a reason why the scientific community still supports the use of fire	
	are being phased out. Suggest a reason why the scientific community still supports the use of fire	

10	100-	3 - C 1-4'	
19		n ³ of a solution containing Cu ²⁺ (aq) ions was added to excess potassium iodide n and the following reaction occurred.	
		$2Cu^{2+}(aq) + 4I^{-}(aq) \rightarrow 2CuI(s) + I_{2}(aq)$	
	(a) Wh	at happens to the Cu ²⁺ (aq) during this reaction? Justify your answer.	
			(2)
			······i
			e)
	con	of the mixture containing iodine was titrated using sodium thiosulfate solution of centration 0.200 mol dm ⁻³ . The volume of sodium thiosulfate solution added at end-point was 12.75 cm ³ .	f
		equation for the reaction is	
		$I_2(aq) + 2Na_2S_2O_3(aq) \rightarrow Na_2S_4O_6(aq) + 2NaI(aq)$	
	(i)	The end-point is shown most effectively using an indicator. State a suitable	
		indicator and the colour change you would expect to see at the end-point.	(2)
		Indicator	(dea 3)
		Colour change at end-point	
	(ii)	Calculate the number of moles of iodine in the solution.	(2)
			(m)

 *(iii) Use your answer from (ii), and the equation for the reaction between Cu²+(aq) and I⁻(aq), to calculate the concentration of the Cu²+(aq) in the original sample of solution. Give your answer to three significant figures and justify why this is an 	
appropriate level of accuracy.	(3)
	(**)
(iv) The whole of the solution containing iodine was used in one titration. Explain how this affects the reliability of your answer to (iii).	
	(1)
	••••
(Total for Question 19 = 10 ma	rks)

20	This question is about boron and nitrogen compounds.	
	(a) Draw and name the shape of a boron trifluoride, BF ₃ , molecule. Suggest the FBF bond angle.	70.
		(3)
	Name of shape	
	FBF bond angle	
	(b) Ammonia has the formula NH ₃ . Its HNH bond angle is less than the FBF bond angle in boron trifluoride.	gle
	(i) Estimate the HNH bond angle in NH ₃ .	(1)
		(*)
	(ii) Explain why the HNH bond angle is less than that for FBF.	
		(%)
	(iii) Name the strongest intermolecular force between BF ₃ molecules.	
		("")
	(iv) Name the strongest intermolecular force between NH ₃ molecules.	(**)

- (c) Ammonia will react with oxygen in the presence of a platinum catalyst at 750 °C forming water and nitrogen(II) oxide, NO.
 - (i) What is the oxidation number of nitrogen in ammonia, NH,?

(1)

(ii) The diagram below shows the distribution of molecular energies in the reaction at 750°C. On the same diagram, draw a curve to show the distribution at 500°C and explain what effect this change in temperature would have on the rate of the reaction.

(3)

Number of particles of energy, E

*(d) Explain how a catalyst speeds up the rate of a re	eaction. (3)
	(Total for Question 20 = 14 marks)
TO	OTAL FOR SECTION B = 40 MARKS

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

21 Ethanoic acid is used industrially in the manufacture of polymers and glues and also in the food industry as an acidity regulator.

It can be synthesized in the laboratory by the reaction of ethanol with excess sodium dichromate(VI) solution, acidified with concentrated sulfuric acid. Ethanol is placed in a suitable flask along with some anti-bumping beads. The concentrated sulfuric acid is then added a drop at a time. The sodium dichromate(VI) solution is then added a drop at a time causing the mixture to boil spontaneously. When the addition of the sodium dichromate(VI) solution is complete, the mixture is heated under reflux for approximately 15 minutes. The ethanoic acid formed can then be separated from the reaction mixture.

$$CH_3CH_2OH \xrightarrow{Na_2Cr_2O_7} CH_3COOH$$
heat. 1 atm

Ethanoic acid can be produced industrially by the CativaTM process. Methanol, which can be obtained from wood, is reacted with carbon monoxide in the presence of an iridium catalyst.

$$CH_{3}OH(g) + CO(g) \xrightarrow{\text{Iridium catalyst}} CH_{3}COOH(g)$$

(a) (i) Balance the half-equation for the reduction of dichromate(VI) ions.

$$Cr_2O_7^{2-}+$$
 ______ H^++ ______ $e^- \rightarrow$ _____ $Cr^{3+}+$ _____ H_2O

(ii) The half-equation for the oxidation of ethanol is

$$CH_3CH_2OH + H_2O \rightarrow CH_3COOH + 4H^+ + 4e^-$$

Use this and your answer to (a)(i) to write a full equation for the overall reaction between acidified dichromate(VI) ions and ethanol. State symbols are **not** required.

(2)

(b) (i)	Why are the concentrated sulfuric acid and sodium dichromate(VI) added a drop
	at a time in the laboratory process?

(1)

(ii) Draw a labelled diagram of the apparatus that could be used to heat the mixture under reflux.

(3)

(iii) What colour would the mixture be after it was heated under reflux?

(1)

	Il reaction mixture.	
(i)	Explain why the other products and any excess reactants are left behind in the distillation flask.	
		(1)
(::N		
(11)	Suggest a method to separate pure ethanoic acid, boiling temperature 118°C, from the water.	
		(1)
.,		
(d) (i)	In the Cativa TM process what effect, if any, would increasing the pressure have	
(I)	on the yield of ethanoic acid? Justify your answer.	
		(2)

*********		*****************
(11)	Suggest TWO reasons why it might be difficult, or undesirable, to produce ethanoic acid in industry by scaling up the laboratory process.	
	and the country process.	(2)

		***** *******************************

TOTAL FOR PAPER = 80 MARKS								
(Total for Question 21 = 20 marks) TOTAL FOR SECTION C = 20 MARKS								
	(Total for Organization 21 - 20							
informed decision.	(6)							
Suggest TWO additional pieces of informatinformed decision.								
Evaluate the 'greenness' and sustainability	2							
$2C_4H_{10}(1) + 5O_2(g) \rightarrow 4CH_3G$								
*(e) An alternative industrial process for the pr of butane using a transition metal catalyst								

BLANK PAGE

	7	3
	כמכ	5
	2	
ī	ı	į
٠		5
10000	a	ږ
	פת	2
ŀ		-
÷		5
	2	2
,	うにする	5
•	-	-
Ē	9	_

	- 1						71000				1			
(18) (18) (18) (18) (18) (18) (18) (18)	18	83.8	궃	krypton 36	131.3	Xe	xenon 54	[222]	R	radon 86		ted		
7 (17) (17) 19.0 F (14) 19.0 GL CLI chlorine	17	79.9	Ŗ	bromine 35	126.9	_	iodine 53	[210]	Αt	astatine 85		oeen repor		
(16) 16.0 O oxygen 8 8 32.1 S	16	79.0	Se	selenium 34	127.6	<u>F</u>	tellurium 52	[509]	Ьо	polonium 84		116 have	ıticated	
(15) 14.0 N nitrogen 7 7 31.0 P	15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		nbers 112-	but not fully authenticated	
(14) 12.0 C carbon 6 6 Si silicon	4	72.6	ge	germanium 32	118.7	Sn	50 ti	207.2	В	lead 82		atomic nu	but not f	
3 (13) 10.8 B boron 5 27.0 Al	13	69.7	Ga	gallium 31	114.8	드	indium 49	204.4	F	thallium 81		Elements with atomic numbers 112-116 have been reported		
-	(12)	65.4	Zn	zinc 30	112.4	g	cadmium 48	200.6	H	mercury 80				
	(11)	63.5	J	copper 29	107.9	Ag	silver 47	197.0	Αn	gold 79	[272]	Rg	roentgenium 111	
ξ	(10)	58.7	Έ	nickel 28	106.4	Pd	palladium 46	195.1	¥	platinum 78	[271]	Ds	meitnerium damstadtium 109 110	
5	(6)	58.9	ပိ	cobalt 27	102.9	뫖	rhodium 45	192.2	<u>_</u>	iridium 77	[368]	Mt	meitnerium 109	
1.0 hydrogen	(8)	55.8	Fe	iron 26	101.1	Ru	ruthenium 44	190.2	Os	osmium 76	[277]	Hs	hassium 108	
	(2)	54.9	W	manganese 25	[86]	ր	molybdenum technetium 42 43	186.2	Re	rhenium 75	[264]	Bh	bohrium 107	
mass bol number	(9)	52.0	ბ	vanadium chromium manganese 23 24 25	95.9	Wo	motybdenum 42	183.8	≯	tungsten 74	[592]	Sg	seaborgium 106	
Key relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9	>	vanadium 23	92.9	g	niobium 41	180.9	Ta	tantalum 73	[292]	В	dubníum 105	н
relat	(4)	47.9	F	titanium 22	91.2	Zr	zirconium 40	178.5	Ŧ	hafnium 72	[261]	R	rutherfordium 104	
	(3)	45.0	Sc	scandium 21	88.9	>	yttrium 39	138.9	۲a*	lanthanum 57	[227]	Ac*	actinium 89	
(2) 9.0 Be berytlium 4 24.3 Mg magnesium	12	40.1	g	calcium 20	87.6	S	strontium 38	137.3	Ba	barium 56	[326]	Ra	radium 88	
E 0 - E	11	39.1	¥	potassium 19	85.5	&	rubidium 37	132.9	ర	caesium 55	[223]	Ŀ	francium 87	

173 **Yb** ytterbium 70 [256]
Md
mendelevium
101 169 Tm thulium 69 [253] **Fm** fermium 167 **Er** erbium 68 100 Es einsteinium 99 165 **Ho** holmium 67 163

Dy
dysprosium
66 Cf Cf californium 98 159 **Tb** terbium 65 [245]
Bk
berkelium
97 157 **Gd** gadolinium 64 [247] Cm curium 96 152 **Eu** europium 63 95 Pu Pu Sm samarium 62 94 Np neptunium p promethium 61 [147] **Pm** 144 Nd neodymiun uranium 738 U 9 92 141 **Pr** raseodymium 59 91 232 **Th** thorium 90 Ce cerium 58

* Lanthanide series * Actinide series

175 Lu lutetium 71

103