

REACTING MASS CALCULATIONS 1

Aluminium is extracted from aluminium oxide as shown. Calculate the mass of aluminium that can be formed from 1020 g of aluminium oxide.

$$2Al_2O_3 \ \rightarrow \ 4Al \ + \ 3O_2$$

moles
$$Al_2O_3 = \frac{1020}{102} = 10.0 \text{ mol}$$

moles Al =
$$2 \times 10.0 = 20.0 \text{ mol}$$

mass Al =
$$27 \times 20.0 = 540 \text{ g}$$

Calculate the mass of oxygen needed to react 10.0 g of 2Ca + O₂ → 2CaO calcium to form calcium oxide.

$$2Ca + O_2 \rightarrow 2CaO$$

moles Ca =
$$\frac{10.0}{40}$$
 = 0.250 mol

moles
$$O_2 = \frac{0.250}{2} = 0.125$$
 mol

mass
$$O_2 = 32 \times 0.125 = 4.00 \text{ g}$$

What mass of propane could burn in 48.0 g of oxygen?

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O_3$$

moles
$$O_2 = \frac{48.0}{32} = 1.50 \text{ mol}$$

moles
$$C_3H_8 = \frac{1.50}{5} = 0.300 \text{ mol}$$

mass
$$C_3H_8 = 44 \times 0.300 = 13.2 \text{ g}$$

What mass of ammonia can be made from 20.0 g of hydrogen?

$$3H_2 + N_2 \rightarrow 2NH_3$$

moles
$$H_2 = \frac{20.0}{2} = 10.0 \text{ mol}$$

moles NH₃ = 10.0 x
$$\frac{2}{3}$$
 = 6.67 mol

mass
$$NH_3 = 17 \times 6.67 = 113 g$$

What mass of sodium hydroxide is needed to neutralise 24.5 kg of sulfuric acid?

$$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$$

moles
$$H_2SO_4 = \frac{24500}{98} = 250 \text{ mol}$$

mass NaOH =
$$40 \times 500 = 20000 \text{ g}$$

What mass of carbon dioxide is formed when 7.41 g of copper(II) carbonate decomposes on heating?

$$CuCO_3 \rightarrow CuO + CO_2$$

moles
$$CuCO_3 = \frac{7.41}{123.5} = 0.0600 \text{ mol}$$

$$moles CO_2 = 0.060 mol$$

mass
$$CO_2 = 44 \times 0.060 = 2.64 g$$

7) What mass of carbon monoxide is needed to react with $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ 2.08 kg of iron oxide?

moles
$$Fe_2O_3 = \frac{2080}{160} = 13.0 \text{ mol}$$

moles $CO = 3 \times 13.0 = 39.0 \text{ mol}$
mass $CO = 28 \times 39.0 = 1092 \text{ g}$

8) What mass of chlorine reacts with 20.0 g of iron to form $2Fe + 3Cl_2 \rightarrow 2FeCl_3$ iron(III) chloride?

moles Fe =
$$\frac{20.0}{56}$$
 = 0.357 mol
moles Cl₂ = 0.357 x $\frac{3}{2}$ = 0.536 mol
mass Cl₂ = 71 x 0.536 = 38.0 g

9) Hydrazine (N₂H₄) is used as a rocket fuel. It can be made by reacting ammonia with hydrogen peroxide. What mass of ammonia is needed to make 148 g of hydrazine?

$$2NH_3 + H_2O_2 \rightarrow N_2H_4 + 2H_2O$$

moles
$$N_2H_4 = \frac{148}{32} = 4.625$$
 mol
moles $NH_3 = 2 \times 4.625 = 9.25$ mol
mass $NH_3 = 17 \times 9.25 = 157$ g

10) 10.00 g of hydrated sodium sulfate decompose to form 4.40 g of anhydrous sodium sulfate on heating. Calculate the formula mass of hydrated sodium sulfate and the value of *x*.

$$Na_2SO_4.xH_2O \rightarrow Na_2SO_4 + xH_2O$$

moles
$$Na_2SO_4 = \frac{4.40}{142} = 0.03099$$
 mol
mass $H_2O = 10.00 - 4.40 = 5.60$ g
moles $H_2O = \frac{5.60}{18} = 0.3111$ mol

Ratio of moles Na₂SO₄: H₂O = 0.03099: 0.3111 =
$$\frac{0.03099}{0.03099}$$
 $\frac{0.3111}{0.03099}$ = 1:10

∴ x = 10 (nearest whole number)

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Can find moles from mass			Can convert units		
Shows suitable working			Can use reacting ratios in equations			Can find water of crystallisation		
Can work out M _r			Can find mass from moles			Gives units		