

TIME OF FLIGHT MASS SPECTROMETRY 2

1) a) Calculate the relative atomic mass of lead given the mass spectroscopy data below.

m/z	204	206	207	208
relative intensity	0.287	4.51	4.32	10.00

- b) Identify the species responsible for the peak at m/z 208.
- c) Which ion will have the shortest time of flight and reach the detector fastest?
- 2) The mass spectrum of butanone shows its main peak at m/z 72. It also has a small signal at m/z 73.
 - a) What is the relative formula mass of this compound?
 - b) Give two reasons for the peak at m/z 73.
 - c) There would also be tiny peaks at m/z 74, 75, etc. Explain why some ions with these m/z values may be formed but why their signals may be too small to be seen.
- 3) The mass spectrum of chloromethane (CH₃Cl) shows two main peaks at m/z 50 and m/z 52.
 - a) Explain why these two peaks are produced.
 - b) Predict the relative intensity of these two signals. Explain your answer.
- 4) a) Calculate the relative atomic mass of chromium given the mass spectroscopy data below.

m/z	50	52	53	54
relative abundance (%)	4.3	83.8	9.5	2.4

- b) Identify the species responsible for the peak at m/z 52.
- c) Which ion will have the shortest time of flight and reach the detector fastest?
- d) All the particles have the same kinetic energy (= $\frac{1}{2} \text{ mv}^2$, where m = mass of particle and v = velocity) and the velocity of the particles is given by v= d/t (where d = distance travelled and t = time taken). If the time of flight of a ⁵⁴Cr⁺ ion is 1.486 x 10⁻⁵ s, calculate the time of flight of a ⁵⁰Cr⁺ ion. Give your answer to the appropriate number of significant figures.
- 5) The element bromine is made of diatomic molecules. There are two isotopes of bromine, namely ⁷⁹Br and ⁸¹Br of roughly equal abundance. Sketch what the time of flight mass spectrum of the element bromine will look like.
- 6) Calculate the relative atomic mass of krypton given the mass spectroscopy data below.

m/z	78	80	82	83	84	86
relative abundance (%)	0.3	2.3	11.6	11.5	56.9	17.4

7) Calculate the relative atomic mass of strontium given the mass spectroscopy data below.

m/z	84	86	87	88
relative intensity	0.00678	0.120	0.085	1.000