

<u>TASK 1</u>

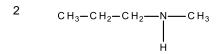
Route 1

```
CH_{3}-CH_{2}-CH_{2}-CH_{2}-Br + 2NH_{3} \longrightarrow CH_{3}-CH_{2}-CH_{2}-NH_{2} + NH_{4}+Br
Route 2
step 1 \qquad CH_{3}-CH_{2}-CH_{2}-Br + KCN \longrightarrow CH_{3}-CH_{2}-CH_{2}-C = N + KBr
step 2 \qquad CH_{3}-CH_{2}-CH_{2}-C = N + 4[H] \longrightarrow CH_{3}-CH_{2}-CH_{2}-CH_{2}-NH_{2}
```

<u>TASK 2</u>

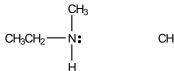
<u>TASK 3</u>

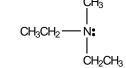
	amine	amine	stronger base	reason
1	methylamine CH ₃ HN : H	diethylamine CH ₂ CH ₃ CH ₃ CH ₂ N : H	diethylamine	 2^Y compared to 1^Y Diethylamine has greater electron density on N lone pair Diethylamine has greater ability to accept H⁺
2	propylamine CH ₂ CH ₂ CH ₃ HN : H	phenylamine	propylamine	 Lone pair on phenylamine N is partially delocalised into benzene ring Propylamine has greater electron density on N lone pair Propylamine has greater ability to accept H⁺
3	ammonia H HN: H	phenylmethylamine	phenylmethylamine	 1^Y compared to ammonia Phenylmethylamine has greater electron density on N lone pair Phenylmethylamine has greater ability to accept H⁺

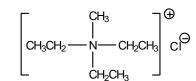

4	ammonia	cyclohexylamine		1 ^Y compared to ammonia
		: NH ₂	cyclohexylamine	Cyclohexylamine has greater electron density on N lone pair
	HN: HN:			 Cyclohexylamine has greater ability to accept H⁺

<u>TASK 4</u>

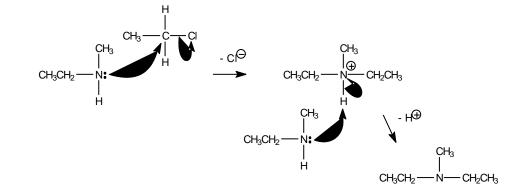
1

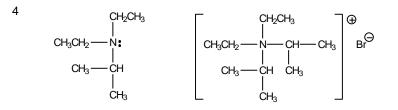

 $CH_{3}-CH_{2}-N-CH_{3}$ $CH_{3}-CH_{2}-N-CH_{3}$ $CH_{3}-CH_{3}$


ethyltrimethylammonium chloride

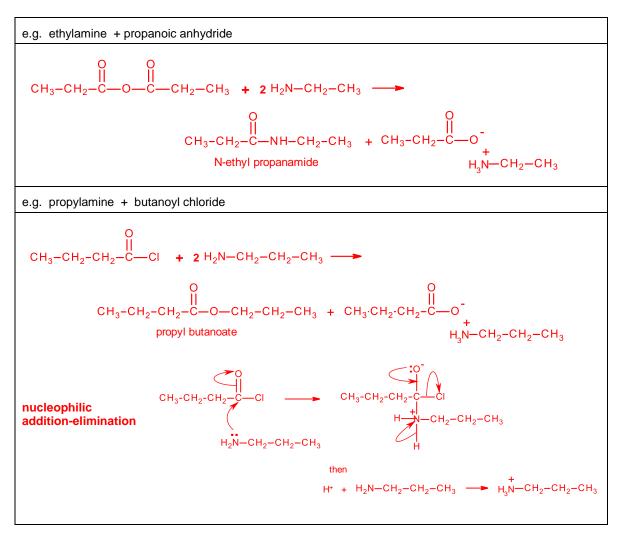


3





N-methylethylamine


N-methyldiethylamine

N-methytriethylammonium chloride

<u>TASK 5</u>

