EdExcel Further Pure 1

Complex Numbers

Section 1: Introduction to complex numbers

Exercise

- 1. Find the roots of the following equations:

 - (i) $z^2 + 25 = 0$ (ii) $4z^2 + 9 = 0$

 - (iii) $z^2 2z + 2 = 0$ (iv) $4z^2 + 4z + 5 = 0$

(10 marks)

- 2. In each of the following cases find

- (a) $z_1 + z_2$ (b) $z_1 z_2$ (c) $z_1 z_2$ (d) z_1^* (e) z_2^* (f) $z_1^* + z_2^*$ (g) $z_1^* z_2^*$ (h) $z_1^* z_2^*$

- (i) $z_1 = 2 + 3i$; $z_2 = 1 2i$
- (ii) $z_1 = -2i$; $z_2 = 3 + i$

What do you notice about the results?

(20 marks)

- 3. Given that $z = (a + i)^4$ where a is real, find values for a such that
 - (a) z is real,
 - (b) z is wholly imaginary.

(8 marks)

- 4. Simplify and write in the form a + bi
 - $\frac{1}{3+2i} + \frac{1}{3-2i}$
 - (ii) $3+i+\frac{4}{3-i}$
 - (iii) $\frac{3}{1-i} \frac{2i}{2+i}$

(8 marks)

- 5. Find the values of p and q given that one root of the equation $z^2 + pz + q = 0$ is
 - 2-i(i)
 - 1 3i(ii)
 - (iii) 2i
 - (iv) 5 3i

(8 marks)

6. Given that $\frac{5}{a+bi} + \frac{2}{1+3i} = 1$, where a and b are real, find a and b.

(6 marks)

Total: 60

COMPLEX NUMBERS- EXAM QUESTIONS

1	The complex numbers $2 + 3i$ and $4 - i$ are denoted by z and w respectively. Exp following in the form $x + iy$, showing clearly how you obtain your answers.	press each of the
	(i) $z + 5w$,	[2]
	(ii) z^*w , where z^* is the complex conjugate of z ,	[3]
	(iii) $\frac{1}{w}$.	[2]
		(Q3, June 2005)
2	Use an algebraic method to find the square roots of the complex number 21 – 20i.	[6]
		(Q4, June 2005)
3 🌢	(i) Express $(1 + 8i)(2 - i)$ in the form $x + iy$, showing clearly how you obtain your	answer. [2]
	(ii) Hence express $\frac{1+8i}{2+i}$ in the form $x+iy$.	[3]
	211	(Q1, Jan 2006)
40	One root of the quadratic equation $x^2 + px + q = 0$, where p and q are real, is the constant $q = 0$. Write down the other root.	omplex number
W. Joseph	(i) Write down the other root.	[1] (Q3, June 2006)
5學	The complex number z satisfies the equation $z + 2iz^* = 12 + 9i$. Find z, giving you form $x + iy$.	[5]
64	The complex numbers $3-2i$ and $2+i$ are denoted by z and w respectively. Find, giving	(Q3, Jan 2010) ing your answers
	in the form $x + iy$ and showing clearly how you obtain these answers,	
	(i) $2z - 3w$,	[2]
	(ii) $(iz)^2$,	[3]
	(iii) $\frac{z}{w}$.	[3] (Q5, June 2006)
7 339	Express $\frac{2+3i}{5-i}$ in the form $x+iy$, showing clearly how you obtain your answer.	[4] (Q1, Jan 2009)
8 8	Use an algebraic method to find the square roots of the complex number 15 + 8i.	[6] (Q2, Jan 2007)
i.		102, 0411 2001)
9 16	(i) Use an algebraic method to find the square roots of the complex number 5 + 12	i. [5]
	(ii) Find $(3-2i)^2$.	[2]
	(iii) Hence solve the quartic equation $x^4 - 10x^2 + 169 = 0$.	[4]
		(Q9, June 2008)