

 $(vi)\frac{4}{9}$

Mechanics 9 – Kinematics 2 - Solutions

Section 1

1. (i) 10 (ii) 3 (iii) $\frac{56}{3}$ (iv) $\frac{9}{2}$ (v) $\frac{57}{4}$ (vii) 4 (viii) 36.53 (2 d.p.) (ix) $\frac{5}{24}$

Section 2

1. *P* is at rest when v = 0

$$0 = 12 - t - t^{2} \checkmark$$

$$t^{2} + t - 12 = (t + 4)(t - 3) = 0 \checkmark$$

$$t = -4, 3 \checkmark \checkmark$$

As $t \ge 0, t = -4$ is rejected.

$$a = \frac{\mathrm{d}\nu}{\mathrm{d}t} = -1 - 2t \quad \checkmark$$

When $t = 3$,

 $a = -1 - 2 \times 3 = -7 \checkmark$

The acceleration of P when P comes to instantaneously to rest is 7 m s^{-2} in the $\sqrt{}$ direction of x decreasing.

(8 marks)

2. (a) $a = \frac{dv}{dt} = 1 - 12t$ When v = 0, $12 + t - 6t^2 = 0 \Rightarrow (4 + 3t)(3 - 2t) = 0$ $t \ge 0$ and so $t = \frac{3}{2}$ \checkmark \Rightarrow acceleration $= 1 - 12(\frac{3}{2}) = -17$ \checkmark So the magnitude of the acceleration is 17 ms^{-2} \checkmark

(b) $s = \int v. dt = \int 12 + t - t^2. dt = 12t + \frac{1}{2}t^2 - 2t^3 + c$ But s = 0 when t = 0 and so c = 0So when $v = 0, t = \frac{3}{2}$ $\Rightarrow s = 12(\frac{3}{2}) + \frac{1}{2}(\frac{3}{2})^2 - 2(\frac{3}{2})^3$ $\Rightarrow s = 12.375$ = 12.4 m (3sf)

(12 marks)

3.	a	P is	at rest	when	v = 0

$$v = 4t - t^{2} = 0 \qquad \checkmark$$

$$t(4 - t) = 0$$
As $t > 0, t = 4 \qquad \checkmark$

$$x = \int v dt$$

$$= 2t^{2} - \frac{1}{3}t^{2} + c \qquad \checkmark$$
When $t = 0, x = 0$

$$0 = 0 - 0 + c = 0 \implies c = 0 \qquad \checkmark$$

$$x = 2t^{2} - \frac{1}{3}t^{3} \qquad \checkmark$$

When t = 4

$$x = 2 \times 4^2 - \frac{4^3}{3} = 10\frac{2}{3}$$

b When t = 5,

 $x = 2 \times 5^2 - \frac{5^3}{3} = 8\frac{1}{3}$ In the interval $0 \le t \le 5$, moves to a point $10\frac{2}{3}$ m from O and then returns to a point $8\frac{1}{3}$ m from O.

The total distance moved is $10\frac{2}{3} + (10\frac{2}{3} - 8\frac{1}{3}) = 13 \text{ m}$.

(10 marks)

4.

b In the first two seconds P moves $2 \times 4 = 8 \text{ m}$ \checkmark

$$s = \int v dt = \int (5 - 4t^{-2}) dt$$
$$= 5t - \frac{4t^{-2}}{-1} + C = 5t + \frac{4}{t} + C \quad \checkmark$$

When t = 2, s = 8

$$8 = 5 \times 2 + \frac{4}{2} + C = 12 + C \implies C = -4 \quad \checkmark$$
$$s = 5t + \frac{4}{t} - 4$$

When t = 5,

$$s = 5 \times 5 + \frac{4}{5} - 4 = 21.8$$

In the interval $0 \le t \le 5$, P moves 21.8 m. \checkmark

(8 marks)

5. a For $0 \le t \le 2$ $v = \int a \, dt = \int (6t - t^2) dt$ \checkmark $= 3t^2 - \frac{1}{3}t^3 + c'$, where c is a constant of integration. When t = 0, v = 0 $0 = 0 - 0 + c \Rightarrow c = 0$ \checkmark $v = 3t^2 - \frac{1}{3}t^3$ \checkmark When t = 2, $v = 3 \times 2^2 - \frac{2^3}{3} = \frac{28}{3}$ The speed of P when t = 2 is $\frac{28}{3}$ m s⁻¹. \checkmark

b For $t \ge 2$,

 $v = \int a dt = \int (8-t) dt$ = $8t - \frac{1}{2}t^2 + k$, where k is a constant of integration. From a, when $t = 2, v = \frac{28}{3}$ $\frac{28}{3} = 16 - \frac{4}{2} + k \Rightarrow k = -\frac{14}{3}$ $v = 8t - \frac{1}{2}t^2 - \frac{14}{3}$ When t = 4, $v = 32 - 8 - \frac{14}{3} = \frac{58}{3}$

The speed of P when t = 4 is $\frac{58}{3}$ m s⁻¹.

(3)

(5) [8]

(b) $\underline{s} = \int v \, dt = \frac{-432t^{-1}}{-1} (+K) = \frac{432}{t} (+K)$ B1 $t = 6, s = "36" \implies 36 = \frac{432}{6} + K$ $\implies K = -36$ M1* A1 At t = 10, $s = \frac{432}{10} - 36 = \frac{7.2}{10}$ (m) d*M1 <u>A1</u>

Section 3