

Pure 9 – Binomial Expansion

Please <u>complete</u> this homework by ______. Start it early. If you can't do a question you will then have time to ask your teacher for help or go to a drop in session.

Section 1 – Review of previous topics. Please <u>complete</u> all questions.

- **1.** Factorise fully: $2x^4 x^3 5x^2 2x$. Hence solve for $x: 2x^4 - x^3 - 5x^2 - 2x = 0$
- 2. Find the equations of the circles which pass through each of these sets of points.
 a. (1,0), (7,-6), (7,0)
 b. (6,4), (5,9), (-10,6)
 c. (0,0), (3,7), (10,0)
- **3.** By considering the discriminant, or otherwise, find the range of values of *k* that give each of these equations two distinct real roots.

a. $x^{2} + 3x + k = 0$ b. $3x^{2} + kx + 2 = 0$ c. $k(x^{2} + 1) = x - k$

Section 2 – Consolidation of this week's topic. Please <u>complete</u> all questions.

1. Write down the values of :

(a) 5!	(b) 7!	(c) 11!	
(d) ⁵ C ₂	(e) ⁹ C ₃	(f) ¹¹ C ₇	(g) ¹³ C ₈
(h) $\binom{5}{3}$	(i) $\binom{10}{1}$	(j) $\binom{13}{5}$	(k) $\binom{20}{6}$

(11 Marks)

2. Find the first four terms of these binomial expansions in ascending powers of x

- (a) $(1+x)^8$ (b) $(1-3x)^7$ (c) $(1+2x)^9$
- (d) $(2-3x)^6$ (e) $(x-2)^8$ (f) $(2x-1)^{10}$

(24 marks)

3. Find the terms indicated in each of these expansions and simplify your answers

(a) $(p+5)^5$ term in p^2 (b) $(4+y)^9$ term in y^5 (c) $(z+\frac{3}{2})^8$ term in z^6

(d) $(2a - 3b)^{10}$ terms in a^5 and b^4

(10 Marks)

4. Fully expand and simplify each of these expressions				
(a) $3x(2x-5)^5$ (b) $(2+x)^4(1+x)$ (c) $(5-2x)^3 + (3+2x)^4$				
(d) $(2 + \sqrt{3})^4 + (1 - \sqrt{3})^4$				
	(15 marks)			
5. (a) Expand $(1 + 4x)^6$ in ascending powers of x up to and including the term in x^2				
(b) Use your answer to part (a) to estimate the value of $(1.04)^6$				
	(5 marks)			
6. (a) Expand $(1 - 2x)^7$ in ascending powers of x up to and including the term in x^3				
(b) Use your answer to part (a) to estimate the value of $(0.99)^7$				
	(5 marks)			
7. Use the binomial theorem to work out the value of:				
(a) 1.015^5 correct to 4 decimal places				
(b) $\left(\frac{199}{100}\right)^{10}$ correct to five significant figures				
	(6 marks)			

(Total 76 Marks)

Section 3 – Extension questions. If you are aiming for a top grade, you should attempt these questions.

For these first four questions you should try to use the second binomial formula which is given on page 5 of the Maths formula book. You can find this formula book on GO.

1. The first three terms in the expansion of $(1 + ax)^n$ are $1 + 35x + 490x^2$. Given that *n* is a positive integer find the value of (a) *n* and (b) *a*.

(6 marks)

2. Given that $(1 + bx)^n \equiv 1 - 24x + 252x^2$... For a positive integer *n* find the value of (a) *n* and (b) *b*.

(6 marks)

(6 marks)

- **3.** In the expansion of $(1 + 2x)^n$, *n* is a positive integer. The coefficient of x^2 is eight times the coefficient of *x*. Find the value of *n*.
- **4.** In the expansion of $(1 + \frac{x}{2})^n$, *n* is a positive integer. The coefficients of x^4 and x^5 are equal. Calculate the value of *n*.

(6 marks)

The binomial coefficients are given by

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}, \ k \in \mathbb{N}, \ n \in \mathbb{N} \cup \{0\}.$$

Show directly from the above definition that

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$
 (6)