

Pure 19 – Trig Graphs and Simple equations

Please <u>complete</u> this homework by ______. Start it early. If you can't do a question you will then have time to ask your teacher for help or go to a drop in session.

Section 1 – Review of previous topics. Please <u>complete</u> all questions.

A: Starting from the curve $y = x^3 + 2x + 3$, describe the transformation of the original curve for each of the graphs below:

1. $y = x^{3} + 2x + 5$ 3. $y = x^{3} + 2x - 1$ 5. $y = -x^{3} - 2x - 3$ 7. $y = 2x^{3} + 4x + 6$ 9. $y = \left(\frac{x}{2}\right)^{3} + x + 3$ 2. $y = -x^{3} - 2x + 3$ 4. $y = (x + 3)^{3} + 2(x + 3) + 3$ 6. $y = (x - 3)^{3} + 2(x - 3) + 3$ 8. $y = 8x^{3} + 4x + 3$

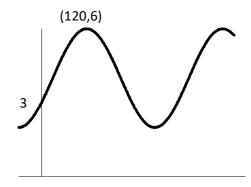
B: For each of the following triangles find all the missing sides and angles, and the area.

1) 3) A = 19 cm $A = 62^{\circ}$ AC = 24 cm $A = 62^{\circ}$ AC = 24 cm AB = 12.2 cm $C = 37^{\circ}$ BC = 14.5 cm

Section 2 – Consolidation of this week's topic. Please <u>complete</u> all questions. 1. Sketch the graphs of:

a) y = sin(3x)[2]b) y = 1.5cos(x)[2]c) $y = sin(x - 60^{\circ})$ [2]d) y = 2 + cos(x)[2]e) y = 2sin(0.5x)[2]f) y = 1 + tan(x)[2]2. Solve for x, $0^{\circ} \le x \le 360^{\circ}$, giving your answers to 1 d. p.

a) $\sin x = 0.37$ b) $\cos x = 0.61$ c) $\tan x = 1.2$ [6]

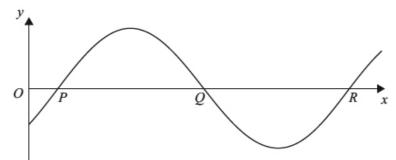

3. Solve for x, $0 \le x \le 360^\circ$, giving your answers to 3 s. f.

a) $\cos x = 0.9$ b) $\sin x = 0.41$ c) $\tan x = 0.74$ [6]

- 4. Solve for x, $0^{\circ} \le x \le 360^{\circ}$.
 - a) $\sin 2x = -\frac{1}{2}$ b) $\cos(x 30^\circ) = \frac{1}{\sqrt{2}}$ c) $\tan \frac{1}{2}x = -1$ [6]
- 5. Solve for x, $0 \le x \le 360^\circ$, giving your answers to 3 s.f.

```
a) \sin x = -\sqrt{3}/2 b) \cos 2x = 1/\sqrt{2} c) \tan (x + 45^{\circ}) = \sqrt{3} [6]
```

6.



The graph shown above has the equation $y = A + Bsin(t^{\circ} - k)$, $t \ge 0$ where A, B and k are positive constants and k is an angle between 0° and 90° .

a) Show that $k = 30^{\circ}$	[2]
b) Show that A – $\frac{1}{2}$ B = 3, and obtain a similar equation for A+B	[4]
c) Solve your equations to find the values of A and B	[4]
d) Find the coordinates of the first two minimum points of the graph	[4]

(Total 50 Marks)

Section 3 – Extension questions. If you are aiming for a top grade, you should attempt these questions.

The diagram above shows part of the curve with equation

 $y = \sin(ax - b)$, where a > 0, $0 < b < 180^{\circ}$

The curve cuts the *x*-axis at the points *P*, *Q* and *R* as shown.

Given that the coordinates of *P*, *Q* and *R*, are $(18^\circ, 0)$, $(108^\circ, 0)$ and $(198^\circ, 0)$ respectively, find the values of a and b.