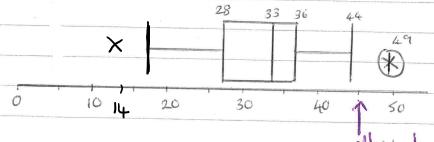
Statistics 6 Histograms & cumulative frequency SOLUTIONS

Section 1


1, a, 1 47 (n=13)
$$Q_1 = 13 = 3.25 \rightarrow 4^m = 28$$

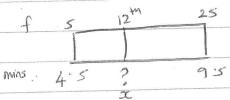
2 58 $Q_2 = 13 = 6.5 \Rightarrow 7^m = 33$
4 049

$$Q_3 = 3(13) = 9.75 \Rightarrow 10^{4} = 36$$

b,
$$Q_1 - 1.5(1QR) = 28 - 1.5(36 - 28)$$

= 16 ... 14 is an outlier

$$Q_3 + 1.5(10R) = 36 + 1.5(36 - 28)$$
= 48 ... 49 is an extres


(Hso allow boundamies
$$\Rightarrow$$
 265-1.5(38-26.5) = 9.25 \Rightarrow 28+1.5(38-26.5) = 55.25

allow top of line to go to 48 (outlier boundary)

Also allowith valves from different qualities as given before.

9	mins	F	cf	
٨,	0.5 -1.5	5	5	()
	6.5 - 4.5	20	25	
	9.5 - 19.5	28	53	
ll h	19.5 - 29.5	51	104	
	29.5 - 59.5	16 .	120	

$$\frac{3c-4.5}{9.5-4.5} = \frac{12-5}{25-5} \qquad x = 6.25.$$

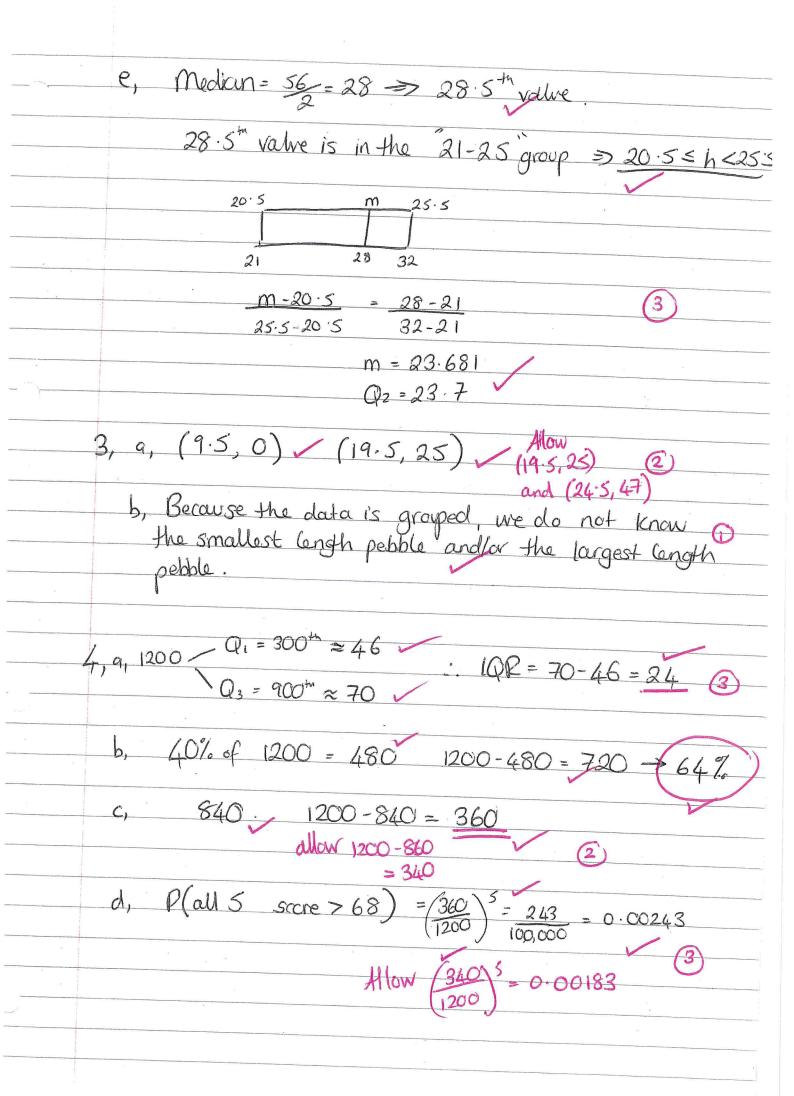
90% of 120 = 108th > 108th person lies in group 29.5-59.5

$$\frac{y-29.5}{59.5-29.5} = \frac{108-104}{120-104}$$
 $y = 37$.

Scheme A: + 50p per hour Scheme B: 5% increase Z = £10.50 Sd2= £1.05 y = 2x + 11 $x^2 + y^2 - 6x - 4y = 32$ $x^{2} + (2x + 11)^{2} - 6x - 4(2x + 11) = 32$ $3C^2 + 4x^2 + 44x + 121 - 6x - 8x - 44 = 32$ 50c + 300c + 45 = 0 $x^2 + 6x + 9 = 0$ $(x+3)^2 = 0$ x = -3 (Since there is only I solution for x the line only touches Can also use discriminant the circle once b2-4ac2 $=6^{2}-4(1)(9)^{2}$ = 36 - 36 = 0 .. one solution for oc.

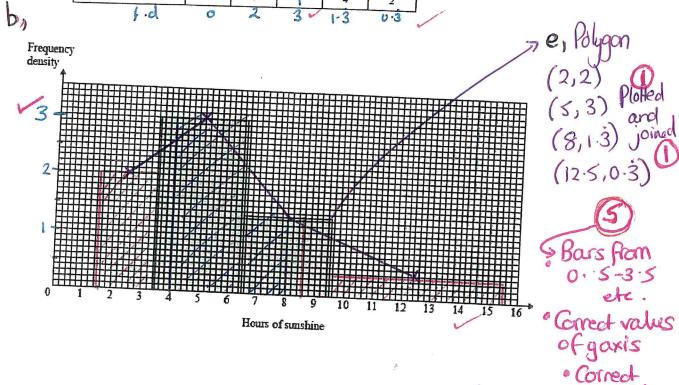
5.dr = 11

3,


 $\bar{x} = \pm 10$

01		0
200	101	2
	and the Control of the	CONTRACTOR OF THE

),		freq.	freq density	Mathed
,	0.5 - 3.5	30	393 = 10	/
	3.5 - 4.5	96	96 = 96	
	4.5 - 5.5	48	48 7 48	
	5.5 - 7.5	84	84 = 42	
	7.5 - 10.5	27	23/3 = 9	9
	10.5 - 15.5	15	15/5 + 3/	
1				


freq = 13
$$|3people| = |3 \times 1.6| = 20.8 \text{ cm}^2 - \text{shi}$$

d, mean =
$$23.5$$
 (from calculator)
 $5.d = 10.7$

Q5, a, The data is grouped, the data is continuous either

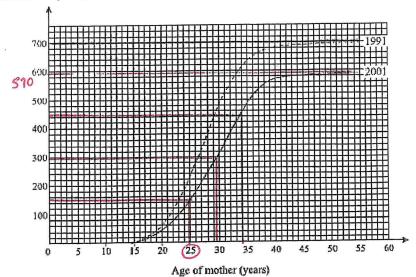
	•	0.5 - 3	.53.5 -6	\$ 6.5-	9.5 9.5	-15 -
Hours of sunshine	0	1 – 3	4-6	7-9	10-15	12.2
Number of days	0	6	9	4	2	
f.d	0	2	3 ~	1-3	U·3	/

c,
$$4-8 \text{ hours} \Rightarrow 4-6.5 \text{ hours} = 2.5 \times 3 = 7.5$$
 (1)
 $6.5-8 \text{ hours} = 1.5 \times 1.3 = 2$ (1)

neights

$$\frac{d}{dx} \le x = 114 \le x^2 = 817.5 n = 21$$

$$\overline{x} = 5.4285$$


$$= 5.43 \text{ hours}.$$

$$S.d = \sqrt{\frac{5\alpha^2}{n} - (\frac{5\alpha}{n})^2} = \sqrt{\frac{817.5}{21} - (\frac{114}{21})^2}$$

e, see above.

6, cont.

Cumulative frequency (000's)

others

Year	Median age (years)	Interquartile range (years)	Proportion of mothers giving birth aged below 25	Proportion of mothers giving birth aged 35 or above
1991	27.5	7.3	33%	9%
2001	29.5	9	25%	18%

6, 9, 1991 → more births, by≈110

2

$$Q_1 = \frac{590}{2} = 295^{th} = 29.5$$

$$Q_1 = \frac{590}{4} = 147.5^{th} = 25$$

ii) The mothers in 2001 tended to be older than the women who gave both in 1991. The median age in 2001 was greater than 1991. The propertion of 'younger' mothers (below 25) was lower in 2001, and the proportion of 'older' mothers (over 35) was higher in 2001.

Tolder' mothers (over 35) was higher in 2001.

However there is a slightly larger spread of data in 2001.

