

Statistics 11 - Discrete Random Variables and Binomial Distribution

Please <u>complete</u> this homework by ______. Start it early. If you can't do a question you will then have time to ask your teacher for help or go to a drop in session.

Section 1 – Review of previous topics. Please <u>complete</u> all questions.

1. The basic weekly earnings, to the nearest £, of 150 workers in a factory are shown in the following table:

Weekly earnings (£)	100-109	110-129	130-149	150-174	175-204
Number of plots	12	35	62	28	13

- a) Calculate estimates of the mean and standard deviation of this distribution
- Following pay negotiations workers are to receive a 3% increase in basic pay plus a fixed lump sum increase of £156. Find the mean and standard deviation of the increased weekly earnings
- The Venn diagram shows the probabilities of customer bookings at Harry's hotel.
 R is the event that a customer books a room
 B is the event that a customer books breakfast
 D is the event that a customer books dinner
 u and *t* are probabilities.

- a) Write down the probability that a customer books breakfast but does not book a room.
- b) Given that the events *B* and *D* are independent, find the value of *t*.
- c) Hence find the value of *u*.

Section 2 – Consolidation of this week's topic. Please <u>complete</u> all questions.

1. The discrete random variable *X* can take only the values 2, 3, 4 or 6. For these values the probability distribution function is given by:

x	2	3	4	6
P(X = x)	$\frac{5}{21}$	$\frac{2k}{21}$	$\frac{7}{21}$	$\frac{k}{21}$

1.2

where k is a positive integer

- a) Show that k = 3
- b) Find $P(X \le 3)$
- 2. A discrete random variable X has the probability function

$$P(X = x) \quad \begin{cases} k(1-x)^2 & x = -1, 0, \\ 0 & \text{otherwise} \end{cases}$$

Find the probability distribution for \boldsymbol{X}

3. The discrete random variable X has the probability function

$$P(X = x) = \begin{cases} kx & x = 2, 4, 6\\ k(x - 2) & x = 8\\ 0 & \text{otherwise} \end{cases}$$

where k is a constant. Find the exact value of $P(X \le 5)$.

4. The discrete random variable *X* has probability distribution

	x	- 4	-2	1	3	5	
	P(X = x)	0.4	p	0.05	0.15	р	
a)	Show that p	= 0.2					(2)
b)) Find $P(X \ge 0)$						
c)	Find $P\left(1 < \frac{10x-1}{20} < 3\right)$ (6)						

- 5. 2 fair coins are flipped. Mark is interested in X, where X = the number of tails obtained.
 Is X an example of the uniform distribution? Give reasons. (2)
- 6. The random variable $X \sim B\left(8, \frac{1}{3}\right)$. Use your calculator to find:
- a) P(X = 2) (1) b) $P(X \le 2)$ (2)
- c) P(X = 5) (1)
- 7. In a particular profession, 60 per cent of candidates pass a test. A group of 12 people sit the test. Find the probability that
 a) Half of the group pass the test (2)
- b) Three quarters of the group pass the test (1)
- c) Between half and three quarters (inclusive) pass the test (3)

(2)

(3)

(1)

(4)

(1)

(1)

(3)

(1)

8.	On a day with light rain forecast, one fifth of people have an umbrella with them. Of 16
	people waiting at a bus stop find the probability that:

- a) Four people have an umbrella (2)
- b) Ten people have an umbrella

```
c) Seven people do not have an umbrella
```

- 9. A football team lose 50% of games, and draw 15% of games. Assuming the binomial model is appropriate, find the probability that over a 10 game tournament they:
- a) Win no more than two games
- b) Win half of the games
- c) The team plays three 10 game tournaments over the season. Find the probability they win no more than two games in exactly one of these tournaments (2)
- d) Explain why the use of the binomial model is suspect for all parts of this question (1)

(Total 40 Marks)

Section 3 – Extension question. If you are aiming for a top grade, you should attempt these questions.

1. The discrete random variable *X* has the probability distribution

x	1	2	3	4
P(X = x)	k	2 <i>k</i>	3k	4 <i>k</i>

- a) Show that k = 0.1
- b) Find P(*X*< 3)
- c) Two independent observations X_1 and X_2 are made of X. Show that $P(X_1 + X_2 = 4) = 0.1$
- d) Complete the probability distribution table for $X_1 + X_2$

у	2	3	4	5	6	7	8
$\mathbf{P}(X_1 + X_2 = \mathbf{y})$	0.01	0.04	0.10		0.25	0.24	

e) Find $P(1.5 < X_1 + X_2 \le 3.5)$

2. State the conditions under which the binomial distribution may be used. Records kept in a hospital show that 3 out of every 10 casualties who come to the casualty department have to wait more than half an hour. Find the most probable number of the first 8 casualties that will have to wait more than half an hour.